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I'ntroduction

Milne’s method is the classic “predictor-corrector method” for solving ordi-
nary differential equations. In spite of its known instability property, Milne's
method has & number of virtues not possessed by its principal rival, the Runge-
Kutta method, which are especially important when the order of the system of
equations is fairly high (N = 10 to 30 or more). Hence it is worth examining
predictor-corrector methods that do not have this instability property and at
the same time are well adapted to machine computation. This paper gives a
general technique for finding such stable methods, discusses one specific case
which seems “‘on the average” to be a good compromise between conflicting
interests, and sketches a second example.

Milne’s Method

Since Milne’s method is the standard predictor-corrector method, it is worth
going carefully over a slightly modified form of it that is adapted to large scale
digital computation. Let the equation to be solved be

y = d_ll T, ), (1)

and suppose that the solution has been started (probably by the Runge-Kutta
method). The next value is prcdictcd by

Puit = Yus + (Zun = Yoot + 2ns), (2a)

which has an error term 2% A, Milne’s remark! that one can guess ahead can
bc adapted to machine computation as follows, Since p..1 has an error of
35 h”y(’) and ¢,41 (which will be defined in equation (‘20)) ha% an error term
—o h'y®, then if y¥ were a constant puiy — capr = 22 A%, and subtracting
28 (po — rn) from pn.1 would exactly compensate for the error. In practice
1t is usually true that p, — ¢, varies slowly from step to step so that using the

modified value

28
Mat1 = Payi ™ ‘é‘g [pn - Cn] (Zb)

will “mop up”” most of the error in the predietor.

* Received July, 1958.
Y Numerical Solution of Differential Equations, page 65.
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This modified value is then used in the differential equation (1) to obtain an
. 4 " . .

estimate m,..q of the derivative.
The corrected value is given by

b o .
Cort = Ynor + §L (Miis - 4y’ -+ Yo, (2¢)

which has an error term, — & A°y®. This error can he partially compensated

for by using the final value
1 .
Yns1 7= Cpypi + 5‘(“)' [’pn»{d o Cn+1]- (2(1)

Thus, if the fifth derivative of y is a constant, then the method is exact; in general,
the error depends on the sixth derivative.

Using this 7,41 in a second evaluation of the right-hand side of the differential
equation (1) gives the final value of the derivative yp. , and one step forward
has then been completed.

Vartues of Mulne’s Method

The numerical value of p, — ¢, is used as a control on the computation. If
Pa — €, 18 very small, this indicates that the interval is too short and that ecom-
putation time is being wasted. If p, — ¢, suddenly becomes large, this is highly
indieative of a machine error, while if it gradually grows large this indicates
the need for shortening the interval of integration. Thus Milne’s method supplies
a running check that the method and interval size are suitable and that the com-
putation is locally accurate enough to warrant going on.

The second asset of the method is that only two evaluations of the derivatives
are made per step forward, while in the Runge-Kutta method four evaluations
are needed. For high order systems of equations the evaluation time on the
machine may be from 90 to 99 per cent of the computing cycle so that, since both
methods use about the same interval size, this amounts to almost a factor of two
in machine time saved (and at modern machine costs this can amount to a lot
of money in a short time).

Instabality of Milne’s Method

Sinee instability is the main defect of Milne’s method, it is desirable to examine
its origin closely before showing how to eliminate it. It is easier to study the
stability of the usual Milne’s method, which merely predicts and then iterates
the corrector (2¢) until no more change is found in the corrected y,.1 value, than
it is to study the more elaborate (and more efficient) method given above. The
stability of the two methods is not essentially different.

[nstead of using Milne’s corrector, a lot of later algebra can be saved by intro-
ducing a “generalized corrector” formula at this point:

Y1 = aYn + OYnt + CYns 4+ M(dynis + eya’ + fyn). (3)
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This is the most general linear form which uses the data indicated. Other forms
san be used, such as one using y,_y , which would lead to a more extensive theory,
or a more aceurate formula, depending on how the extra parameter was used.

