
JULY 2020 | VOL. 63 | NO. 7 | COMMUNICATIONS OF THE ACM 67

DOI:10.1145/3360307

Google’s TPU supercomputers train
deep neural networks 50x faster than
general-purpose supercomputers running
a high-performance computing benchmark.

BY NORMAN P. JOUPPI, DOE HYUN YOON, GEORGE KURIAN,

SHENG LI, NISHANT PATIL, JAMES LAUDON, CLIFF YOUNG,

AND DAVID PATTERSON

THE RECENT SUCCESS of deep neural networks (DNNs)
has inspired a resurgence in domain specific
architectures (DSAs) to run them, partially as a result
of the deceleration of microprocessor performance
improvement due to the slowing of Moore’s Law.17
DNNs have two phases: training, which constructs

accurate models, and inference, which
serves those models. Google’s Tensor Pro-
cessing Unit (TPU) offered 50x improve-
ment in performance per watt over conven-
tional architectures for inference.19,20
We naturally asked whether a successor
could do the same for training. This ar-
ticle explores how Google built the first
production DSA for the much harder
training problem, first deployed in 2017.

Computer architects try to create de-
signs that maximize performance on a
set of benchmarks while minimizing

costs, such as fabrication or operating
cost.16 In the case of DSAs like Google’s
TPUs, many of the principles and ex-
periences from decades of building
general-purpose CPUs change or do
not apply. For example, here are fea-
tures of the inference TPU (TPUv1) and
the training TPU (TPUv2) share but are
uncommon in CPUs:

 ˲ 1–2 large cores versus 32–64 small
cores in server CPUs.

 ˲ The computational heavy lifting
is handled by two-dimensional (2D)

A Domain-
Specific
Supercomputer
for Training
Deep Neural
Networks

68 COMMUNICATIONS OF THE ACM | JULY 2020 | VOL. 63 | NO. 7

contributed articles

and if we were building an inference ac-
celerator, we could stop there. For train-
ing, this is less than a third of the story.
SGD next measures the difference or er-
ror between the model’s result and the
known good result from the training set
using a loss function. Then back-propa-
gation runs the model in reverse, layer-
by-layer, to produce a set of error/loss
values for each layer’s output. These
losses measure the deviation from the
desired output. Last, weight update
combines the input of each layer with
the loss value to calculate a set of del-
tas—changes to weights—which, when
added to the weights, would have result-
ed in nearly zero loss. Updates can have
small magnitude. Shrinking further,
updates are scaled down by the learning
rate to keep SGD numerically stable.
Moreover, a suite of algorithmic refine-
ments—including momentum,30 batch
normalization,18 and optimizers such as
Adaptive Gradient (AdaGrad)14—re-
quire their own state and alter the SGD
algorithm to reduce the number of
steps to achieve desired accuracy.

Each SGD step makes a tiny adjust-
ment to the weights that improves the
model with respect to a single (input,
result) pair. Each pass through the
entire dataset is an epoch; DNNs typi-
cally take tens to hundreds of epochs to
train. SGD gradually transforms the
random initial weights into a trained
model, sometimes capable of superhu-
man accuracy.

Given this background, we can com-
pare inference and training. Both share
some computational elements includ-
ing matrix multiplications, convolu-
tions, and activation functions, so in-
ference and training DSAs might have
similar functional units. Key architec-
tural aspects where the requirements
differ include:

 ˲ Harder parallelization: Each infer-
ence is independent, so a simple clus-
ter of servers with DSA chips can scale
up inference. A training run iterates
over millions of examples, coordinat-
ing across parallel resources because it
must produce a single consistent set of
weights for the model. The number of
examples processed in parallel, and
the time to evaluate that multiple-ex-
ample minibatch—often shortened to
batch—directly affect total end-to-end
training time. A step is the computa-
tion to process one minibatch.

128x128- or 256x256-element systolic
arrays of multipliers per core, versus
either a few scalar multipliers or SIMD
(one-dimensional, 16–32-element)
multipliers per core in CPUs.

 ˲ Using narrower data (8–16 bits) to
improve efficiency of computation and
memory versus 32–64 bits in CPUs.

 ˲ Dropping general-purpose features
irrelevant for DNNs but critical for CPUs
such as caches and branch predictors.

The most effective DNN training is
supervised learning, where we start
with a huge (sometimes billion-exam-
ple) training dataset of known-correct
(input, result) pairs. Pairs might
be an image and what it depicts or an
audio waveform and the phoneme it
represents. We also start with a neural
network model, which transforms the
input into the result through an inten-
sive calculation of weights (also called
parameters); the weights are random
initially. Models are typically defined
as a graph of layers, where a layer con-
tains a linear algebra part (often a ma-
trix multiplication or convolution us-
ing the weights) followed by a
nonlinear activation function (often a
scalar function, applied elementwise;
we call the results activations). Train-
ing “learns” weights that raise the like-
lihood of correctly mapping from in-
put to result.

For some kinds of input data, an
embedding at the start of the model
transforms from sparse representa-
tions into a dense representation suit-
able for linear algebra; embeddings
also contain weights.27,29 Embeddings
might use vectors where features can
be represented by notions of distance
between vectors. Embeddings involve
table lookups, link traversal, and vari-
able length data fields, so they are ir-
regular and memory intensive.

How do we get from random initial
weights to trained weights? Current
best practices use variants of stochastic

gradient descent (SGD).31 SGD consists
of many iterations of three steps: for-
ward propagation, backpropagation,
and weight update. Forward propaga-
tion takes a randomly chosen training
example, applies its inputs to the mod-
el, and runs the calculation through the
layers to produce a result (which with
the random initial weights, is garbage
the first time). Forward propagation is
functionally similar to DNN inference,

DNN (Deep
Neural Network)
wisdom is that
bigger machines
lead to bigger
breakthroughs.

JULY 2020 | VOL. 63 | NO. 7 | COMMUNICATIONS OF THE ACM 69

contributed articles

Figure 1. A 2D-torus topology. TPUv2 uses a 16x16 2D torus.

TPUv2

TPUv2

TPUv2

TPUv2

TPUv2

TPUv2

TPUv2

TPUv2

TPUv2

TPUv2

TPUv2

TPUv2

TPUv2

TPUv2

TPUv2

TPUv2

Table 1. Days to train production programs on one TPUv2 chip.

MLP0 MLP1 CNN0 CNN1 RNN0 RNN1

475 117 63 115 77 147

ogy (see Figure 1). An on-device switch
provides virtual-circuit, deadlock-free
routing. To enable a 2D torus, the chip
has four custom Inter-Core Intercon-
nect (ICI) links, each running at
496Gbits/s per direction in TPUv2. ICI
enables direct connections between
chips to form a supercomputer using
only 13% of each chip (see Figure 3). Di-
rect links simplify rack-level deploy-
ment, but in a multi-rack system the
racks must be adjacent.

