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Google’s TPU supercomputers train  
deep neural networks 50x faster than  
general-purpose supercomputers running  
a high-performance computing benchmark.

BY NORMAN P. JOUPPI, DOE HYUN YOON, GEORGE KURIAN, 

SHENG LI, NISHANT PATIL, JAMES LAUDON, CLIFF YOUNG,  

AND DAVID PATTERSON

THE RECENT SUCCESS of deep neural networks (DNNs)  
has inspired a resurgence in domain specific 
architectures (DSAs) to run them, partially as a result 
of the deceleration of microprocessor performance 
improvement due to the slowing of Moore’s Law.17 
DNNs have two phases: training, which constructs 

accurate models, and inference, which 
serves those models. Google’s Tensor Pro-
cessing Unit (TPU) offered 50x improve-
ment in performance per watt over conven-
tional architectures for inference.19,20 
We naturally asked whether a successor 
could do the same for training. This ar-
ticle explores how Google built the first 
production DSA for the much harder 
training problem, first deployed in 2017.

Computer architects try to create de-
signs that maximize performance on a 
set of benchmarks while minimizing 

costs, such as fabrication or operating 
cost.16 In the case of DSAs like Google’s 
TPUs, many of the principles and ex-
periences from decades of building 
general-purpose CPUs change or do 
not apply. For example, here are fea-
tures of the inference TPU (TPUv1) and 
the training TPU (TPUv2) share but are 
uncommon in CPUs:

 ˲ 1–2 large cores versus 32–64 small 
cores in server CPUs.

 ˲ The computational heavy lifting 
is handled by two-dimensional (2D) 

A Domain-
Specific 
Supercomputer 
for Training 
Deep Neural 
Networks



68    COMMUNICATIONS OF THE ACM   |   JULY 2020  |   VOL.  63  |   NO.  7

contributed articles

and if we were building an inference ac-
celerator, we could stop there. For train-
ing, this is less than a third of the story. 
SGD next measures the difference or er-
ror between the model’s result and the 
known good result from the training set 
using a loss function. Then back-propa-
gation runs the model in reverse, layer-
by-layer, to produce a set of error/loss 
values for each layer’s output. These 
losses measure the deviation from the 
desired output. Last, weight update 
combines the input of each layer with 
the loss value to calculate a set of del-
tas—changes to weights—which, when 
added to the weights, would have result-
ed in nearly zero loss. Updates can have 
small magnitude. Shrinking further, 
updates are scaled down by the learning 
rate to keep SGD numerically stable. 
Moreover, a suite of algorithmic refine-
ments—including momentum,30 batch 
normalization,18 and optimizers such as 
Adaptive Gradient (AdaGrad)14—re-
quire their own state and alter the SGD 
algorithm to reduce the number of 
steps to achieve desired accuracy.

Each SGD step makes a tiny adjust-
ment to the weights that improves the 
model with respect to a single (input, 
result) pair. Each pass through the 
entire dataset is an epoch; DNNs typi-
cally take tens to hundreds of epochs to 
train. SGD gradually transforms the 
random initial weights into a trained 
model, sometimes capable of superhu-
man accuracy.

Given this background, we can com-
pare inference and training. Both share 
some computational elements includ-
ing matrix multiplications, convolu-
tions, and activation functions, so in-
ference and training DSAs might have 
similar functional units. Key architec-
tural aspects where the requirements 
differ include:

 ˲ Harder parallelization: Each infer-
ence is independent, so a simple clus-
ter of servers with DSA chips can scale 
up inference. A training run iterates 
over millions of examples, coordinat-
ing across parallel resources because it 
must produce a single consistent set of 
weights for the model. The number of 
examples processed in parallel, and 
the time to evaluate that multiple-ex-
ample minibatch—often shortened to 
batch—directly affect total end-to-end 
training time. A step is the computa-
tion to process one minibatch.

128x128- or 256x256-element systolic 
arrays of multipliers per core, versus 
either a few scalar multipliers or SIMD 
(one-dimensional, 16–32-element) 
multipliers per core in CPUs.

 ˲ Using narrower data (8–16 bits) to 
improve efficiency of computation and 
memory versus 32–64 bits in CPUs.

 ˲ Dropping general-purpose features 
irrelevant for DNNs but critical for CPUs 
such as caches and branch predictors.

The most effective DNN training is 
supervised learning, where we start 
with a huge (sometimes billion-exam-
ple) training dataset of known-correct 
(input, result) pairs. Pairs might 
be an image and what it depicts or an 
audio waveform and the phoneme it 
represents. We also start with a neural 
network model, which transforms the 
input into the result through an inten-
sive calculation of weights (also called 
parameters); the weights are random 
initially. Models are typically defined 
as a graph of layers, where a layer con-
tains a linear algebra part (often a ma-
trix multiplication or convolution us-
ing the weights) followed by a 
nonlinear activation function (often a 
scalar function, applied elementwise; 
we call the results activations). Train-
ing “learns” weights that raise the like-
lihood of correctly mapping from in-
put to result.

For some kinds of input data, an 
embedding at the start of the model 
transforms from sparse representa-
tions into a dense representation suit-
able for linear algebra; embeddings 
also contain weights.27,29 Embeddings 
might use vectors where features can 
be represented by notions of distance 
between vectors. Embeddings involve 
table lookups, link traversal, and vari-
able length data fields, so they are ir-
regular and memory intensive.

How do we get from random initial 
weights to trained weights? Current 
best practices use variants of stochastic 

gradient descent (SGD).31 SGD consists 
of many iterations of three steps: for-
ward propagation, backpropagation, 
and weight update. Forward propaga-
tion takes a randomly chosen training 
example, applies its inputs to the mod-
el, and runs the calculation through the 
layers to produce a result (which with 
the random initial weights, is garbage 
the first time). Forward propagation is 
functionally similar to DNN inference, 

DNN (Deep 
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wisdom is that 
bigger machines 
lead to bigger 
breakthroughs.
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Figure 1. A 2D-torus topology. TPUv2 uses a 16x16 2D torus.
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Table 1. Days to train production programs on one TPUv2 chip.

MLP0 MLP1 CNN0 CNN1 RNN0 RNN1

475 117 63 115 77 147

ogy (see Figure 1). An on-device switch 
provides virtual-circuit, deadlock-free 
routing. To enable a 2D torus, the chip 
has four custom Inter-Core Intercon-
nect (ICI) links, each running at 
496Gbits/s per direction in TPUv2. ICI 
enables direct connections between 
chips to form a supercomputer using 
only 13% of each chip (see Figure 3). Di-
rect links simplify rack-level deploy-
ment, but in a multi-rack system the 
racks must be adjacent.

