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By assigning the Fibonacci angle of 137.507... degrees between any two consecutive 

individual flowers (florets), and controlling the logarithmic scatter of the floral positions, 

one of us (Davis) has constructed the sunflower head, botanically known as the capitulum. 

A mathematical explanation for the configuration seen on the capitulum thus constructed, 

which simulates that of a natural sunflower head, has been offered by the first author. The 

formation of the individual florets on the capitulum which eventually causes the emer- 

gence of arcs or spirals on it, whose numbers invariably match with the terms of 

Fibonacci Sequence, can be explained thus: The florets are formed one at a time on the 

highly compressed stem which flattens out into the disc. The disc gets widened as more 

and more florets are differentiated, and the older ones move away from the growing point 

(centralmost region) and the younger ones get distributed around this central point. A 

flower primordium is differentiated on a side of the stem apex, and the subsequent florets 

are generated at a fast rate with a constant time-interval between any two consecutive 

individuals. As the flowers get differentiated, the tip of the meristematic axis rotates so 

much so that the older florets are seen to move away from the growing point in 

logarithmic spirals that approximate to an Archimedes’ spiral. Moreover, among any two 

consecutive florets, the younger one starts differentiating from the axis when the older one 

is at an angle +t, such that $1,/(2n-cpr) forms the golden ratio (0.618.. .). This process 

continues till the genetic material is finished and the flower head is fully programmed. 

With favorable environmental conditions, the individual flowers expand at a uniform rate 

over time along with the simultaneous expansion of the disc. It is shown mathematically 

that the above theory can explain all the properties of a sunflower head whether large or 

small. 

1. INTRODUCTION 

The sunflower plant, scientifically known as Helianthus annuus, belong- 
ing to the family Compositae is important both for its huge, attractive 
flowerheads as well as for the edible oil that is extracted from the seeds 
(botanically, fruits). The leaves of this plant are produced one after another 
(alternate phyllotaxis) in a single spiral, running clockwise or counter- 
clockwise, any two consecutive leaves making an angular deflection of 
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about 137.5”. As the plant matures, the size of the later formed leaves gets 
reduced when the tip of the main stem flattens out into the flower-bearing 
disc known as capitulum. At the base of the disc, there are many reduced 
leaves called “involucral bracts,” which also show spiral patterns. On the 
top of the disc too, numerous highly reduced, closely set bracts are present, 
each subtending a small flower in its axil. Although these bracts are also 
produced one after another, the time interval between the formation of any 

two consecutive bracts (and hence flowers) is considerably reduced. The 
oldest flowers are distributed at the periphery of the disc, and younger and 
still younger flowers are met with as one proceeds from the periphery 
towards the central point, which represents the tip of the compressed main 
stem. Each of the petal-like structures seen at the periphery of the disc 
represents a female or sterile flower known as the ray floret. Bordered by 
the ray florets on the disc are the numerous, less prominent, regular, 
bisexual flowers called the disc florets. If a perfectly developing capitulum is 
observed, it will be seen that the flowers start blooming one by one, a 
bloomed flower appearing at a place approximately 137.5” away from its 
immediate older one in relation to the central point. In nature such an ideal 
head is difficult to come across. Thus, the capitulum of the sunflower is a 
highly compressed stem whose leaves are reduced to small bracts, each 
supporting a flower in its axil. The development, blooming, and maturity of 
the individual flowers follow the sequence commencing from the oldest 
bract and moving upwards (toward the center). 

One’s admiration for the aesthetic value of sunflower capitulum could 
be enhanced if one understands the mechanism involved in the arrangement 
of the individual flowers on it. Spirals or arcs in specific numbers are 
formed according to certain mathematical laws. Since 1754, several biolo- 
gists and mathematicians have been attracted by the spiral patterns in 
nature such as those in the leaf arrangement and arrangement of flowers on 
the sunflower head and similar other plant organs who gave possible 
explanations for the same [l-32]. However, none of them could explain 
fully the different phenomena manifested on the capitulum of Compositae. 