One measure of an interconnect is
its bisection bandwidth—the bandwidth

 ˲ More computation: Back-propaga-
tion requires derivatives for every com-
putation in a model. It includes acti-
vation functions (some of which are
transcendental), and multiplication by
transposed weight matrices.

 ˲ More memory: Weight update ac-
cesses intermediate values from for-
ward and back propagation, vastly up-
ping storage requirements; temporary
storage can be 10x weight storage. For
inference, a small activation working
set can usually be kept on chip.

 ˲ More programmability: Training al-
gorithms and models are continually
changing, so a machine restricted to
current best-practice algorithms during
design could rapidly become obsolete.

 ˲ Wider data: Quantized arithme-
tic—8-bit integer instead of 32-bit float-
ing point (FP)—can work for inference
like in TPUv1 but reduced-precision
training is an active research area.21,25
The challenge is sufficiently capturing
the SGD sum of many small weight up-
dates to preserve the accuracy of using
32-bit FP arithmetic to train models.

After explaining the TPUv2 architec-
ture, we describe the domain specific
language (TensorFlow) and compiler
(XLA) for TPUv2 and compare the ar-
chitecture and technology choices for
the TPUv2 versus a GPU, the most pop-
ular computer for DNN training. Later,
we compare performance per chip and
full supercomputers of TPUs and GPUs
using production applications and the
MLPerf benchmarks.

Designing a Domain-Specific

Supercomputer

In 2014, when the TPUv2 project be-
gan, the landscape for high-perfor-
mance machine learning computa-
tion was very different from today.
Training took place on clusters of
CPUs. State-of-the-art parallel train-
ing used asynchronous SGD,12 in part
to tolerate tail latencies in shared
clusters. Parallel training also divided
CPUs into a bipartite graph of workers
(running the SGD loop) and param-
eter servers (hosting weights and add-
ing updates to them).

The DNN training computation ap-
petite appeared unlimited. (Indeed, the
computation requirements for the larg-
est training runs grew 10x annually
from 2012 to 2018.2) Thus, in 2014 we
chose to build a DSA supercomputer in-

stead of clustering CPU hosts with DSA
chips. The first reason is that training
time is huge. Table 1 shows that one
TPUv2 chip would take two to 16 months
to train a single Google production ap-
plication, so a typical application might
want to use hundreds of chips. Second,
DNN wisdom is that bigger datasets
plus bigger machines lead to bigger
breakthroughs. Moreover, results like
AutoML use 50x more computation to
find DNN models that achieve higher
accuracy scores than the best models of
human DNN experts.42

Designing a DSA supercomputer in-
terconnect. The critical architecture fea-
ture of a modern supercomputer is how
its chips communicate: what is the speed
of a link; what is the interconnect topol-
ogy; does it have centralized versus dis-
tributed switches; and so on. This choice
is much easier for a DSA supercomputer,
as the communication patterns are lim-
ited and known. For training, most traf-
fic is an all-reduce over weight updates
from all nodes of the machine.

If we distribute switch functionality
into each chip rather than as a stand-
alone unit, the all-reduction can be
built in a dimension-balanced, band-
width-optimal way for a 2D torus topol-

 key insights
 ˽ With the slowing of Moore’s Law,

ML breakthroughs require innovation

in computer architecture.

 ˽ The increasing importance and appetite

for ML training justifies its own custom

supercomputer.

 ˽ The co-design of an ML-specific

programming system (TensorFlow),

compiler (XLA), architecture (TPU),

floating-point arithmetic (Brain float16),

interconnect (ICI), and chip (TPUv2/v3)

let production ML applications

scale at 96%–99% of perfect linear

speedup and 10x gains in performance/

Watt over the most efficient

general-purpose supercomputers.

70 COMMUNICATIONS OF THE ACM | JULY 2020 | VOL. 63 | NO. 7

contributed articles

Figure 2. Block diagram of a TensorCore (our internal development name for a TPU core,

and not related to the Tensor Cores of NVIDIA GPUs).

Host
Queues

(over PCIe)

HBM
Memory

(8/16 GiB)

Vector
Unit

(VPU)

Matrix Multiply
(MXU)

Matrix Multiply
(MXU)

TPUv3 only

Transpose
Permute Unit

TensorCore

Core Sequencer

Interconnect
Router
(ICI)

peer- to-peer among workers, using the
all-reduce to ensure workers begin and
end each parallel step with consistent
copies of weights.

Synchronous training has two phases
in the critical path—a compute phase
and a communication phase that rec-
onciles the weights across learners.
The slowest learners and slowest mes-
sages through the network limit per-
formance of such a synchronous sys-
tem. Since the communication phase
is in the critical path, a fast intercon-
nect that quickly reconciles weights
across learners with well-controlled
tail latencies is critical for fast train-
ing. The ICI network is key to the excel-
lent TPU supercomputer scaling re-
sults; later we show 96%–99% of perfect
linear scaleup.

Designing a DSA supercomputer
node. The TPUv2 node of the super-
computer followed the main ideas of
TPUv1: A large two-dimensional matrix
multiply unit (MXU) using a systolic ar-
ray to reduce area and energy plus
large, software-controlled on-chip
memories instead of caches. The large
MXUs of the TPUs rely on large batch
sizes, which amortize memory access-
es for weights—performance often in-
creases when memory traffic reduces.

Shallue et al.32 examined the effect
of increasing batch size on training
time, and found three regions for all

models (as seen in Table 2):
1. Perfect scaling region: Each dou-

bling of batch size halves the number
of training steps.

2. Diminishing returns region: In-
creasing batch size still reduces the
number of steps, but more slowly.

3. Maximum data parallelism region:
Increasing batch size provides no ben-
efits whatsoever.

Such scaling while preserving accu-
racy required tuning the learning rate,
batch size, and other hyperparameters.

Fortunately for TPUs, these recent
results show that batch sizes of 256–
8,192 scale perfectly without losing ac-
curacy, which makes large MXUs an at-
tractive option for high performance.

Unlike TPUv1, TPUv2 uses two cores
per chip. Global wires on a chip don’t
scale with shrinking feature size, so
their relative delay increases. Given that
training can use many processors, two
smaller TensorCores per chip prevent-
ed the excessive latencies of a single
large full-chip core. We stopped at two
because it is easier to efficiently gener-
ate programs for two brawny cores per
chip than numerous wimpy cores.