One measure of an interconnect is 
its bisection bandwidth—the bandwidth 

 ˲ More computation: Back-propaga-
tion requires derivatives for every com-
putation in a model. It includes acti-
vation functions (some of which are 
transcendental), and multiplication by 
transposed weight matrices.

 ˲ More memory: Weight update ac-
cesses intermediate values from for-
ward and back propagation, vastly up-
ping storage requirements; temporary 
storage can be 10x weight storage. For 
inference, a small activation working 
set can usually be kept on chip.

 ˲ More programmability: Training al-
gorithms and models are continually 
changing, so a machine restricted to 
current best-practice algorithms during 
design could rapidly become obsolete.

 ˲ Wider data: Quantized arithme-
tic—8-bit integer instead of 32-bit float-
ing point (FP)—can work for inference 
like in TPUv1 but reduced-precision 
training is an active research area.21,25 
The challenge is sufficiently capturing 
the SGD sum of many small weight up-
dates to preserve the accuracy of using 
32-bit FP arithmetic to train models.

After explaining the TPUv2 architec-
ture, we describe the domain specific 
language (TensorFlow) and compiler 
(XLA) for TPUv2 and compare the ar-
chitecture and technology choices for 
the TPUv2 versus a GPU, the most pop-
ular computer for DNN training. Later, 
we compare performance per chip and 
full supercomputers of TPUs and GPUs 
using production applications and the 
MLPerf benchmarks.

Designing a Domain-Specific  

Supercomputer

In 2014, when the TPUv2 project be-
gan, the landscape for high-perfor-
mance machine learning computa-
tion was very different from today. 
Training took place on clusters of 
CPUs. State-of-the-art parallel train-
ing used asynchronous SGD,12 in part 
to tolerate tail latencies in shared 
clusters. Parallel training also divided 
CPUs into a bipartite graph of workers 
(running the SGD loop) and param-
eter servers (hosting weights and add-
ing updates to them).

The DNN training computation ap-
petite appeared unlimited. (Indeed, the 
computation requirements for the larg-
est training runs grew 10x annually 
from 2012 to 2018.2) Thus, in 2014 we 
chose to build a DSA supercomputer in-

stead of clustering CPU hosts with DSA 
chips. The first reason is that training 
time is huge. Table 1 shows that one 
TPUv2 chip would take two to 16 months 
to train a single Google production ap-
plication, so a typical application might 
want to use hundreds of chips. Second, 
DNN wisdom is that bigger datasets 
plus bigger machines lead to bigger 
breakthroughs. Moreover, results like 
AutoML use 50x more computation to 
find DNN models that achieve higher 
accuracy scores than the best models of 
human DNN experts.42

Designing a DSA supercomputer in-
terconnect. The critical architecture fea-
ture of a modern supercomputer is how 
its chips communicate: what is the speed 
of a link; what is the interconnect topol-
ogy; does it have centralized versus dis-
tributed switches; and so on. This choice 
is much easier for a DSA supercomputer, 
as the communication patterns are lim-
ited and known. For training, most traf-
fic is an all-reduce over weight updates 
from all nodes of the machine.

If we distribute switch functionality 
into each chip rather than as a stand-
alone unit, the all-reduction can be 
built in a dimension-balanced, band-
width-optimal way for a 2D torus topol-

 key insights
 ˽ With the slowing of Moore’s Law,  

ML breakthroughs require innovation  

in computer architecture.

 ˽ The increasing importance and appetite 

for ML training justifies its own custom 

supercomputer.

 ˽ The co-design of an ML-specific 

programming system (TensorFlow), 

compiler (XLA), architecture (TPU), 

floating-point arithmetic (Brain float16), 

interconnect (ICI), and chip (TPUv2/v3)  

let production ML applications  

scale at 96%–99% of perfect linear 

speedup and 10x gains in performance/

Watt over the most efficient  

general-purpose supercomputers.
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Figure 2. Block diagram of a TensorCore (our internal development name for a TPU core, 

and not related to the Tensor Cores of NVIDIA GPUs).

Host
Queues

(over PCIe)

HBM
Memory

(8/16 GiB)

Vector
Unit

(VPU)

Matrix Multiply
(MXU)

Matrix Multiply
(MXU)

TPUv3 only

Transpose
Permute Unit

TensorCore

Core Sequencer

Interconnect
Router
(ICI)

peer- to-peer among workers, using the 
all-reduce to ensure workers begin and 
end each parallel step with consistent 
copies of weights.

Synchronous training has two phases 
in the critical path—a compute phase 
and a communication phase that rec-
onciles the weights across learners. 
The slowest learners and slowest mes-
sages through the network limit per-
formance of such a synchronous sys-
tem. Since the communication phase 
is in the critical path, a fast intercon-
nect that quickly reconciles weights 
across learners with well-controlled 
tail latencies is critical for fast train-
ing. The ICI network is key to the excel-
lent TPU supercomputer scaling re-
sults; later we show 96%–99% of perfect 
linear scaleup.

Designing a DSA supercomputer 
node. The TPUv2 node of the super-
computer followed the main ideas of 
TPUv1: A large two-dimensional matrix 
multiply unit (MXU) using a systolic ar-
ray to reduce area and energy plus 
large, software-controlled on-chip 
memories instead of caches. The large 
MXUs of the TPUs rely on large batch 
sizes, which amortize memory access-
es for weights—performance often in-
creases when memory traffic reduces.

Shallue et al.32 examined the effect 
of increasing batch size on training 
time, and found three regions for all 

models (as seen in Table 2):
1. Perfect scaling region: Each dou-

bling of batch size halves the number 
of training steps.

2. Diminishing returns region: In-
creasing batch size still reduces the 
number of steps, but more slowly.

3. Maximum data parallelism region: 
Increasing batch size provides no ben-
efits whatsoever.

Such scaling while preserving accu-
racy required tuning the learning rate, 
batch size, and other hyperparameters.

Fortunately for TPUs, these recent 
results show that batch sizes of 256–
8,192 scale perfectly without losing ac-
curacy, which makes large MXUs an at-
tractive option for high performance.

Unlike TPUv1, TPUv2 uses two cores 
per chip. Global wires on a chip don’t 
scale with shrinking feature size, so 
their relative delay increases. Given that 
training can use many processors, two 
smaller TensorCores per chip prevent-
ed the excessive latencies of a single 
large full-chip core. We stopped at two 
because it is easier to efficiently gener-
ate programs for two brawny cores per 
chip than numerous wimpy cores.