Many of the investigators referred to above had realized the importance 
of some basic properties of the Fibonacci Sequence for explaining the 
arrangement of leaves on a shoot or the florets on a capitulum which 
display spiral patterns. The Fibonacci Sequence, named after a 13th century 
Italian mathematician, Leonardo da Pisa, runs thus: 
1, 1,2,3,5,8,13,21,34,55,89,144,233, etc. A number is obtained by adding 
the previous two terms. The ratio of any two consecutive Fibonacci Num- 
bers (higher ones) turns out to be 0.6 18.. . known as the Golden Ratio. It is 
on account of this peculiar situation that shoots with closely set alternate 
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leaves or the head of a sunflower or other similar organs show spiral 
mechanism and the number of spirals match a Fibonacci Number. 

The configuration seen in the flowerhead shown in Fig. 1 gives the false 
appearance that the basic pattern is formed by the several arcs. But these 
arcs are the resultants of a single basic arrangement of the individual 
flowers. Another interesting property which most workers obviously over- 
looked is that the individual flowers/seeds are more or less of the same size 
and shape whether they are formed near the periphery or near the centre of 

the disc. Considering all these factors, a small head of sunflower having 
only 234 individual flowers/seeds has been constructed and shown in Fig. 

FIG. 1. A schematic head of sunflower showing 34 and 21 spirals. 
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1. The construction procedure is mentioned under Sec. 2 and a mathemati- 
cal explanation for the same is given under Sec. 3. 

2. CONSTRUCTION 

The flowerhead shown in Fig. 1 is constructed in the following manner. 
A line AB is drawn as the reference axis. Let point 0 on it represent the very 
tip (growing point) of the shoot that enlarges into the capitulum. A circle 
with a fixed diameter is drawn touching AB at 0. A second circle of the 

same diameter is drawn at an angular deflection of 137.507” from the line 
connecting the center of the first circle and 0. The second circle, which just 
touches the first one, can be placed either to the left of the first one or to its 
right. This decides whether the capitulum becomes left-handed or right- 
handed. In nature the lefts and rights are distributed randomly. In the 
present case, the second circle is shown on the left of the first. Successive 
circles of the same diameter have been drawn one after another on the left 
of the preceding ones at the same angular deflection of 137.507”. None of 
the subsequent circles overlaps any of their neighbors that lie on the line 
connecting the center. Although the subsequently formed circles in the 
picture seem to move away from the center than the early formed ones, a 
reverse course takes place on the head. That is, flower No. 234 is the oldest, 
and No. 1 the youngest. At the time when the second flower (circle) is 
differentiated at the tip of the stem, the first one rotates away from its 
original position by about 137.5”. Thus, when more and more florets are 
formed, the already formed ones are pushed towards the periphery with 
minimum space between them. Some of the earliest formed flowers turn 
into the ray florets, and the latter ones into disc florets. Care was taken that 
no circle was nearer to the center than any of the circles already drawn. It 
can be shown that the configuration in the capitulum does not depend on 
the size of the circles as long as every circle has the same diameter. Figure 1 
exhibits the following property. Start with any circle at the periphery and 
join the centers of adjoining circles whose numbers differ by 21. Then, the 
continuous-line radial arcs are obtained. Similarly starting from any circle 
at the periphery, the circles whose numbers differ by 34 are connected. The 
dotted-line arcs which move opposite to the 21 arcs are obtained. The two 
kinds of arcs pass through all the circles. 

The overall pattern of Fig. 1 is slightly modified as to bring forth the 
individual seeds on the capitulum boldly, and the result is seen in Fig. 2. AS 

the radial arcs are drawn just bordering the circles, the space available for a 
seed is represented by each circle (parallelogram). Thirty four clockwise and 
21 counter-clockwise arcs are clearly seen at the periphery. The 34 arcs, 
each after passing through 4 or 5 seeds, merge with the set of 13 arcs 
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FIG. 2. A reconstructed head of a sunflower. 

moving along the same direction but showing a greater degree of curvature. 
From where the 13 arcs take over from the 34, the original 21 arcs are seen 
moving opposite to the 13 arcs. Thus, the 34 and 21 arcs seen at the 
periphery of the head get reduced to 21 and 13. At some level still closer to 
the center, arcs 13 and 8 are seen and this combination progressively gets 
reduced to 8 and 5, 5 and 3, and finally to 3 and 2. It is striking that in a 
natural capitulum one can see a similar configuration (Fig. 3). It is, 
therefore, emphasized that all the arcs which start from the periphery do not 

reach the center as most earlier workers had erroneously depicted. Richards 
[22,23] seems to be the only worker whose illustrations on the phyllotaxis 
may be considered throwing considerable light on this peculiarity. 