Figure 2 shows the six major blocks
of a TensorCore and Figure 3 shows
their placement in the TPUv2 chip:

1. Inter-Core Interconnect (ICI). Ex-
plained earlier.

2. High Bandwidth Memory (HBM).

TPUv1 was memory bound for most of
its applications.20 We solved its memo-
ry bottleneck by using High Bandwidth
Memory (HBM) DRAM in TPUv2. It of-
fers 20 times the bandwidth of TPUv1
by using an interposer substrate that
connects the TPUv2 chip via thirty-
two 128-bit buses to four short stacks
of DRAM chips. Conventional servers
support many more DRAM chips, but
at a much lower bandwidth of at most
eight 64-bit busses.

3. The Core Sequencer fetches VLIW
(Very Long Instruction Word) instruc-
tions from the core’s on-chip, soft-
ware-managed Instruction Memory
(Imem), executes scalar operations
using a 4K 32-bit scalar data memory
(Smem) and 32 32-bit scalar registers
(Sregs), and forwards vector instruc-
tions to the VPU. The 322-bit VLIW
instruction can launch eight opera-
tions: two scalar, two vector ALU, vec-
tor load and store, and a pair of slots
that queue data to and from the matrix

available between two halves of a net-
work of the worst-case split. The TPUv2
supercomputer uses a 16x16 2D torus
(256 chips), which is 32 links x
496Gbits/s = 15.9Terabits/s of bisection
bandwidth. As a comparison, a separate
Infiniband switch (used in CPU clus-
ters) that connected 64 hosts (each with,
say, four DSA chips) has 64 ports using
“only” 100Gbit/s links and a bisection
bandwidth of at most 6.4Terabits/s. Our
TPUv2 supercomputer provides 2.5x the
bisection bandwidth over conventional
cluster switches while skipping the cost
of the Infiniband network cards, Infini-
band switch, and the communication
delays of going through the CPU hosts
of clusters.

Fortuitously, building a fast inter-
connect inspired algorithmic advances.
With dedicated hardware, and shard-
ing the examples of a minibatch over
nodes of the machine, there is little tail
latency, and synchronous parallel
training becomes possible. Internal
studies5 suggested that synchronous
training could beat asynchronous SGD
with equivalent resources. Asynchro-
nous training introduces heterogeneity
plus parameter servers that eventually
limit parallelization, as the weights get
sharded and the bandwidth from pa-
rameter servers to workers becomes a
bottleneck. Synchronous training elim-
inated the parameter servers allowing

Table 2. Batch sizes for the three regions of Shallue.32 LM1B, Fashion MNIST, and Imagenet

are standard DNN datasets.

Model Perfect Diminishing Maximum

Transformer on LM1B ≤256 256–4096 ≥4096

Simple CNN on Fashion MNIST ≤512 512–2048 ≥2048

ResNet-50 on Imagenet ≤8192 8192–65536 ≥65536

JULY 2020 | VOL. 63 | NO. 7 | COMMUNICATIONS OF THE ACM 71

contributed articles

ing an inverse square root operation to
the transcendental unit.

5. The MXU produces 32-bit FP
products from 16-bit FP inputs that ac-
cumulate in 32 bits. All other computa-
tions are in 32-bit FP except for results
going directly to an MXU input, which
are converted to 16-bit FP.

The MXUs are large, but we reduced
their size from 256x256 in TPUv1 to
128x128 and have multiple MXUs per
chip. The bandwidth required to feed
and obtain results from an MXU is
proportional to its perimeter, while
the computation it provides is propor-
tional to its area. Larger arrays provide
more compute per byte of interface
bandwidth, but larger arrays can be
inefficient. Simulations show that
convolutional model utilization of

multiply and transpose units. The XLA
compiler schedules loading Imem via
independent overlays of code, as un-
like conventional CPUs, there is no in-
struction cache.

4. The Vector Processing Unit (VPU)
performs vector operations using a
large on-chip vector memory (Vmem)
with 32K 128 x 32-bit elements (16MiB),
and 32 2D vector registers (Vregs) that
each contain 128 x 8 32-bit elements
(4 KiB). The VPU streams data to and
from the MXU through decoupling FI-
FOs. The VPU collects and distributes
data to Vmem via data-level parallelism

(2D matrix and vector functional units)
and instruction-level parallelism (8 op-
erations per instruction).

Your beautiful DSA can fail if best-
practice algorithms change, rendering

it prematurely obsolete. We handled
such a crisis in 2015 during our design
in supporting batch normalization.18
Briefly, batch normalization subtracts
out the mean and divides by the stan-
dard deviation of a batch, making the
values look like samples from the nor-
mal distribution. In practice, it both
improves prediction accuracy and re-
duces time-to-train up to 14x! Batch
normalization emerged early in 2015,
and the results made it a must-do for
us. We divided it into vector additions
and multiplications over the batch,
plus one inverse-square-root calcula-
tion. However, the vector operation
count was high. We thus added a sec-
ond SIMD dimension to our vector unit,
making its registers and ALUs 128x8
(rather than just 1D 128-wide) and add-

Figure 3. TPUv2 chip floor plan.

It has two TensorCores: Node fabric data and NF controller move on-chip data.

ICI Link

PCIe ctrl

Miscellaneous
Datapath

Miscellaneous
Datapath

Chip
Manager

ICI Link

ICI LinkICI Link

Host
Queue

Host
Queue

NF
ctrl

NF
ctrl

HBM
port

HBM
port

HBM
port

Node
Fabric
Data

Node
Fabric
Data

Node
Fabric
Data

LST

LSTLST

HBM
port

Node
Fabric
Data

LST

RPU

RPU

Transpose
Unit

Transpose
Unit

Core
Seq.

I/Smem

Core
Seq.

I/Smem

Vector Unit
and

8MiB Vmem

Vector Unit
and

8MiB Vmem

Vector Unit
and

8MiB Vmem

Vector Unit
and

8MiB Vmem

ICI Switch

and Controller

T
e

n
s

o
r
C

o
r
e

T
e

n
s

o
r
C

o
r
e

Matrix Multiply Unit
(128 × 128 ×16b = 16K MAC)

Matrix Multiply Unit
(128 × 128 ×16b = 16K MAC)

PCIe Link

72 COMMUNICATIONS OF THE ACM | JULY 2020 | VOL. 63 | NO. 7

contributed articles

node designs. The TPUv1 article
evaluated hypothetical alternatives
that examined the changes in perfor-
mance while varying the MXU size,
the clock rate, and the memory band-
width.20 We need not hypothesize
here, as we implemented and de-
ployed two versions of the training ar-
chitecture: TPUv2 and TPUv3. TPUv3
has ≈1.35x the clock rate, ICI band-

width, and memory bandwidth plus

twice the number of MXUs, so peak

performance rises 2.7x. Liquid cools

the chip to allow 1.6x more power. We

also expanded the TPUv3 supercom-

puter to 1024 chips (see Figure 4). Ta-

ble 3 lists key features of the three

TPU generations along with a con-

temporary GPU (NVIDIA Volta) that

we’ll compare to below.