Figure 2 shows the six major blocks 
of a TensorCore and Figure 3 shows 
their placement in the TPUv2 chip:

1. Inter-Core Interconnect (ICI). Ex-
plained earlier.

2. High Bandwidth Memory (HBM). 

TPUv1 was memory bound for most of 
its applications.20 We solved its memo-
ry bottleneck by using High Bandwidth 
Memory (HBM) DRAM in TPUv2. It of-
fers 20 times the bandwidth of TPUv1 
by using an interposer substrate that 
connects the TPUv2 chip via thirty-
two 128-bit buses to four short stacks 
of DRAM chips. Conventional servers 
support many more DRAM chips, but 
at a much lower bandwidth of at most 
eight 64-bit busses.

3. The Core Sequencer fetches VLIW 
(Very Long Instruction Word) instruc-
tions from the core’s on-chip, soft-
ware-managed Instruction Memory 
(Imem), executes scalar operations 
using a 4K 32-bit scalar data memory 
(Smem) and 32 32-bit scalar registers 
(Sregs), and forwards vector instruc-
tions to the VPU. The 322-bit VLIW 
instruction can launch eight opera-
tions: two scalar, two vector ALU, vec-
tor load and store, and a pair of slots 
that queue data to and from the matrix 

available between two halves of a net-
work of the worst-case split. The TPUv2 
supercomputer uses a 16x16 2D torus 
(256 chips), which is 32 links x 
496Gbits/s = 15.9Terabits/s of bisection 
bandwidth. As a comparison, a separate 
Infiniband switch (used in CPU clus-
ters) that connected 64 hosts (each with, 
say, four DSA chips) has 64 ports using 
“only” 100Gbit/s links and a bisection 
bandwidth of at most 6.4Terabits/s. Our 
TPUv2 supercomputer provides 2.5x the 
bisection bandwidth over conventional 
cluster switches while skipping the cost 
of the Infiniband network cards, Infini-
band switch, and the communication 
delays of going through the CPU hosts 
of clusters.

Fortuitously, building a fast inter-
connect inspired algorithmic advances. 
With dedicated hardware, and shard-
ing the examples of a minibatch over 
nodes of the machine, there is little tail 
latency, and synchronous parallel 
training becomes possible. Internal 
studies5 suggested that synchronous 
training could beat asynchronous SGD 
with equivalent resources. Asynchro-
nous training introduces heterogeneity 
plus parameter servers that eventually 
limit parallelization, as the weights get 
sharded and the bandwidth from pa-
rameter servers to workers becomes a 
bottleneck. Synchronous training elim-
inated the parameter servers allowing 

Table 2. Batch sizes for the three regions of Shallue.32 LM1B, Fashion MNIST, and Imagenet 

are standard DNN datasets.

Model Perfect Diminishing Maximum

Transformer on LM1B ≤256 256–4096 ≥4096

Simple CNN on Fashion MNIST ≤512 512–2048 ≥2048

ResNet-50 on Imagenet ≤8192 8192–65536 ≥65536
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ing an inverse square root operation to 
the transcendental unit.

5. The MXU produces 32-bit FP 
products from 16-bit FP inputs that ac-
cumulate in 32 bits. All other computa-
tions are in 32-bit FP except for results 
going directly to an MXU input, which 
are converted to 16-bit FP.

The MXUs are large, but we reduced 
their size from 256x256 in TPUv1 to 
128x128 and have multiple MXUs per 
chip. The bandwidth required to feed 
and obtain results from an MXU is 
proportional to its perimeter, while 
the computation it provides is propor-
tional to its area. Larger arrays provide 
more compute per byte of interface 
bandwidth, but larger arrays can be 
inefficient. Simulations show that 
convolutional model utilization of 

multiply and transpose units. The XLA 
compiler schedules loading Imem via 
independent overlays of code, as un-
like conventional CPUs, there is no in-
struction cache.

4. The Vector Processing Unit (VPU) 
performs vector operations using a 
large on-chip vector memory (Vmem) 
with 32K 128 x 32-bit elements (16MiB), 
and 32 2D vector registers (Vregs) that 
each contain 128 x 8 32-bit elements 
(4 KiB). The VPU streams data to and 
from the MXU through decoupling FI-
FOs. The VPU collects and distributes 
data to Vmem via data-level parallelism 

(2D matrix and vector functional units) 
and instruction-level parallelism (8 op-
erations per instruction).

Your beautiful DSA can fail if best-
practice algorithms change, rendering 

it prematurely obsolete. We handled 
such a crisis in 2015 during our design 
in supporting batch normalization.18 
Briefly, batch normalization subtracts 
out the mean and divides by the stan-
dard deviation of a batch, making the 
values look like samples from the nor-
mal distribution. In practice, it both 
improves prediction accuracy and re-
duces time-to-train up to 14x! Batch 
normalization emerged early in 2015, 
and the results made it a must-do for 
us. We divided it into vector additions 
and multiplications over the batch, 
plus one inverse-square-root calcula-
tion. However, the vector operation 
count was high. We thus added a sec-
ond SIMD dimension to our vector unit, 
making its registers and ALUs 128x8 
(rather than just 1D 128-wide) and add-

Figure 3. TPUv2 chip floor plan. 
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node designs. The TPUv1 article 
evaluated hypothetical alternatives 
that examined the changes in perfor-
mance while varying the MXU size, 
the clock rate, and the memory band-
width.20 We need not hypothesize 
here, as we implemented and de-
ployed two versions of the training ar-
chitecture: TPUv2 and TPUv3. TPUv3 
has ≈1.35x the clock rate, ICI band-

width, and memory bandwidth plus 

twice the number of MXUs, so peak 

performance rises 2.7x. Liquid cools 

the chip to allow 1.6x more power. We 

also expanded the TPUv3 supercom-

puter to 1024 chips (see Figure 4). Ta-

ble 3 lists key features of the three 

TPU generations along with a con-

temporary GPU (NVIDIA Volta) that 

we’ll compare to below.

The TPUv3 die size is only 6% larger 

than TPUv2 in the same technology de-

spite having twice as many MXUs per 

TensorCore simply because the engi-

neers had a better idea beforehand of 

the layout challenges of the major 

blocks in TPUv2, which led to a more 

efficient floor plan for TPUv3.