It can be inferred from Fig. 2 that in capitulums bearing equal-sized 
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seeds or flowers, the numbers of visible arcs will vary with the diameter of 

the head, a smaller one showing lower numbers and larger ones higher 
numbers, all matching with terms in the F. Sequence. The oldest seed/ 
flower of the capitulum in Fig. 2 is just older to 233 members. Two hundred 
thirty three is a F. Number. Hence a head having 233 to 144 (next lower F. 
Number) seeds/flowers will show 34 and 21 arcs at the periphery. Another 
having 89 seeds/flowers will show 21 and 13 spirals, one with 34 seeds will 
show 13 and 8 spirals, and so on to smaller numbers of arcs as the numbers 

of individual flowers per head decrease. On the same sunflower plant, the 
terminal head, which is generally the largest, will show the highest number 
of arcs at the periphery. But the heads produced on secondary and further 
orders of branches become smaller and smaller, and they show lesser and 
lesser numbers of arcs. Another indication for this decrease can be had 
from the number of ray florets seen on a capitulum. The periphery of the 
capitulum in Fig. 2 has 21 projections. The flower at each projection 
develops into a ray floret which increases the attractiveness of the flo- 
werhead, a device to facilitate cross pollination. In a smaller head, the 
number of projections is reduced to 13,8, and perhaps 5 and may show an 
equal number of ray florets. But in nature, considerable variation is ob- 
served. However, if data are obtained on a large number of heads, the 
numbers of ray florets will cluster around some terms of the Fibonacci 
Sequence. Another striking similarity between this reconstructed picture 
and a natural capitulum is the following. If any arc is followed from the 
periphery, the seed at the junction where three or four kinds of arcs meet, is 
slightly irregular in shape. Such irregular “junction seeds” can be picked out 
from any large capitulum with developed seeds. At the centralmost part of 
the head, it is often possible to find very large and highly irregular seeds. 

Proceeding from the periphery, one can see the 34 spirals moving 
clockwise and then joining the 13 spirals which also move clockwise. They 
are taken over by the 5 spirals that ultimately join the 2 spirals (marked 
within circles Nos. 1, 3, 5) both moving along the same direction. The spiral 
numbers synchronizing the alternate terms of the Fibonacci Sequence, i.e., 
21,8,3, and 1 commencing from the periphery move counterclockwise. This 
peculiarity of the spirals synchronizing alternate Fibonacci Numbers mov- 
ing along a common direction has a striking similarity with a basic property 
of Fibonacci Numbers. The ratio between consecutive F. Numbers swing 
steadily between the plus and minus sides of the golden ratio (0.618.. .). The 
ratio of I/ 1 is 1.0 which is on the plus side, l/2=0.5 which is on the minus 
side; 2/3 =0.667 is on the plus side; 3/5=0.60 is on the minus side, and so 
on. 

One incorrect approach followed by most earlier investigators is the 



CONSTRUCTING THE SUNFLOWER HEAD 123 

following. They represent the margin of a capitulum by a circle which is 

divided into 55 and 89 equal parts (or any two other consecutive F. 

Numbers). Logarithmic spirals are drawn, all starting from the center of the 
circle and passing through the 55 points. Similarly, 89 log spirals are drawn 
(also commencing from the center), which move steeply and opposite the 55 
spirals. In the ensuing pattern, the two sets of spirals/arcs cut each other at 
different points forming “parallelograms.” The area of a parallelogram at 
the periphery turns out to be several times larger than one near the center. 
This would suggest that the size of the seeds vary considerably depending 
on the position of the disc where the seed develops. But in nature, the seeds 
are almost of the same size whether they develop from the periphery or at 
the center of the capitulum (Fig. 3). Other workers who had realized the 
importance of the Fibonacci angle (137.5”) between successive flowers end 
with generating log spirals which steadily diverge as they extend from the 
center. In such diagrams, the parallelograms at different regions of the head 
would inevitably exhibit wide disparity in their area. 