The TPUv3 die size is only 6% larger

than TPUv2 in the same technology de-

spite having twice as many MXUs per

TensorCore simply because the engi-

neers had a better idea beforehand of

the layout challenges of the major

blocks in TPUv2, which led to a more

efficient floor plan for TPUv3.

Designing DSA supercomputer arith-
metic. Peak performance is ≥8x higher

when using 16-bit FP instead of 32-bit

FP for matrix multiply (see Table 3), so

it’s vital to use 16-bit to get highest per-

formance. While we could have built an

MXU using standard IEEE fp16 and

fp32 floating point formats (see Figure

5), we first checked the accuracy of 16-

bit operations for DNNs. We found that:
 ˲ Matrix multiplication outputs and

internal sums must remain in fp32.
 ˲ The 5-bit exponent of fp16 matrix

multiplication inputs leads to failure

wires on its perimeter for the inputs,

outputs, and control. In our technology,

for 128x128 and larger the MXU’s area is

limited by the multipliers but area for

64x64 and smaller MXUs is limited by

the I/O and control wires.

6. The Transpose Reduction Permute

Unit does 128x128 matrix transposes,

reductions, and permutations of the

VPU lanes.

Alternative DSA supercomputer

four 128x128 MXUs is 37%–48%,

which is 1.6x of a single 256x256 MXU

(22%–30%) yet take about the same die

area. The reason is that some convolu-

tions are naturally smaller than

256x256, so sections of the MXU would

be idle. Sixteen 64x64 MXUs would have

a little higher utilization (38%–52%) but

would need more area. The reason is

the MXU area is determined either by

the logic for the multipliers or by the

Table 3. Key processor features.

Feature TPUv1 TPUv2 TPUv3 Volta

Peak TeraFLOPS/

Chip
92 (8b int)

46 (16b)

3 (32b)

123 (16b)

4 (32b)

125 (16b)

16 (32b)

Network links x Gbits/s/Chip -- 4 x 496 4 x 656 6 x 200

Max chips/supercomputer -- 256 1024 Varies

Peak PetaFLOPS/supercomputer -- 11.8 126 Varies

Bisection Terabits/supercomputer -- 15.9 42.0 Varies

Clock Rate (MHz) 700 700 940 1530

TDP (Watts)/Chip 75 280 450 450

TDP (Kwatts)/supercomputer -- 124 594 Varies

Die Size (mm2) <331 <611 <648 815

Chip Technology 28nm >12nm >12nm 12nm

Memory size (on-/off-chip) 28MiB/8GiB 32MiB/16GiB 32MiB/32GiB 36MiB/32GiB

Memory GB/s/Chip 34 700 900 900

MXUs/Core,

MXU Size

1

256x256

1

128x128

2

128x128

8

4x4

Cores/Chip 1 2 2 80

Chips/CPU Host 4 4 8 8 or 16

We cannot reveal technology details of our chip partner. Although it is in a

larger, older technology, the TPUv2 die size is less than 3/4s of the GPU.

TPUv3 is 6% larger in that same technology. TDP stands for Thermal

Design Power. The Volta has 80 symmetric multiprocessors.

Figure 4. A TPUv2 supercomputer has up to 256 chips and is 18-ft. long (top).

A TPUv3 supercomputer consisting of up to 1,024 chips (below)

is about 7-ft. tall and 36-ft. long. A TPUv2 board (center) holds

four air-cooled chips and a TPUv3 board (right) also has four

chips but uses liquid cooling.

JULY 2020 | VOL. 63 | NO. 7 | COMMUNICATIONS OF THE ACM 73

contributed articles

Figure 5. IEEE FP and Brain float formats.

inputs interact to produce a 2D out-

put. Each operand has a memory lay-

out, which gets transformed into a

layout in 2D registers, which in turn

must be fed at the exact moment to

meet systolic array timing in the MXU.

(A systolic array reduces register ac-

cesses by choreographing data flow-
ing from different directions to regu-
larly arrive at cross points that
combine them.) Depending on layout
choices, the 2D registers dimensions
of 128 and 8 might not be filled, low-
ering ALU and memory utilization.
Moreover, lacking caches, XLA man-
ages all memory transfers, including
code overlays and DMA pushes to re-
mote nodes over ICI.

XLA exploits the huge parallelism
that an input TF dataflow graph repre-
sents. Beyond the parallelism of oper-
ations (“ops”) in a graph, each op can
comprise millions of multiplications
and additions on data tensors of mil-
lions of elements. XLA maps this
abundant parallelism across hun-
dreds of chips in a supercomputer, a
few cores per chip, multiple units per
core, and thousands of multipliers
and adders inside each functional
unit. The domain-specific TF lan-
guage and XLA representation allow
precise reasoning about memory use
at every point in the program. There
are no “aliasing” issues where the
compiler must determine whether
two pointers might address the same
memory—every piece of memory cor-

All formats have an implicit leading mantissa

bit in normal operation.

sign(1)

IEEE fp32

exponent (8) mantissa (23)

sign(1)

IEEE fp16

exponent (5) mantissa (10)

sign(1)

bf16

exponent (8) mantissa (7)

of computations that go outside its
narrow range, which the 8-bit exponent
of fp32 avoids.

 ˲ Reducing the matrix multiplica-
tion input mantissa size from fp32’s 23
bits to 7 bits did not hurt accuracy.

The resulting brain floating format

(bf16) in Figure 5 keeps the same 8-bit
exponent as fp32. Given the same expo-
nent size, there is no danger in losing
the small update values due to FP un-
derflow of a smaller exponent, so all
programs in this article used bf16 on
TPUs without much difficulty. Beyond
our experience that it works for training
production applications, a recent Intel
study corroborated its benefits.21 How-
ever, fp16 requires adjustments to
training software (loss scaling) to deliver
convergence and efficiency. It preserves
the effect from small gradients by scal-
ing losses to fit the smaller exponents
of fp16.26

As the size of an FP multiplier scales
with the square of the mantissa width,
the bf16 multiplier is half the size and en-
ergy of a fp16 multiplier: 8² / 11² ≈ 0.5 (ac-
counting for the implicit leading man-
tissa bit). Bf16 delivers a rare
combination: reducing hardware and
energy while simplifying software by
making loss scaling unnecessary. Thus,
ARM and Intel have revealed future
chips with bf16.

Designing a DSA

Supercomputer Compiler

The next step was getting software for
our hardware. To program CPUs and
GPUs for machine learning, a frame-
work such as TensorFlow (TF)1 speci-
fies the model and data operations
machine-independently. TF is a do-
main-specific library built on Python.
NVIDIA GPU-dependent work is sup-
ported by a combination of the CUDA
language, the CuBLAS and CuDNN
libraries, and the TensorRT system.
TPUv2/v3s also use TF, with the new
system XLA (for accelerated linear al-
gebra) handling the TPU-dependent
mapping. XLA also targets CPUs and
GPUs. Like many systems that map

from domain-specific languages to
code, XLA integrates a high-level li-
brary and a compiler. A TF front end
generates code in an intermediate
representation for XLA.