Designing DSA supercomputer arith-
metic. Peak performance is ≥8x higher 

when using 16-bit FP instead of 32-bit 

FP for matrix multiply (see Table 3), so 

it’s vital to use 16-bit to get highest per-

formance. While we could have built an 

MXU using standard IEEE fp16 and 

fp32 floating point formats (see Figure 

5), we first checked the accuracy of 16-

bit operations for DNNs. We found that:
 ˲ Matrix multiplication outputs and 

internal sums must remain in fp32.
 ˲ The 5-bit exponent of fp16 matrix 

multiplication inputs leads to failure 

wires on its perimeter for the inputs, 

outputs, and control. In our technology, 

for 128x128 and larger the MXU’s area is 

limited by the multipliers but area for 

64x64 and smaller MXUs is limited by 

the I/O and control wires.

6. The Transpose Reduction Permute 

Unit does 128x128 matrix transposes, 

reductions, and permutations of the 

VPU lanes.

Alternative DSA supercomputer 

four 128x128 MXUs is 37%–48%, 

which is 1.6x of a single 256x256 MXU 

(22%–30%) yet take about the same die 

area. The reason is that some convolu-

tions are naturally smaller than 

256x256, so sections of the MXU would 

be idle. Sixteen 64x64 MXUs would have 

a little higher utilization (38%–52%) but 

would need more area. The reason is 

the MXU area is determined either by 

the logic for the multipliers or by the 

Table 3. Key processor features. 

Feature TPUv1 TPUv2 TPUv3 Volta

Peak TeraFLOPS/ 

Chip
92 (8b int)

46 (16b)  

3 (32b)

123 (16b)  

4 (32b)

125 (16b) 

16 (32b)

Network links x Gbits/s/Chip -- 4 x 496 4 x 656 6 x 200

Max chips/supercomputer -- 256 1024 Varies

Peak PetaFLOPS/supercomputer -- 11.8 126 Varies

Bisection Terabits/supercomputer -- 15.9 42.0 Varies

Clock Rate (MHz) 700 700 940 1530

TDP (Watts)/Chip 75 280 450 450

TDP (Kwatts)/supercomputer -- 124 594 Varies

Die Size (mm2) <331 <611 <648 815

Chip Technology 28nm >12nm >12nm 12nm

Memory size (on-/off-chip) 28MiB/8GiB 32MiB/16GiB 32MiB/32GiB 36MiB/32GiB

Memory GB/s/Chip 34 700 900 900

MXUs/Core,  

MXU Size

1  

256x256

1  

128x128

2 

128x128

8 

4x4

Cores/Chip 1 2 2 80

Chips/CPU Host 4 4 8 8 or 16

We cannot reveal technology details of our chip partner. Although it is in a 

larger, older technology, the TPUv2 die size is less than 3/4s of the GPU. 

TPUv3 is 6% larger in that same technology. TDP stands for Thermal 

Design Power. The Volta has 80 symmetric multiprocessors.

Figure 4. A TPUv2 supercomputer has up to 256 chips and is 18-ft. long (top). 

A TPUv3 supercomputer consisting of up to 1,024 chips (below) 

is about 7-ft. tall and 36-ft. long. A TPUv2 board (center) holds 

four air-cooled chips and a TPUv3 board (right) also has four 

chips but uses liquid cooling. 
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Figure 5. IEEE FP and Brain float formats. 

inputs interact to produce a 2D out-

put. Each operand has a memory lay-

out, which gets transformed into a 

layout in 2D registers, which in turn 

must be fed at the exact moment to 

meet systolic array timing in the MXU. 

(A systolic array reduces register ac-

cesses by choreographing data flow-
ing from different directions to regu-
larly arrive at cross points that 
combine them.) Depending on layout 
choices, the 2D registers dimensions 
of 128 and 8 might not be filled, low-
ering ALU and memory utilization. 
Moreover, lacking caches, XLA man-
ages all memory transfers, including 
code overlays and DMA pushes to re-
mote nodes over ICI.

XLA exploits the huge parallelism 
that an input TF dataflow graph repre-
sents. Beyond the parallelism of oper-
ations (“ops”) in a graph, each op can 
comprise millions of multiplications 
and additions on data tensors of mil-
lions of elements. XLA maps this 
abundant parallelism across hun-
dreds of chips in a supercomputer, a 
few cores per chip, multiple units per 
core, and thousands of multipliers 
and adders inside each functional 
unit. The domain-specific TF lan-
guage and XLA representation allow 
precise reasoning about memory use 
at every point in the program. There 
are no “aliasing” issues where the 
compiler must determine whether 
two pointers might address the same 
memory—every piece of memory cor-

All formats have an implicit leading mantissa 

bit in normal operation. 

sign(1)

IEEE fp32

exponent (8) mantissa (23)

sign(1)

IEEE fp16

exponent (5) mantissa (10)

sign(1)

bf16

exponent (8) mantissa (7)

of computations that go outside its 
narrow range, which the 8-bit exponent 
of fp32 avoids.

 ˲ Reducing the matrix multiplica-
tion input mantissa size from fp32’s 23 
bits to 7 bits did not hurt accuracy.

The resulting brain floating format 

(bf16) in Figure 5 keeps the same 8-bit 
exponent as fp32. Given the same expo-
nent size, there is no danger in losing 
the small update values due to FP un-
derflow of a smaller exponent, so all 
programs in this article used bf16 on 
TPUs without much difficulty. Beyond 
our experience that it works for training 
production applications, a recent Intel 
study corroborated its benefits.21 How-
ever, fp16 requires adjustments to 
training software (loss scaling) to deliver 
convergence and efficiency. It preserves 
the effect from small gradients by scal-
ing losses to fit the smaller exponents 
of fp16.26

As the size of an FP multiplier scales 
with the square of the mantissa width, 
the bf16 multiplier is half the size and en-
ergy of a fp16 multiplier: 8² / 11² ≈ 0.5 (ac-
counting for the implicit leading man-
tissa bit). Bf16 delivers a rare 
combination: reducing hardware and 
energy while simplifying software by 
making loss scaling unnecessary. Thus, 
ARM and Intel have revealed future 
chips with bf16.

Designing a DSA 

Supercomputer Compiler

The next step was getting software for 
our hardware. To program CPUs and 
GPUs for machine learning, a frame-
work such as TensorFlow (TF)1 speci-
fies the model and data operations 
machine-independently. TF is a do-
main-specific library built on Python. 
NVIDIA GPU-dependent work is sup-
ported by a combination of the CUDA 
language, the CuBLAS and CuDNN 
libraries, and the TensorRT system. 
TPUv2/v3s also use TF, with the new 
system XLA (for accelerated linear al-
gebra) handling the TPU-dependent 
mapping. XLA also targets CPUs and 
GPUs. Like many systems that map 

from domain-specific languages to 
code, XLA integrates a high-level li-
brary and a compiler. A TF front end 
generates code in an intermediate 
representation for XLA.