However, these log spirals may hold well enough to represent the 
growing point of a palm crown or other plants where the various leaves are 
produced at long time intervals, and therefore, showing a gradation in the 
size of the leaves. In the sunflower head, such a time interval is very much 
narrowed down, and there are innumerable units to accommodate. Hence, a 
spiral with even a small log effect will cause a big difference. 

The method of plotting the circles in Figs. 1 and 2 may be explained 
thus. Assume the various points or centers of parallelograms which are 

FIG. 3. A typical compositae capitulum showing ray and disc florets. 
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obtained by observing the Fibonacci angle between consecutive points in a 
pattern which show log spirals, are replaced by uniform discs. The margin 
of disc No. 1 touches 0 on the reference line AB. Disc No. 2 is brought to 0 
by the shortest distance and left where it touches disc No. 1 without 
disturbing the position of disc 1. Similarly, No. 3 is dragged by the shortest 
track towards 0 and left where it touches the disc nearest to it. Similarly, 
discs 3,4,5,. . . 234 are brought closer. The required arcs are obtained by 
connecting the suitable circles. The final configuration (Fig. 2) becomes 
much different from the original figure. 

Also on the lower side of the capitulum where the leaves are modified 
into involucral bracts, it is possible to trace out different sets of spirals. If 
Fig. 2 is to represent the pattern of these involucral bracts, the oldest bract 
will come almost at the center near circle No. 1, and the youngest one to the 
periphery. As the number of such bracts on any flower-head is much less 
than that of the flowers on top of the disc, the bracts display arcs matching 
smaller terms in the Fibonacci series compared to those on the top. 
Generally a disc showing a maximum of 34 and 21 arcs at the periphery has 
21 bracts, and so on, subject to some variation. Like these involucral bracts, 
the normal leaves themselves display arcs when looked at from the top of a 
non-flowering shoot. Thus, it is the golden ratio of the angular deflection 
between any two leaves, bracts or flowers that brings about the radial arcs, 
their numbers always matching with stages in Fibonacci Sequence. 

A sunflower head can also be considered to represent a two-dimensional 
configuration of the crown of a coconut palm, where the individual seeds 
would correspond to the different leaves on the crown. The shape of the 
palm crown as well as the positions of its leaves can be shown to be “best 
placed” from different mathematical considerations. Efficiency factors can 
be better explained in a palm crown rather than in a sunflower head 
because the sunflower disc is a very flattened cone and in order to 
appreciate the explanation of the efficiency factors, the height of the cone 
should be larger than what is noticed in a sunflower head. From the 
mathematical explanation, one can see that the growth principle is the same 
whether it is in the formation of individual flowers on the capitulum or in 
the formation of leaves in a palm crown. 

3. MATHEMATICAL EXPLANATION 

The mathematical equation for a logarithmic spiral in polar coordinates 
is as follows: 

r = kea8, (1) 

where k and a are constants. Since k is only a weighting factor for r, 
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A- 0 

FIG. 4. 

without loss of generality we may assume the equation to be of the form 

r = eae. (2) 

Figure 4 gives the logarithmic spiral where AB is a reference line and 0 is 
the origin. Depending upon the value of a, the width between successive 
spirals increases slowly or rapidly. Consider the case where a is very small. 
Then we have, 

r=eae= l+aB+~ - 

[ 

(W2 + WV3 +... 
3! 

I 

Sz1+ue, (3) 

where “x” means “approximately equal to,” that is, r- 1 =uaB. In other 

words, this logarithmic spiral behaves like an Archimedes’ spiral whose 
equation is of the form, 

r=bB, (4) 

where b is a constant. Archimedes’ spiral has the property that the width 
between successive spirals remains the same. 