It would seem it should be more dif-
ficult to get great performance in a pro-
gramming system based on Python
like TF. However, ML frameworks offer
both a higher level of expressiveness
and the potential for much better opti-
mization information than lower-level
languages like C++. TF programs are
graphs of operations, where multi-di-
mensional array operations are first-
class citizens:

 ˲ They operate on multi-dimension-
al arrays explicitly, rather than implic-
itly via nested loops as in C++.

 ˲ They use explicit, analyzable, and
bounded data access patterns versus
arbitrary access patterns like C++.

 ˲ They have known memory aliasing
behavior, unlike C++.

These three factors allow the XLA
compiler to safely and correctly trans-
form programs in ways that traditional
compilers rarely attain.

XLA does whole-program analysis
and optimization. With 2D vector reg-
isters and compute units in TPUv2/v3,
the layout of data in both compute
units and memory is critical to perfor-
mance, perhaps more than for a vec-
tor or SIMD processor. Building effi-
cient code for vector machines, with
1D memory and compute units, is
well understood. For the MXU, two 2D

Table 4. XLA speed up on TPUv2 with fusion versus without fusion.

MLP CNN RNN

SSD NMT Mask R-CNN Transformer Res Net-500 1 0 1 0 1

1.8 2.0 2.2 4.8 2.4 1.8 2.4 3.0 2.0 2.0 6.3

74 COMMUNICATIONS OF THE ACM | JULY 2020 | VOL. 63 | NO. 7

contributed articles

TPU and GPU choices before we com-

pare performance.

Multi-chip parallelization is built

into TPUs through ICI and supported

through all-reduce operations

plumbed through XLA to TF. Similar-

sized multi-chip GPU systems use a

tiered networking approach, with

NVIDIA’s NVLink inside a chassis

and host-controlled InfiniBand net-

works and switches to tie multiple

chassis together.

TPUs offer bf16 FP arithmetic de-

signed for DNNs inside 128x128 systol-

ic arrays that halves the die area and

energy versus IEEE fp16 FP multipliers.

Volta GPUs have also embraced re-

duced-precision systolic arrays, with a

finer granularity—4x4 or 16x16 de-
pending on hardware or software de-
scriptions—while using fp16 rather
than bf16, so they may require software
to perform loss scaling plus extra die
area and energy.

TPUs are dual-core, in-order ma-
chines, where the XLA compiler overlaps
computation, memory, and network ac-
tivities. GPUs are latency-tolerant many-
core machines, where each core has
many threads and thus very large (20MiB)
register files. Threading hardware plus
CUDA coding conventions support over-
lapped operations.

TPUs use software controlled 32MiB
scratchpad memories that the compil-
er schedules, while Volta hardware
manages a 6MiB cache and software
manages a 7.5MiB scratchpad memory.
The XLA compiler directs sequential
DRAM accesses typical of DNNs via di-
rect memory access (DMA) controllers
on TPUs while GPUs use multithread-
ing plus coalescing hardware for them.

Thottethodi and Vijaykumar35 con-
cluded that when compared to TPUs:

“[GPUs] incur high overhead in perfor-

mance, area, and energy due to heavy

multithreading which is unnecessary for

DNNs which have prefetchable, sequen-

tial memory accesses. The systolic orga-

nization [of TPUs] ... capture[s] DNNs’

data reuse while being simple by avoiding

multithreading.”
In addition to the contrasting archi-

tectural choices, TPU and GPU chips
use different technologies, die areas,
clock rates, and power. Table 6 gives
three related cost measures of these
systems: approximate die size adjust-
ed for technology; power for a 16-chip

sands of ops from a smaller set of
primitive ops.

The XLA team needed only 96 ops as
the compiler’s target to reduce work for
the library/compiler by enhancing com-
posability. For example, XLA has a single
op for convolution (kConvolution) let-
ting the compiler handle all the mem-
ory layout variations. The TF interme-
diate form has nine; for example,
Conv2D, Conv2dBackpropFil-

ter, DepthwiseConv2dNative, and
DepthwiseConv2dNativeBackprop-

Filter. For the CNN1 program, the
XLA compiler fused 63 different opera-
tions with at least one kConvolution.

Since ML platforms and DSAs of-
fered a new set of compiler challenges,
it was unclear how fast they would im-
prove. Table 5 shows the median gain
over only six months for MLPerf from
version 0.5 to 0.6 was 1.3x for GPUs and
2.1x for TPUs! (Perhaps the younger XLA
compiler has more opportunity to im-
prove than the more mature CUDA
stack.) One reason for the large gain is
the focus on benchmarks, but produc-
tion applications also advanced. In-
creasing bf16 use, optimizing model ar-
chitecture, and XLA generating better
code sped up CNN0 by 1.8x in 15 months
and improving partitioning/placement
for embeddings and XLA optimizations
accelerated MLP0 by 1.65x.

Contrasting GPU

and TPU Architectures

As details of TPU and GPU architec-
tures are now public, let us compare

responds to a known program variable
or temporary. The XLA compiler is
free to slice, tile, and lay out memory
and operations to best use the on-chip
memory bandwidth and to reduce the
memory footprint on chip or off chip.

TPUs use a VLIW architecture to
express instruction-level parallelism
to the many compute units of a Ten-
sorCore. XLA uses standard VLIW
compilation techniques including
loop unrolling, instruction schedul-
ing, and software pipelining to keep
all compute units busy and to simul-
taneously move data through the
memory hierarchy to feed them.

Given a memory layout of data, oper-

ator fusion can reduce memory use and
boost performance. Fusion is a tradi-
tional compiler optimization—but ap-
plied now to 2D data—that combines
ops to reduce memory traffic compared
to executing operators sequentially. For
example, fusing a matrix multiplication
with a following activation function
skips writing and reading the interme-
diate products from memory. Table 4
shows the speedup from the fusion op-
timization on 2D data is from 1.8 to 6.3.

The TF intermediate form for XLA
has thousands of ops. The number of
ops increases when programmers
cannot combine existing ops if com-
position is inefficient. Alas, expand-
ing the number of ops is an engineer-
ing challenge, since software libraries
need to be developed for CPUs, GPUs,
and TPUs. The hope was that the XLA
compiler could synthesize these thou-

Table 5. Speedup of MLPerf 0.6 over 0.5 in six months.