It would seem it should be more dif-
ficult to get great performance in a pro-
gramming system based on Python 
like TF. However, ML frameworks offer 
both a higher level of expressiveness 
and the potential for much better opti-
mization information than lower-level 
languages like C++. TF programs are 
graphs of operations, where multi-di-
mensional array operations are first-
class citizens:

 ˲ They operate on multi-dimension-
al arrays explicitly, rather than implic-
itly via nested loops as in C++.

 ˲ They use explicit, analyzable, and 
bounded data access patterns versus 
arbitrary access patterns like C++.

 ˲ They have known memory aliasing 
behavior, unlike C++.

These three factors allow the XLA 
compiler to safely and correctly trans-
form programs in ways that traditional 
compilers rarely attain.

XLA does whole-program analysis 
and optimization. With 2D vector reg-
isters and compute units in TPUv2/v3, 
the layout of data in both compute 
units and memory is critical to perfor-
mance, perhaps more than for a vec-
tor or SIMD processor. Building effi-
cient code for vector machines, with 
1D memory and compute units, is 
well understood. For the MXU, two 2D 

Table 4. XLA speed up on TPUv2 with fusion versus without fusion. 

MLP CNN RNN

SSD NMT Mask R-CNN Transformer Res Net-500 1 0 1 0 1

1.8 2.0 2.2 4.8 2.4 1.8 2.4 3.0 2.0 2.0 6.3
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TPU and GPU choices before we com-

pare performance.

Multi-chip parallelization is built 

into TPUs through ICI and supported 

through all-reduce operations 

plumbed through XLA to TF. Similar-

sized multi-chip GPU systems use a 

tiered networking approach, with 

NVIDIA’s NVLink inside a chassis 

and host-controlled InfiniBand net-

works and switches to tie multiple 

chassis together.

TPUs offer bf16 FP arithmetic de-

signed for DNNs inside 128x128 systol-

ic arrays that halves the die area and 

energy versus IEEE fp16 FP multipliers. 

Volta GPUs have also embraced re-

duced-precision systolic arrays, with a 

finer granularity—4x4 or 16x16 de-
pending on hardware or software de-
scriptions—while using fp16 rather 
than bf16, so they may require software 
to perform loss scaling plus extra die 
area and energy.

TPUs are dual-core, in-order ma-
chines, where the XLA compiler overlaps 
computation, memory, and network ac-
tivities. GPUs are latency-tolerant many-
core machines, where each core has 
many threads and thus very large (20MiB) 
register files. Threading hardware plus 
CUDA coding conventions support over-
lapped operations.

TPUs use software controlled 32MiB 
scratchpad memories that the compil-
er schedules, while Volta hardware 
manages a 6MiB cache and software 
manages a 7.5MiB scratchpad memory. 
The XLA compiler directs sequential 
DRAM accesses typical of DNNs via di-
rect memory access (DMA) controllers 
on TPUs while GPUs use multithread-
ing plus coalescing hardware for them.

Thottethodi and Vijaykumar35 con-
cluded that when compared to TPUs:

“[GPUs] incur high overhead in perfor-

mance, area, and energy due to heavy 

multithreading which is unnecessary for 

DNNs which have prefetchable, sequen-

tial memory accesses. The systolic orga-

nization [of TPUs] ... capture[s] DNNs’ 

data reuse while being simple by avoiding 

multithreading.”
In addition to the contrasting archi-

tectural choices, TPU and GPU chips 
use different technologies, die areas, 
clock rates, and power. Table 6 gives 
three related cost measures of these 
systems: approximate die size adjust-
ed for technology; power for a 16-chip 

sands of ops from a smaller set of 
primitive ops.

The XLA team needed only 96 ops as 
the compiler’s target to reduce work for 
the library/compiler by enhancing com-
posability. For example, XLA has a single 
op for convolution (kConvolution) let-
ting the compiler handle all the mem-
ory layout variations. The TF interme-
diate form has nine; for example, 
Conv2D, Conv2dBackpropFil-

ter, DepthwiseConv2dNative, and 
DepthwiseConv2dNativeBackprop-

Filter. For the CNN1 program, the 
XLA compiler fused 63 different opera-
tions with at least one kConvolution.

Since ML platforms and DSAs of-
fered a new set of compiler challenges, 
it was unclear how fast they would im-
prove. Table 5 shows the median gain 
over only six months for MLPerf from 
version 0.5 to 0.6 was 1.3x for GPUs and 
2.1x for TPUs! (Perhaps the younger XLA 
compiler has more opportunity to im-
prove than the more mature CUDA 
stack.) One reason for the large gain is 
the focus on benchmarks, but produc-
tion applications also advanced. In-
creasing bf16 use, optimizing model ar-
chitecture, and XLA generating better 
code sped up CNN0 by 1.8x in 15 months 
and improving partitioning/placement 
for embeddings and XLA optimizations 
accelerated MLP0 by 1.65x.

Contrasting GPU  

and TPU Architectures

As details of TPU and GPU architec-
tures are now public, let us compare 

responds to a known program variable 
or temporary. The XLA compiler is 
free to slice, tile, and lay out memory 
and operations to best use the on-chip 
memory bandwidth and to reduce the 
memory footprint on chip or off chip.

TPUs use a VLIW architecture to 
express instruction-level parallelism 
to the many compute units of a Ten-
sorCore. XLA uses standard VLIW 
compilation techniques including 
loop unrolling, instruction schedul-
ing, and software pipelining to keep 
all compute units busy and to simul-
taneously move data through the 
memory hierarchy to feed them.

Given a memory layout of data, oper-

ator fusion can reduce memory use and 
boost performance. Fusion is a tradi-
tional compiler optimization—but ap-
plied now to 2D data—that combines 
ops to reduce memory traffic compared 
to executing operators sequentially. For 
example, fusing a matrix multiplication 
with a following activation function 
skips writing and reading the interme-
diate products from memory. Table 4 
shows the speedup from the fusion op-
timization on 2D data is from 1.8 to 6.3.

The TF intermediate form for XLA 
has thousands of ops. The number of 
ops increases when programmers 
cannot combine existing ops if com-
position is inefficient. Alas, expand-
ing the number of ops is an engineer-
ing challenge, since software libraries 
need to be developed for CPUs, GPUs, 
and TPUs. The hope was that the XLA 
compiler could synthesize these thou-

Table 5. Speedup of MLPerf 0.6 over 0.5 in six months.