Now consider the formation of a sunflower. Let the individual flowers 
come out at a constant speed of X units per second along the spiral in Eq. 
(2) with a very small a. Let the second flower emerge after t, units of time. 
At this stage let the angle be 8,. That is, the first flower is at the position 
marked C in Fig. 4 when the second flower starts emerging. If the distance 
covered by a moving point, such as flower number 1, is denoted by s, then 

from elementary calculus we have 

(5) 
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where, in general ds/dt denotes the derivative of s with respect to t. At time 
t,, the distance traveled is ht, and thus by integrating Eq. (5) we have, 

That is, 

fl,= ilog 1+ 
i 

ah, 

vG2 I 

(6) 

(7) 

where the logarithm is taken to the base e. Since X and a are mutually 
non-dependent, we may expand the righthand side of (7). That is, 

(since a is assumed to be very small). 
Now when the second flower emerges at position C, the third flower 

starts and the first flower has travelled another Xt, units of distance. If the 
angle which the first flower now makes with AB is denoted by B,, then we 
have, 

(9) 

In other words, the angle between successive flowers remains approximately 
the same as 0,. In drawing Fig. 1 we have used this property of a 
logarithmic spiral when the constant a is small. We have taken 0, as 
137.5”, which is observed in actual sunflower capitulum. In a natural 
specimen, we know that all the individual florets or seeds are of the same 
dimension. This observation can be taken into account only if the spiral 
resembles an Archimedes’ spiral where the width between successive spirals 
remains the same. Thus, it is noticed that the constant a has to be very 
small. By this process a microscopic flowerhead is formed as in Fig. 5. 

If the diameter of the disc of this microscopic flowerhead which is PQ in 
Fig. 5, is denoted by M, then when environmental conditions are favorable, 
this M expands at a uniform rate dM/dt=p where ~1 is a constant. 
Correspondingly, the individual flowers which are denoted by circles in Fig. 

5 also expand and finally the disc attains the form as shown in Fig. 1. NOW 
for convenience we will call the last flower as flower number 1 and so on. 
Then we can get the radial distance of the nth flower and the angle which 
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FIG. 5. 

nth flower makes with the reference line AB. Let the radial distance of the 

nth flower be denoted by r, and the corresponding angle 6,. Then from (6) 
we have 

But 

(10) 

At,=2ht,=2 viTz (P@l- 1). 
a 

From (10) and (11) we have 

(11) 

e 4= 1+2(e”‘1- 1). (12) 

Proceeding in this way we have 

But 

,4,1 +n[&- l]or8,=~log{l+n(e”BI-I)}, 

r,=ea4=[1+n(&-l)] 

(13) 

=[1-n++neae’81]. (14) 

Equations (13) and (14) give the values of 0, and r,, in terms of 0,. We can 
notice a number of interesting properties from Fig. 1. From Eq. (14) and 
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ri - r35 

r22- r56 

==~4~~~~~~t))' (along the continuous line arcs), (15) 

9 

rtx- r85 ~~l\:~~~~,~ (along the dotted line arcs), (16) 
r98- r119 > 

In other words, if one continuous line arc is given, then all the other similar 
arcs can be traced by a simple rotation. Similarly, if one dotted line arc is 
given, then all other similar arcs can be obtained. In Fig. 2, there are several 

parallelograms. For example, r,,, ra, r,,, r9* form a parallelogram and 
further, 

r64 - r43 21(1-C@]) 21 
p= =- 

34’ e,+o. 
b7 - t-43 34( 1 - e”‘l) 

If we consider a parallelogram nearer to 
Fig. 2, we have for example, 

the origin of the configuration in 

r9-r4 
-= 

r17 - t-9 

(17) 

5 
8’ (18) 

It is easy to notice that if we move from the outer perimeter to the origin of 
the configuration along any radial line, then at different stages one can 
redraw the two types of arcs in the following sequence: (21,34), (13,21), 

(g,l3), (590 (395). 
This section illustrates that if the individual flowers emerge at a uniform 

speed at fixed intervals of time along a logarithmic spiral, r = eae with a very 
small a and with the initial angle of 0i = 137.5”, then the exact configuration 
of a sunflowerhead can be constructed. The results in Eqs. (15)-(18) are due 
to the assumptions of a basic logarithmic spiral and the numbers 
34,21,13,8,5,3,2 from a Fibonacci sequence appear due to 13=137.5” 
because it is well known that the ratios of a successive Fibonacci Sequence, 
namely, l/2,2/3,3/5,5/8,5/13,13/21,.. . approach the golden ratio 

(V/5- 1)/2 and if 8, is measured in radians and if 0,/(2n- e,)= (fi - l)/ 
2, then 0, is approximately equal to 137.5”. 