ResNet50 SSD MaskRCNN NMT Transformer Median

Volta 1.3 1.2 1.8 1.0 2.0 1.3

TPUv3 1.4 1.4 3.5 2.1 3.0 2.1

Table 6. Adjusted comparison of GPU and TPU.

Die size

Adjusted

die size

TD

(kw)

Cloud

price

Relative to GPU

Die TDP Price

Volta 815 815 12.0 $3.24 1.00 1.00 1.00

TPUv2 <611 <391 7.7 $1.13 <0.5 0.64 0.35

TPUv3 <648 <415 9.3 $2.00 <0.5 0.78 0.62

Die sizes are adjusted by the square of the technology, as the semiconduc-

tor technology for TPUs is similar but larger and older than that of the GPU.

We picked 15nm for TPUs based on the information in Table 3. Thermal

Design Power (TDP) is for 16-chip systems. TPUs come with a host CPU.

This GPU price adds price of a n1-standard-16 CPU.

JULY 2020 | VOL. 63 | NO. 7 | COMMUNICATIONS OF THE ACM 75

contributed articles

system; and cloud price per chip. The

GPU adjusted die size is more than

twice that of the TPUs, which suggests

the capital costs of the chips is at least

double, since there would be at least

twice as many TPU dies per wafer. GPU

power is 1.3x–1.6x higher, which sug-

gests higher operating expenses, as

the total cost of ownership is correlat-

ed with power.19 Finally, the hourly

rental prices on Google Cloud Engine

are 1.6x–2.9x higher for the GPU. These

three different measures consistently

suggest TPUv2 and TPUv3 are roughly

half to three fourths as expensive as

the Volta GPU.

Performance Evaluation

In computer architecture, we “grade on

a curve” versus “grade on an absolute

scale,” so we need to measure perfor-

mance relative to the competition. Before

showing performance of TPU supercom-

puters, we must establish the virtues of

a single chip, for a 1024x speedup from

1,024 wimpy chips is uninteresting.

We first compare training perfor-
mance for a standard set of ML bench-
marks and Google production applica-
tions for TPUv2/v3 chip and the Volta
GPU chip; TPUv3 and Volta are about the
same speed. We then check if four MXUs
per chip in TPUv3 really helped, or if oth-
er bottlenecks in the TPUv3 chip made
the extra MXUs superfluous; they
helped! We conclude the chip compari-
son looking at inference for TPUv2/v3
versus TPUv1; TPUv2/v3 are much faster.

Having established the merits of
the TPU chips, we then evaluate the
TPUv2/v3 supercomputer. The first
step is to see how well it scales; we see
96%–99% of perfect linear speedup at
1024 chips. We then compare the
fraction of peak performance and
performance per Watt of TPU and tra-
ditional supercomputers; TPUs have
5x-10x better performance per Watt.

Chip performance: TPUv2/v3 versus
the Volta GPU. Figure 6 shows the per-
formance of TPUv3 and the Volta GPU
over TPUv2 for two sets of programs.
The first set is five programs that
Google and NVIDIA both submitted to
MLPerf 0.6 in May 2019, and both use
16-bit multiplication with NVIDIA soft-
ware performing loss scaling. The geo-
metric mean speedup of these pro-
grams over TPUv2 is 1.8 for TPUv3 and
1.9 for Volta.

model for image recognition.
 ˲ In Recurrent Neural Networks

(RNN), each subsequent model layer is
a collection of nonlinear functions of
weighted sums of outputs and the pre-
vious state. Sequence prediction prob-
lems, such as language translation, use
RNNs. RNN0 is RNMT+6 and RNN1 is
Improved LAS.8

We recently compared the represen-
tative datacenter workloads by model
type for inference on TPUv120 versus
TPUv2/v3 for training. Table 7 illus-
trates the fast-changing nature of
DNNs. We originally used the name
LSTM (Long Short-Term Memory) for
TPUv1 applications, a type of RNN. Al-
though sampled three years apart—
July 2016 versus April 2019—we were
still surprised that CNNs were a much
larger part of datacenter training, and
that a new model Transformer36—pub-
lished the year that TPUv2 was de-

We also wanted to measure perfor-
mance of production workloads. We
chose six production applications
similar to what we used for TPUv1 as
representative of Google’s workload:

 ˲ In MultiLayer Perceptrons (MLP)
each new layer of a model is a set of
nonlinear functions of a weighted sum
of all outputs (fully connected) from
a prior one. This classic DNN usually
has text as input. MLP0 is unpublished
but MLP1 is RankBrain,9 which ranks
search results for a Web page.

 ˲ In Convolutional Neural Networks

(CNN), each ensuing layer is a set of
nonlinear functions of weighted sums
of spatially nearby subsets of outputs
from the prior layer. CNNs usually
have images as inputs. CNN0 is Alp-
haZero, a reinforcement learning al-
gorithm with extensive use of CNNs,
which mastered the games chess, Go,
and shogi.34 CNN1 is a Google-internal

Figure 6. Performance per chip relative to TPUv2 for five MLPerf 0.6 benchmarks and six

production applications.

Peak Compute

Clock Rate

Memory BW

Resnet50

SSD

MaskRCNN

GNMT

Transformer

MLPerf 0.6 GM

MLP0

RNN0

CNN1

MLP1

RNN1

CNN0

Production GM

0.0 1.0 2.0 3.0

TPUv3 Volta

Table 7. Google’s inference (July 2016) and training (April 2019) workloads by DNN

model type.

DNN Model TPUv1 July 2016 TPUv3 April 2019

MLP 61% 27%

RNN 29% 21%

CNN 5% 24%

Transformer -- 21%

76 COMMUNICATIONS OF THE ACM | JULY 2020 | VOL. 63 | NO. 7

contributed articles

are continuously improved, and not

simple benchmarks, so it’s a lot of work

to get them to run at all, and more to

run well. As noted earlier, application

programmers focus on TPUs, since

they are in everyday use, so there is little

urge to include loss scaling needed for

fp16. (TF kernels for embeddings have

not been developed for GPUs, so we ex-

clude MLPs from the GPU geometric

mean as they could not run.)

Is TPUv3 memory bound or com-
pute bound? While the peak compute

improvement of TPUv3 over TPUv2 is

2.7x, the improvements in memory

bandwidth, ICI bandwidth, and clock

rate are only ≈1.35x. We wondered

whether the extra MXUs in TPUv3

would be underutilized due to bottle-

necks elsewhere. Figure 6 shows that

one production application runs a bit

higher than the memory improvement

at 1.4x, but the other five and all the

MLPerf 0.6 benchmarks run much

faster at 1.6x to 2.3x. The large applica-

tion batch sizes and sufficient on-chip

storage enabled these good results. As

the MXUs are not a large part of the

chip (Figure 3), doubling the MXUs in

TPUv3 clearly proved beneficial.