ResNet50 SSD MaskRCNN NMT Transformer Median

Volta 1.3 1.2 1.8 1.0 2.0 1.3

TPUv3 1.4 1.4 3.5 2.1 3.0 2.1

Table 6. Adjusted comparison of GPU and TPU. 

Die size

Adjusted 

die size

TD

(kw)

Cloud

price

Relative to GPU

Die TDP Price

Volta 815 815 12.0 $3.24 1.00 1.00 1.00

TPUv2 <611 <391 7.7 $1.13 <0.5 0.64 0.35

TPUv3 <648 <415 9.3 $2.00 <0.5 0.78 0.62

Die sizes are adjusted by the square of the technology, as the semiconduc-

tor technology for TPUs is similar but larger and older than that of the GPU. 

We picked 15nm for TPUs based on the information in Table 3. Thermal 

Design Power (TDP) is for 16-chip systems. TPUs come with a host CPU. 

This GPU price adds price of a n1-standard-16 CPU.
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system; and cloud price per chip. The 

GPU adjusted die size is more than 

twice that of the TPUs, which suggests 

the capital costs of the chips is at least 

double, since there would be at least 

twice as many TPU dies per wafer. GPU 

power is 1.3x–1.6x higher, which sug-

gests higher operating expenses, as 

the total cost of ownership is correlat-

ed with power.19 Finally, the hourly 

rental prices on Google Cloud Engine 

are 1.6x–2.9x higher for the GPU. These 

three different measures consistently 

suggest TPUv2 and TPUv3 are roughly 

half to three fourths as expensive as 

the Volta GPU.

Performance Evaluation

In computer architecture, we “grade on 

a curve” versus “grade on an absolute 

scale,” so we need to measure perfor-

mance relative to the competition. Before 

showing performance of TPU supercom-

puters, we must establish the virtues of 

a single chip, for a 1024x speedup from 

1,024 wimpy chips is uninteresting.

We first compare training perfor-
mance for a standard set of ML bench-
marks and Google production applica-
tions for TPUv2/v3 chip and the Volta 
GPU chip; TPUv3 and Volta are about the 
same speed. We then check if four MXUs 
per chip in TPUv3 really helped, or if oth-
er bottlenecks in the TPUv3 chip made 
the extra MXUs superfluous; they 
helped! We conclude the chip compari-
son looking at inference for TPUv2/v3 
versus TPUv1; TPUv2/v3 are much faster.

Having established the merits of 
the TPU chips, we then evaluate the 
TPUv2/v3 supercomputer. The first 
step is to see how well it scales; we see 
96%–99% of perfect linear speedup at 
1024 chips. We then compare the 
fraction of peak performance and 
performance per Watt of TPU and tra-
ditional supercomputers; TPUs have 
5x-10x better performance per Watt.

Chip performance: TPUv2/v3 versus 
the Volta GPU. Figure 6 shows the per-
formance of TPUv3 and the Volta GPU 
over TPUv2 for two sets of programs. 
The first set is five programs that 
Google and NVIDIA both submitted to 
MLPerf 0.6 in May 2019, and both use 
16-bit multiplication with NVIDIA soft-
ware performing loss scaling. The geo-
metric mean speedup of these pro-
grams over TPUv2 is 1.8 for TPUv3 and 
1.9 for Volta.

model for image recognition.
 ˲ In Recurrent Neural Networks 

(RNN), each subsequent model layer is 
a collection of nonlinear functions of 
weighted sums of outputs and the pre-
vious state. Sequence prediction prob-
lems, such as language translation, use 
RNNs. RNN0 is RNMT+6 and RNN1 is 
Improved LAS.8

We recently compared the represen-
tative datacenter workloads by model 
type for inference on TPUv120 versus 
TPUv2/v3 for training. Table 7 illus-
trates the fast-changing nature of 
DNNs. We originally used the name 
LSTM (Long Short-Term Memory) for 
TPUv1 applications, a type of RNN. Al-
though sampled three years apart—
July 2016 versus April 2019—we were 
still surprised that CNNs were a much 
larger part of datacenter training, and 
that a new model Transformer36—pub-
lished the year that TPUv2 was de-

We also wanted to measure perfor-
mance of production workloads. We 
chose six production applications 
similar to what we used for TPUv1 as 
representative of Google’s workload:

 ˲ In MultiLayer Perceptrons (MLP) 
each new layer of a model is a set of 
nonlinear functions of a weighted sum 
of all outputs (fully connected) from 
a prior one. This classic DNN usually 
has text as input. MLP0 is unpublished 
but MLP1 is RankBrain,9 which ranks 
search results for a Web page.

 ˲ In Convolutional Neural Networks 

(CNN), each ensuing layer is a set of 
nonlinear functions of weighted sums 
of spatially nearby subsets of outputs 
from the prior layer. CNNs usually 
have images as inputs. CNN0 is Alp-
haZero, a reinforcement learning al-
gorithm with extensive use of CNNs, 
which mastered the games chess, Go, 
and shogi.34 CNN1 is a Google-internal 

Figure 6. Performance per chip relative to TPUv2 for five MLPerf 0.6 benchmarks and six 

production applications.

Peak Compute

Clock Rate

Memory BW

Resnet50

SSD

MaskRCNN

GNMT

Transformer

MLPerf 0.6 GM

MLP0

RNN0

CNN1

MLP1

RNN1

CNN0

Production GM

0.0 1.0 2.0 3.0

TPUv3 Volta

Table 7. Google’s inference (July 2016) and training (April 2019) workloads by DNN  

model type. 

DNN Model TPUv1 July 2016 TPUv3 April 2019

MLP 61% 27%

RNN 29% 21%

CNN 5% 24%

Transformer -- 21%
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are continuously improved, and not 

simple benchmarks, so it’s a lot of work 

to get them to run at all, and more to 

run well. As noted earlier, application 

programmers focus on TPUs, since 

they are in everyday use, so there is little 

urge to include loss scaling needed for 

fp16. (TF kernels for embeddings have 

not been developed for GPUs, so we ex-

clude MLPs from the GPU geometric 

mean as they could not run.)

Is TPUv3 memory bound or com-
pute bound? While the peak compute 

improvement of TPUv3 over TPUv2 is 

2.7x, the improvements in memory 

bandwidth, ICI bandwidth, and clock 

rate are only ≈1.35x. We wondered 

whether the extra MXUs in TPUv3 

would be underutilized due to bottle-

necks elsewhere. Figure 6 shows that 

one production application runs a bit 

higher than the memory improvement 

at 1.4x, but the other five and all the 

MLPerf 0.6 benchmarks run much 

faster at 1.6x to 2.3x. The large applica-

tion batch sizes and sufficient on-chip 

storage enabled these good results. As 

the MXUs are not a large part of the 

chip (Figure 3), doubling the MXUs in 

TPUv3 clearly proved beneficial.