Let 2 be the true solution of the differential equation (1), that is, let 2 satisfy

dz , '
== f(z, 2). (4)
£
On the other hand the caleulated solution y satisfies
yﬂl = f(xn ] ,Z/n) + El(n); (5)

where F(n) is the ervor at the nth value and is assumed to be small. Returning
to z, we have the difference equation

Zupr = 2y + bzay + c2ag + B(dengn + €2 + frnor) + Ea(n), (6)
where E.(n) is the corresponding error. '
The error € in the solution is defined by
€ == Zn — Yn, (7)
and subtracting the two corrector equations (6) and (3) we get
€1 = A€y + beny + ceno + h(df;ﬂ + ¢, + f€;~1) -+ Ez(n)- (8)
Next subtract the two differential equations (4) and (5) for z and y, and apply
the mean value theoremn,

. af)

n./ = '(f"n n)  J\Tn n) T E = ‘(‘“- n T I -

€ FQn, 2a) = f(@n, yn) fi1(n) @y) € ih(n) (9)
For purposes of studying the growth of the error it is reasonable to assume

that Ey(n), E.(n), df/dy are all constants. The fact that they change slowly in

practical cases indicates that this assumption is not severe. It is also convenient

to rescale the problem into “natural units” by setting

z = {(I/A), where A = of (10)
dy

(since A £ 0; otherwise we would have no differential equation). Using this new
variable the differential equation (9) for the error ¢ becomes

de _ _In
dt A7
and putting this in the difference equation (8) we get’
€np1 = €y + b6n~1 + Cépn—9 + h(de,..H + Céy + fe.n_1) + Ez ad —A}E(d + (4 + f)El (11)

2 It is convenient to use the same letter k, though in faet they are different in equations
(6) and (11).
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This linear difference equation with constant coefficients may be solved by
setting ¢, = p”, which gives the characteristic equation

o' = ap® + bp + ¢ + Wdo" + ¢p° + fo)
or
_p—ap —bp—c (1
dp* ~+ ep* + fp
Returning now to Milne’s method where we have a = ¢ = 0,b = 1,d = f = },
e = 3, (12) becomes (see figure 1 for curve)

which, for a given h, has two solutions, p; and p; .
For any given A the general solution of (11) is, for Milne’s method,

en = cilp)” -+ calp)” + 65 (13)

In order to understand the implications of equation (13) it is necessary to
examine the situation rather caretully. The first thing to note is that if 9f/9y is
negative, then integration in the forward direction in z implies, because of (10),
integration in the negative dircction in ¢; i.e., we are then concerned with nega-
tive b values. In these cases po(h) < —1, and the term ¢(p2)" (c2 5% 0) in (13)
will oscillate and grow in size as n increases. Even if we start the numerical inte-



STABLE PREDICTOR-CORRECTOR METHODS 41

gration with ¢ = 0, “roundoff errors” are bound to introduce a ¢; which, while
small, is not exactly zero, and ultimately this term will dominate the other two.
Thus we gee that Milne’s method will not handle so simple an equation as

y o= -y, y0) =1 (14)

because the method will inevitably introduce an error that grows in a geometric
progression with a ratio more negative than — 1, no matter how small the interval
size h is chosen. As a result the true solution

2
g = C

will gradually be lost in the numerical computations since, using (7) and (13),
Yo = En — €, = € " cl(Pl)n - Cz(pQ)n — (3.

This is what is meant when Milne’s method is said to be “unstable’; the method

is unstable whenever df/dy < 0.