Inference on a training chip: TPUv2/
v3 vs. TPUv1. What about inference

speed? Running it on a training chip—

which works since it is like the forward

pass—could help applications that re-

quire frequent training on fresh data.

TPUv2/v3 do not support 8-bit integer

data types, so inference uses bf16. One

upside of using the same arithmetic

for training and inference is that ML

experts don’t need to do extra work—

called quantization—to ensure the

same accuracy of the DNN model.

One danger is the larger batch sizes

needed to run efficiently on TPUv2/v3

could hurt inference latency. Fortu-

nately, we have DNN models that can

meet their latency targets with batch

sizes of greater than 1,000. With bil-

lions of daily users, inferences per sec-

ond across the whole data center fleet

can be very high.

The LSTM0 benchmark, for instance,

ran at 48 inferences per second with a

response time of 122ms on TPUv1.19

TPUv2 runs it 5.6x as fast with a 2.8x low-

er response time (44ms) at the same

batch size. The lower latency in turn al-

lows for larger batches compared to

TPUv1 to be served in production yet still

meet latency targets. With larger batches,

the throughput rose to 11x with a latency

improvement of 2x (58ms) vs TPUv1.

TPUv3 reduces latency 1.3x (45ms) versus

TPUv2 at the same batch size.

DSA supercomputer scaling perfor-
mance. Alas, only ResNet-50 from MLP-

erf 0.6 can scale beyond 1,000 TPUs and

GPUs. Figure 7 shows three ResNet-50

results. Ying et al. published a

ResNet-50 results on TPUv3 that deliv-

ered 77% of perfect linear scaleup at

1,024 chips,41 but the TPUv3 version for

MLPerf 0.6 only runs at 52%. The dif-

ference is in MLPerf’s ground rules.

MLPerf requires including evaluation

in the training time. (Evaluation runs a

holdout dataset after a model training

finishes to determine its accuracy.) Like

Ying et al., most researchers exclude it

when reporting performance. More un-

usually, MLPerf requires running evalu-

ation at the end of every four epochs to

deter benchmark cheating. ML devel-

opers would never evaluate that fre-

quently. For MLPerf 0.6, NVIDIA ran

ResNet-50 on a cluster of 96 DGX-2H

each with 16 Voltas connected via In-

finiband switches at 41% of linear scale-

up for 1,536 chips.

ployed—was as popular as RNNs.

(Transformer is part of MLPerf 0.5.)

Transformer is intended for the

same tasks as RNNs, such as transla-

tion, but is considerably faster since it

lends itself to parallelization while

RNNs have sequential dependencies.

The layers of Transformer are a mix of

MLPs and attention layers.4 Attention is

the key new mechanism used in Trans-

former; it lets neural networks look up

data associatively, in a memory-like

structure whose indices themselves

are learned. The components of atten-

tion resemble those of other layers, in-

cluding matrix multiplications and

dot products, which map well to TPU

hardware. One difference is that atten-

tion matrices grow with sequence

length, adding dynamic shape and

memory requirements that complicate

some optimizations done by XLA. The

success of this recent model (see Figure

6) highlights TPU programmability.

The geometric mean speedup of the

six production applications was 1.8 for

TPUv3 but only 0.4 for Volta, primarily

because they use 8x slower fp32 on

GPUs instead of fp16 (Table 3). These

are large production applications that

Table 8. Days to train MLPerf 0.5 benchmarks on one TPUv2 chip. See Table 1 for time to

train production applications.

ResNet50 SSD Mask R-CNN GNMT Transformer

0.8 0.3 1.9 0.2 0.3

Figure 7. Supercomputer scaling: TPUv3 and Volta.

1,000

750

500

250

0

S
p
e
e
d
u
p

Chips

0

CNN1, RNN0, RNN1 on TPUv3

CNN0 on TPUv3

ResNet50 on TPUv3

ResNet50 (MLPerf 0.6) on TPUv3

MLP0 on TPUv3

MLP1 on TPUv3

ResNet50 (MLPerf 0.6) onVolta

500250 750 1,000

JULY 2020 | VOL. 63 | NO. 7 | COMMUNICATIONS OF THE ACM 77

contributed articles

Table 9. Traditional versus TPU supercomputer Top500 and Green500 rank (June 2019) for Linpack and AlphaZero.

seven threads, each of which has a peak

performance of 100GFLOPS/s or

122TFLOPS/s per chip, almost identi-

cal to the peak performance of TPUv3

and Volta. It relies on the 300MB on-

chip SRAM for memory, with two GC2

chips per PCIe board. The Habana

Gaudi38 has eight VLIW SIMD cores,

four stacks of HBM2 memory, bf16

arithmetic, and eight 100Gbit/sec Eth-

ernet links to connect many chips to-

gether to form larger systems. Wave

Computing’s28 Dataflow Processing
Unit chip has 16k processors, 8k arith-
metic units, 16MB of on-chip memory,
and novelty relies on asynchronous
logic instead of a clock. It has external
DRAM, offering both Hybrid Memory
Cube and DDR4 ports. As of February
2020, none of the five training startups
has reported training accuracy or time-
to-solution.

Academic training studies include
the DianNao family of architectures (one
of which trains)7 and ScaleDeep;37 to our
knowledge, neither has been fabricated.

Several studies explored reduced-
precision training with accelerator
construction in mind. Intel’s Flex-
point22 is a block FP format,39 although
those developers switched to using
bf16 for their DNN chips.40 De Sa et al.10
reduced precision and relaxed cache
coherence. HALP11 also made algorith-
mic changes to reduce quantization
noise and uses 8-bit integers to train
some models. None is yet available in a
commercial system.

TPUv2/v3 are not the first domain-
specific supercomputers to show large
efficiency, performance, and scaling

Table 10. Time to train supercomputers from NVIDIA, Fujitsu, and Google on the ResNet-50

benchmark from MLPerf 0.6.

NVIDIA cluster ABCI Supercomputer TPUv3 Supercomputer

MLP 1536 Voltas + 192 CPUs 2048 Voltas + 1024 CPUs 1024 TPUv3s + 128 CPUs

Transformer 80 seconds 70 seconds 77 seconds

MLPerf 0.6 benchmarks are much
smaller than the production applica-
tions; Table 8 shows time to train them
on one TPUv2 chip is orders of magni-
tude less than in Table 1. Thus, we in-
clude six production applications
largely to show substantial programs
that can scale to supercomputer size.
The MLPs are limited by embeddings
and run only at 14% and 40% of perfect
linear scale up on 1,024 TPUv3 chips,
but one runs at 96% and three at 99%!

Note that CNN1 is an image recog-
nition DNN much like ResNet101. It
scales much better on TPUs because
Google’s internal image datasets are
much larger than what ResNet50
uses (Imagenet).