Inference on a training chip: TPUv2/
v3 vs. TPUv1. What about inference 

speed? Running it on a training chip—

which works since it is like the forward 

pass—could help applications that re-

quire frequent training on fresh data. 

TPUv2/v3 do not support 8-bit integer 

data types, so inference uses bf16. One 

upside of using the same arithmetic 

for training and inference is that ML 

experts don’t need to do extra work—

called quantization—to ensure the 

same accuracy of the DNN model.

One danger is the larger batch sizes 

needed to run efficiently on TPUv2/v3 

could hurt inference latency. Fortu-

nately, we have DNN models that can 

meet their latency targets with batch 

sizes of greater than 1,000. With bil-

lions of daily users, inferences per sec-

ond across the whole data center fleet 

can be very high.

The LSTM0 benchmark, for instance, 

ran at 48 inferences per second with a 

response time of 122ms on TPUv1.19 

TPUv2 runs it 5.6x as fast with a 2.8x low-

er response time (44ms) at the same 

batch size. The lower latency in turn al-

lows for larger batches compared to 

TPUv1 to be served in production yet still 

meet latency targets. With larger batches, 

the throughput rose to 11x with a latency 

improvement of 2x (58ms) vs TPUv1. 

TPUv3 reduces latency 1.3x (45ms) versus 

TPUv2 at the same batch size.

DSA supercomputer scaling perfor-
mance. Alas, only ResNet-50 from MLP-

erf 0.6 can scale beyond 1,000 TPUs and 

GPUs. Figure 7 shows three ResNet-50 

results. Ying et al. published a 

ResNet-50 results on TPUv3 that deliv-

ered 77% of perfect linear scaleup at 

1,024 chips,41 but the TPUv3 version for 

MLPerf 0.6 only runs at 52%. The dif-

ference is in MLPerf’s ground rules. 

MLPerf requires including evaluation 

in the training time. (Evaluation runs a 

holdout dataset after a model training 

finishes to determine its accuracy.) Like 

Ying et al., most researchers exclude it 

when reporting performance. More un-

usually, MLPerf requires running evalu-

ation at the end of every four epochs to 

deter benchmark cheating. ML devel-

opers would never evaluate that fre-

quently. For MLPerf 0.6, NVIDIA ran 

ResNet-50 on a cluster of 96 DGX-2H 

each with 16 Voltas connected via In-

finiband switches at 41% of linear scale-

up for 1,536 chips.

ployed—was as popular as RNNs. 

(Transformer is part of MLPerf 0.5.)

Transformer is intended for the 

same tasks as RNNs, such as transla-

tion, but is considerably faster since it 

lends itself to parallelization while 

RNNs have sequential dependencies. 

The layers of Transformer are a mix of 

MLPs and attention layers.4 Attention is 

the key new mechanism used in Trans-

former; it lets neural networks look up 

data associatively, in a memory-like 

structure whose indices themselves 

are learned. The components of atten-

tion resemble those of other layers, in-

cluding matrix multiplications and 

dot products, which map well to TPU 

hardware. One difference is that atten-

tion matrices grow with sequence 

length, adding dynamic shape and 

memory requirements that complicate 

some optimizations done by XLA. The 

success of this recent model (see Figure 

6) highlights TPU programmability.

The geometric mean speedup of the 

six production applications was 1.8 for 

TPUv3 but only 0.4 for Volta, primarily 

because they use 8x slower fp32 on 

GPUs instead of fp16 (Table 3). These 

are large production applications that 

Table 8. Days to train MLPerf 0.5 benchmarks on one TPUv2 chip. See Table 1 for time to 

train production applications.

ResNet50 SSD Mask R-CNN GNMT Transformer

0.8 0.3 1.9 0.2 0.3

Figure 7. Supercomputer scaling: TPUv3 and Volta.
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Table 9. Traditional versus TPU supercomputer Top500 and Green500 rank (June 2019) for Linpack and AlphaZero.

seven threads, each of which has a peak 

performance of 100GFLOPS/s or 

122TFLOPS/s per chip, almost identi-

cal to the peak performance of TPUv3 

and Volta. It relies on the 300MB on-

chip SRAM for memory, with two GC2 

chips per PCIe board. The Habana 

Gaudi38 has eight VLIW SIMD cores, 

four stacks of HBM2 memory, bf16 

arithmetic, and eight 100Gbit/sec Eth-

ernet links to connect many chips to-

gether to form larger systems. Wave 

Computing’s28 Dataflow Processing 
Unit chip has 16k processors, 8k arith-
metic units, 16MB of on-chip memory, 
and novelty relies on asynchronous 
logic instead of a clock. It has external 
DRAM, offering both Hybrid Memory 
Cube and DDR4 ports. As of February 
2020, none of the five training startups 
has reported training accuracy or time-
to-solution.

Academic training studies include 
the DianNao family of architectures (one 
of which trains)7 and ScaleDeep;37 to our 
knowledge, neither has been fabricated.

Several studies explored reduced-
precision training with accelerator 
construction in mind. Intel’s Flex-
point22 is a block FP format,39 although 
those developers switched to using 
bf16 for their DNN chips.40 De Sa et al.10 
reduced precision and relaxed cache 
coherence. HALP11 also made algorith-
mic changes to reduce quantization 
noise and uses 8-bit integers to train 
some models. None is yet available in a 
commercial system.

TPUv2/v3 are not the first domain-
specific supercomputers to show large 
efficiency, performance, and scaling 

Table 10. Time to train supercomputers from NVIDIA, Fujitsu, and Google on the ResNet-50 

benchmark from MLPerf 0.6.

NVIDIA cluster ABCI Supercomputer TPUv3 Supercomputer

MLP 1536 Voltas + 192 CPUs 2048 Voltas + 1024 CPUs 1024 TPUv3s + 128 CPUs

Transformer 80 seconds 70 seconds 77 seconds

MLPerf 0.6 benchmarks are much 
smaller than the production applica-
tions; Table 8 shows time to train them 
on one TPUv2 chip is orders of magni-
tude less than in Table 1. Thus, we in-
clude six production applications 
largely to show substantial programs 
that can scale to supercomputer size. 
The MLPs are limited by embeddings 
and run only at 14% and 40% of perfect 
linear scale up on 1,024 TPUv3 chips, 
but one runs at 96% and three at 99%!