A second point to note is that in practice it is often not the size of the error
that matters, but rather the size in relation to the solution. Thus a method of
integration which has a bounded error may not be satisfactory when, as in equa-
tion (14), the solution itself is decreasing to zero. On the other hand there is no
point in trying hard to hold down the error in the equation

v =y  y0) =1,

since the effect of a single error at one stage automatically grows exponentially
with the solution. For such situations pe™ is a much better guide as to the serious-
ness of the error e, given in (13), and one may speak of “relative stability” as
well as “stability”. Curves of the relative error term are given in figure 2, while

figure 3 gives an enlargement of the critical region near p = 1.
Finally, it should be noted that in integrating a set of equations whose solu-
tions oscillate (for example o' = ¥, 7’ = —uy1, for which y = A cos 2z +

B sin 2) the use of the relative error near a crossing of the x-axis is bound to be
misleading. In such sttuations it is probably the absolute error rather than the
relative error that matters.
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In summary, then, the interpretation of the error ¢, as given in (13) requires
careful examination of what is desired before asserting that the error is, or is not,
serious,

Polynomial Approximation

We now return to the “generalized corrector’ (3). Milne’s method is exact
in case the solution is a polynomial of degree 4 or less. Using this same criterion
for the generalized corrector we obtain conditions on the coefficients a, b, - - - , f.
These conditions may be found either by expanding each of the s in a Taylor
series in h about z, and equating the terms on both sides for 1, &, A%, 1*, A', or,
equivalently, by requiring the equation to be exact for y = 1, 2, 2’ 2%, 2*. In
either case we get
27(1 — b) 9—b

24 d =5

18 + 14b
b=1=0 ¢ = g (15)

_—3(1 =) jo Y
©= o = TTTor

The error term may be found either by considering the h° term in the Taylor
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series, or by using 2°/5! in the formula, In either case the error term is found to
be
9 4 Bb

17\' ,5‘ ® = :,Nw A (5)~ .
"y s Y (16)

Roots When b = 0
The characteristic roots of the difference equation for & = 0 are given by
3 ;
p -ap2-l)p-6==0,
or, using (15), by

8" — 9(1 — b)p’ ~ Sbp + (1 = ) =0,

which is shown in figure 4. The curves show that for absolute stability, —6/10 <
h < 1. In this range there are a number of candidates for consideration, which
have various special properties; they are given in the following table 1. (Note
that the case b = 1 is Milne’s method.)

A number of effects can be seen to happen as b goes from 1 to —6/10:

1) The error term k grows linearly from —1/90 to —1/30.

2) The sum of |a| + |b| + |¢/|, which roughly indicates the amount of
roundof! trouble per step, goes from 1 at b = 1, to 1.25 at b = 0, to 2.6 at b =
—6/10.

3) The cases b = 1, 9/17, 0, have one or more zero coeflicients.

4) Every case has at least two coefficients of equal magnitude (which will save
one multiplication).

5) The vertical asymptote just off the right-hand side of the paper in figures
1 and 2 moves from 3 to 2.5, making the integration crror for positive af/oy
refatively worse.

After examining and balancing these various effects the value b = 0 emerges
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TABLE 1

[ b=1 9/17 1/9 Q —~1/7 -9/31 —~6/10
PR R _ | . ] S F _
3 0 o7 1|9’ o sl 9
b 1 9/17 e 0 —17 L —9/31 | —3/5
¢ 0 117 —1/9 j —U8 1T =51 | =1/
d 1/3 6/17 | 1027 | 3/8 821 12/31 2/5
e 4/3 18/17 21 | 68 ; 14/21 18/31 2/5
f 1/3 0 ~8/2r | —3/8 | —10/21 ~18/31 | —4/5
k 190 | —3/170 | —19/810 { —1/40 | —17/630 —9/310 | —1/30
5tk —4/3 —36/17 —76/27 , -3 - 68/21 —108/31 —4
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as a good compromise for general use. A shortening of the interval of integration
by 15 per cent will make the error term (16) about equal to that of Milne’s
method. For any specific situation, of course, a better choice of b can probably
be made.

Tigures 5-7 give plots of p(h) in the case b = 0 corresponding to figures 1-3.
These show that for A > —.75 the method is “relatively stable”, as well as
“stable”.