From the above explanations and theory it is easy to associate the radial 
arcs seen in sunflowers with the Fibonacci sequence. Now it ramains to be 
explained why the microscopic flowers are formed along a logarithmic 
spiral, r = eaB with u being very small when the flower is programmed. One 
plausible explanation is as follows. From the theory of fluid dynamics it is 
known that if we consider fluid in uniform motion, that is, the same motion 
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is repeated at equal intervals of time, then the law governing the motion is 
given by 

where t, and t, are two intervals of time and f is some unknown function. 
But (19) is the famous Cauchy functional equation in the Theory of 
Functional Equations, whose unique continuous solution is 

f(f)=e”’ 

where (Y is an arbitrary constant. If the fluid is translated into rotation and 
expansion, then (20) becomes 

a0 r-e , (21) 

where u is an arbitrary constant. This shows that the logarithmic spiral in 
(21) may be a natural outcome of the supply of genetic material in the form 
of pulses at constant intervals of time obeying the law of fluid flow as 
explained in (19). 

4. OTHER ILLUSTRATIONS 

As other illustrations we can consider a cactus top (Fig. 6) on which an 
Archimedes’ spiral r = ke with k = 0.304 may be superimposed. As explained 

earlier, a logarithmic spiral r = eoe approximates to an Archimedes’ spiral 
except a shift in r, when a is small. In Fig. 6 also one can see that the 

FIG. 6. Top view of a cactus. The various points, where spines cluster together, can 
be connected by a single Archimedes’ spiral. 
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FIG. I. 

individual flowers are formed on a logarithmic spiral with a very small a. 
Here also one can draw the radial arcs as in Fig. 1, but due to a small 
number of flowers they will not be very prominent. 

5. SOME NUMERICAL CALCULATIONS 

The constant appearing in (2) of a logarithmic spiral can be evaluated by 
measuring the dimensions of actual sunflower seeds. As an illustration we 
will calculate a for the configuration in Fig. 1. It can be seen that the 
difference between the radial distances of centers of circles is approximately 
1 mm in every seven circles. That is, if the radial distance is measured in 
mm, then 

r, = e”‘, (22) 

r, = r, + 1 = eae7 = (-6+6e”‘l) (from 14). (23) 
That is, 

a=llog f = ( 1 VT- + 1 1. 
4 2r(vY -1) log ( 6 ) 

8, a-1 
approximately, since 2a _ e, = 2. 

(24) 

6. ARRANGEMENT OF FLOWERS ON RADIAL LINES 

Occurrence of individual flowers in a capitulum in the form of 5 or 8 or 
m radial lines can be explained easily. This depends upon the initial angle 
8,. Consider Fig. 7. When the individual flowers are forming on a 
logarithmic spiral, we have from Eq. (13), 

8,=~10g[l+n(P~-l)] (25) 

or 

e’efl=(n-l)(e’el-l). (26) 
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Suppose that the nth flower coincides with the first flower in the sense that 
both make the same angle with the radial line OD in Fig. 7. Here F and L 
denote the first and nth flowers. When this happens, let the number of coils 
which the logarithmic spiral makes be m + 1, then, 

8,=27rm+t$. (27) 

In Fig. 7 we have 3 coils seen cutting OD. If the first flower F makes an 
angle 8, with OD, where AB is the reference line, then L makes the angle 

2(2a)+ 8,. Thus we have, 

e42mn+@I), (h_ 1)(&4_ 1) 

or 

e,= Alog 1+Le 
[ 

zam 

Pi-1 1 . w 
If 8, is determined by (28) for a preassigned n and m, then we will have 
flowers arranged in radial lines, the number of lines depending upon m and 
n. In all such cases, the generation or the programming of the flowers is 
governed by the same principle of a basic logarithmic spiral with a small 
constant a eventhough different patterns or different types of radial arcs are 
seen. 

FIG. 8. Reconstructed head of a sunflower. 
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