Note that CNN1 is an image recog-
nition DNN much like ResNet101. It 
scales much better on TPUs because 
Google’s internal image datasets are 
much larger than what ResNet50 
uses (Imagenet).

Traditional vs. DSA supercomputer 
performance. Traditional supercom-
puters measure performance using the 
high-performance computing (HPC) 
benchmark Linpack and ranking the 
Top500 (top500.org). The related 
Green500 list re-ranks the Top500 
based on performance per Watt. For 
these large computers to get utiliza-
tion above 60%, HPC expands the size 
of the matrix being solved (weak scal-

ing). (For which Linpack has long been 
criticized within HPC.13) The TPU scale 
up, however, uses production pro-
grams on real-world datasets.

Table 9 shows where PetaFLOPs/
second and FLOPs/Watt of AlphaZero 
on TPUv2/v3 would rank in the Top500 
and Green500 lists. This comparison 
is imperfect: conventional supercom-
puters crunch 32- and 64-bit data rath-
er than the 16- and 32-bit data of TPUs. 
However, TPUs are running a real ap-
plication on real data versus a weakly 
scaled benchmark on synthetic data. 
TPUv3 has 44x the FLOPS/Watt of 
Tianhe and 10x of SaturnV and ABCI.

The Fujitsu ABCI supercomputer in 
Table 9 includes 2,176 Intel CPUs 
along with 4352 Volta GPUs. Besides 

running Linpack, Fujitsu submitted a 
ResNet-50 result for MLPerf 0.6 using 
2,048 GPUs. Table 10 shows time to 
train for ResNet-50 in MLPerf 0.6 and 
the number of chips for an NVIDIA 
GPU cluster, the Fujitsu ABCI super-
computer, and a Google TPUv3 super-
computer. Fujitsu varied from the 
strict benchmark MLPerf 0.6 closed 
guidelines of the other submissions—
they changed the LARS optimizer and 
the momentum hyperparameter—so 
it’s not an apples-to-apples compari-
son. These changes improve perfor-
mance by 10%–15%, which would also 
help NVIDIA and TPUv3.

Related Work

A survey documents over 25 years of 
custom neural network chips,3 but re-
cent DNN successes led to an explosion 
in their development. Most designs fo-
cus on inference; far fewer, including 
the TPUv2/v3, target training. We are 
not aware of any other results that show 
state-of-the-art accuracy on a working 
DSA hardware for training.

Of the five training startups, Sam-
baNova has not yet published. Cere-
bras uses a whole silicon wafer to build 
their system, essentially treating 84 
large “dies” as a single unit.24 Each 
“die” has 220MB of SRAM along with 
about 5k cores, yielding a total of 18GB 
of on-chip memory and 400k cores that 
collectively use 15 kilowatts. Like 
GraphCore, there is no DRAM in the 
system, so they target small batch sizes 
to reduce memory needs. The Graph-
Core15 GC2 chip holds 1,216 Intelli-
gence Processing Units that support 

Name Cores Benchmark Data Peta Flop/s % of Peak Mega-watts GFlop/Watt Top 500 Green 500

Tianhe 4865k Linpack 32/64 bit 61.4 61% 18.48 3.3 4 57

SaturnV 22k Linpack 32/64 bit 1.1 59% 0.97 5.1 469 1 

ABCI 392k Linpack 32/64 bit 19.9 61% 1.65 14.4 8 3

TPUv2 0.5k AlphaZero 16/32 bit 9.9 84% 0.12 79.9 22 2

TPUv3 2k AlphaZero 16/32 bit 86.9 70% 0.59 146.3 4 1

See article for caveats about comparing Linpack on 64-bit floating point to ML training on 16-bit floating point.
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Googlers. Many thanks to the hardware 

and software teams and engineers for 

making TPU supercomputers possible, 

including Paul Barham, Eli Bender-

sky, Dehao Chen, Chiachen Chou, Jeff 

Dean, Peter Hawkins, Blake Hechtman, 

Mark Heffernan, Robert Hundt, Michael 

Isard, Fritz Kruger, Naveen Kumar, 

Sameer Kumar, Chris Leary, Hyouk-

Joong Lee, David Majnemer, Lifeng 

Nai, Thomas Norrie, Tayo Oguntebi, 

Andy Phelps, Bjarke Roune, Brennan 

Saeta, Julian Schrittwieser, Andy Swing, 

Shibo Wang, Tao Wang, Yujing Zhang, 

and many more. 
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gains. Anton systems33 showed two or-

der-of-magnitude speedups over tra-

ditional supercomputers on molecular 

dynamics workloads. They also result-

ed from hardware/software/algorithm 

codesign, with custom chips, intercon-

nect, and arithmetic.

Conclusion

Benchmarks suggests the TPUv3 chip 

performs similarly to the contempo-

rary Volta GPU chip, but parallel scal-

ing for production applications is 

stronger for the TPUv3 supercomputer:
 ˲ Three scale to 1,024 chips at 99% 

linear speedup;
 ˲ One scales to 1,024 chips at 96% 

linear speedup; and
 ˲ Two scale to 1,024 chips but are 

limited by embeddings.

Remarkably, a TPUv3 supercomputer 

runs a production application using real-

world data at 70% of peak performance, 

higher than general-purpose supercom-

puters run the Linpack benchmark us-

ing weak scaling of manufactured data. 

Moreover, TPU supercomputers with 

256–1,024 chips running a production 

application have 5x–10x performance/

Watt of the #1 traditional supercomput-

er on the Green500 list running Linpack 

and 24x–44x of the #4 supercomputer 

on the Top500 list. Reasons for this suc-

cess include the built-in ICI network, 

large systolic arrays, and bf16 arithmetic, 

which we expect will become a standard 

data type for DNN DSAs.

TPUv2/v3 have smaller dies in an old-

er semiconductor process and lower 

cloud prices despite being less mature at 

many levels of hardware/software sys-

tem stack than CPUs and GPUs. These 

good results despite technological dis-

advantages suggests the TPU approach 

is cost-effective and can deliver high ar-

chitectural efficiency into the future.
Going forward, our ravenous DNN 

colleagues want the fastest computer 
that we can build.2 Despite Moore’s 
Law ending, we expect the demand for 
faster DNN-specific supercomputers to 
grow even more quickly than Moore 
predicted. Trying to satisfy that de-
mand without the help of Moore’s Law 
offers exciting new challenges for com-
puter architects for at least a decade.17
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