The Case b = 0 In Practice

While the above discussion has been based on the repeated use of the cor-
rector until the result converges, this is not the best way to proceed in practice.
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It is usually better to shorten the interval than to repeatedly evaluate the de-
rivatives. Thus we adopt the earlier pattern of operation for machine use. For
the case b = 0 we have, corresponding to equations (2a), (2b), (2¢), (2d):

. 4/ ’ ’
predict Puit = Yos + ‘;- Qy = Yot + 2ya-) }.

" 112
modify Mast = Pt = {47 (P — ¢)

. (17)

C()I'I'ect Cpg1 = g [92 n T Ynen + 3h(’ml,”.,1 + Qynl —_ y;—l)]
, 9
final value Yni1 = Cpp1 + 121 (Pust — Cups)
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The Runge-Kutta method may be used for starting (the first three steps).
While formulas can be given for computing the p. — ¢, that is needed for the
modification on the first step, it is probably better to set

ps —~ ¢5 = 0. (18)

This modified method is not as stable as the usual method, which repeatedly
uses the corrector until no change oceurs, and the bound on the stability moves
from h = .75 to about & = .65. On the other hand the modified method is exact
for solutions which are of degree 5 or lower, has an error term depending on
1% and generally makes more efficient use of the computations done.

Miscellaneous Remarks

In the above equations the predictor is the same as in Milne’s method. The
main disadvantage of this formula is that it requires y,; as a starting value. It is
natural to propose that the same methods as above be applied to the “‘gencralized
predictor”’,

Ynrt = GWn +F Wfns + Y + Bldy + etfn s + fyn-s).

In the polynomial case, where we require exact prediction for 1, z, °, °, «*, the
characteristic equation corresponding to (12) shows that for & = 0 such a formula
would be highly unstable. Under the above method of not iterating the corrector
some of this instability would filter through the equations and could cause
trouble when 3f/dy > 0.

Lower Accuracy Formulas
The same general methods can be applied to the problem of finding lower
accuracy formulas. For a corrector of the form
! 4
Yny1 = AYn + bynwl "l" h(cyn+1 + dyn/ + eynwl)

.. 2
and requiring exact fit for 1, z, 2°, «°, we get

a = —4 -+ 12¢ d=4— 8
b =15— 12 e =2 — 5
¢ =c error term = 1—?(-;«36 Bty

The characteristic roots for b = 0 are
pr=1
pz = —5 4+ 12¢

so that stability requires
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The choice ¢ = 5/12 is natural and leads to

4

ho,. V/
(5ynsr + 8y’ — yuor) — ﬁ ¥, (19)

:UI&+1 = yn + E
which was given by Southard and Yowell.®
The corresponding predictor based on
?/n+1 = ayn + byn,»—l + C?jn-‘z + h<dyn/ + eyln..-l)
leads to
a = —4 — be d =4+ 2
b =5+ 4¢ e = 2 + 4¢

l1—c¢
c=c error term = ——c— TR
)
Southard and Yowell chose ¢ = 0 which produces a nice short formula, but the
product of the characteristic roots is 5, and this means instability in the pre-
diction.

The only stable choice is ¢ = —1 which leads to the very simple formula
< h4 [y
Yorr = Yn + Yt = Yns + 2Ry’ — yout) + 5, (20)

whose characteristic roots are 1, 1, —1.
If these two formulas, (19) and (20), are used in a method like the above, then
the modifier is given by
Must = Pt — §(Pa — €4),
and the final value by
Yngl = Cnpl T+ %(pwkl - Cn+1)’

while the error term is proportional to hﬁy(ﬁ).

Conclusions
The main cost of gaining stability in a predictor-corrector method is the loss of
some accuracy. In the principal case treated, b = 0, this loss in accuracy can be
compensated for by shortening the interval of integration about 15 per cent.
The technique for finding stable methods has been illustrated by working
examples comparable to Milne’s method. Other generalized formulas can be
used, and conditions other than being exact for polynomials can be imposed.
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