Traditional vs. DSA supercomputer
performance. Traditional supercom-
puters measure performance using the
high-performance computing (HPC)
benchmark Linpack and ranking the
Top500 (top500.org). The related
Green500 list re-ranks the Top500
based on performance per Watt. For
these large computers to get utiliza-
tion above 60%, HPC expands the size
of the matrix being solved (weak scal-

ing). (For which Linpack has long been
criticized within HPC.13) The TPU scale
up, however, uses production pro-
grams on real-world datasets.

Table 9 shows where PetaFLOPs/
second and FLOPs/Watt of AlphaZero
on TPUv2/v3 would rank in the Top500
and Green500 lists. This comparison
is imperfect: conventional supercom-
puters crunch 32- and 64-bit data rath-
er than the 16- and 32-bit data of TPUs.
However, TPUs are running a real ap-
plication on real data versus a weakly
scaled benchmark on synthetic data.
TPUv3 has 44x the FLOPS/Watt of
Tianhe and 10x of SaturnV and ABCI.

The Fujitsu ABCI supercomputer in
Table 9 includes 2,176 Intel CPUs
along with 4352 Volta GPUs. Besides

running Linpack, Fujitsu submitted a
ResNet-50 result for MLPerf 0.6 using
2,048 GPUs. Table 10 shows time to
train for ResNet-50 in MLPerf 0.6 and
the number of chips for an NVIDIA
GPU cluster, the Fujitsu ABCI super-
computer, and a Google TPUv3 super-
computer. Fujitsu varied from the
strict benchmark MLPerf 0.6 closed
guidelines of the other submissions—
they changed the LARS optimizer and
the momentum hyperparameter—so
it’s not an apples-to-apples compari-
son. These changes improve perfor-
mance by 10%–15%, which would also
help NVIDIA and TPUv3.

Related Work

A survey documents over 25 years of
custom neural network chips,3 but re-
cent DNN successes led to an explosion
in their development. Most designs fo-
cus on inference; far fewer, including
the TPUv2/v3, target training. We are
not aware of any other results that show
state-of-the-art accuracy on a working
DSA hardware for training.

Of the five training startups, Sam-
baNova has not yet published. Cere-
bras uses a whole silicon wafer to build
their system, essentially treating 84
large “dies” as a single unit.24 Each
“die” has 220MB of SRAM along with
about 5k cores, yielding a total of 18GB
of on-chip memory and 400k cores that
collectively use 15 kilowatts. Like
GraphCore, there is no DRAM in the
system, so they target small batch sizes
to reduce memory needs. The Graph-
Core15 GC2 chip holds 1,216 Intelli-
gence Processing Units that support

Name Cores Benchmark Data Peta Flop/s % of Peak Mega-watts GFlop/Watt Top 500 Green 500

Tianhe 4865k Linpack 32/64 bit 61.4 61% 18.48 3.3 4 57

SaturnV 22k Linpack 32/64 bit 1.1 59% 0.97 5.1 469 1

ABCI 392k Linpack 32/64 bit 19.9 61% 1.65 14.4 8 3

TPUv2 0.5k AlphaZero 16/32 bit 9.9 84% 0.12 79.9 22 2

TPUv3 2k AlphaZero 16/32 bit 86.9 70% 0.59 146.3 4 1

See article for caveats about comparing Linpack on 64-bit floating point to ML training on 16-bit floating point.

78 COMMUNICATIONS OF THE ACM | JULY 2020 | VOL. 63 | NO. 7

contributed articles

Googlers. Many thanks to the hardware

and software teams and engineers for

making TPU supercomputers possible,

including Paul Barham, Eli Bender-

sky, Dehao Chen, Chiachen Chou, Jeff

Dean, Peter Hawkins, Blake Hechtman,

Mark Heffernan, Robert Hundt, Michael

Isard, Fritz Kruger, Naveen Kumar,

Sameer Kumar, Chris Leary, Hyouk-

Joong Lee, David Majnemer, Lifeng

Nai, Thomas Norrie, Tayo Oguntebi,

Andy Phelps, Bjarke Roune, Brennan

Saeta, Julian Schrittwieser, Andy Swing,

Shibo Wang, Tao Wang, Yujing Zhang,

and many more.

References
1. Abadi, M. et al. Tensorflow: Large-scale machine

learning on heterogeneous distributed systems. 2016;
arXiv preprint arXiv:1603.04467.

2. Amodei, D. and Hernandez, D. AI and compute, 2018;
https://blog.openai.com/aiandcompute.

3. Asanović , K. Programmable neurocomputing. The
Handbook of Brain Theory and Neural Networks, 2nd
Edition. M.A. Arbib, ed. MIT Press, 2002.

4. Bahdanau, D., Cho, K. and Bengio, Y. Neural machine
translation by jointly learning to align and translate.
2014; arXiv preprint arXiv:1409.0473.

5. Chen, J. et al. Revisiting distributed synchronous SGD.
2016; arXiv preprint arXiv:1604.00981.

6. Chen, M.X. et al. The best of both worlds: Combining
recent advances in neural machine translation. 2018;
arXiv preprint arXiv:1804.09849.

7. Chen, Y. et al. Dadiannao: A machine-learning
supercomputer. In Proceedings of the 47th Int’l Symp.
on Microarchitecture, (2014), 609–622.

8. Chiu, C.C. et al. State-of-the-art speech recognition
with sequence-to-sequence models. In Proceedings
of the IEEE Int’l Conference on Acoustics, Speech and
Signal Processing, (Apr. 2018), 4774–4778.

9. Clark, J. Google turning its lucrative Web search over
to AI machines. Bloomberg Technology, Oct. 26, 2015.

10. De Sa, C. et al. Understanding and optimizing
asynchronous low-precision stochastic gradient
descent. In Proceedings of the 44th Int’l Symp. on
Computer Architecture, (2017), 561–574.

11. De Sa, C. et al. High-accuracy low-precision training.
2018; arXiv preprint arXiv:1803.03383.

12. Dean, J. et al. Large scale distributed deep networks.
Advances in Neural Information Processing Systems,
(2012), 1223–1231.

13. Dongarra, J. The HPC challenge benchmark: a
candidate for replacing Linpack in the Top500? In
Proceedings of the SPEC Benchmark Workshop, (Jan.
2007); www.spec.org/workshops/2007/austin/slides/
Keynote_Jack_Dongarra.pdf.

14. Duchi, J., Hazan, E. and Singer, Y., Adaptive
subgradient methods for online learning and
stochastic optimization. J. Machine Learning Research
12 (July 2011), 2121–2159.

15. Graphcore Intelligence Processing Unit. (https://www.
graphcore.ai/products/ipu

16. Hennessy, J.L. and Patterson, D.A. Computer
Architecture: A Quantitative Approach, 6th Edition.
Elsevier, 2019.

17. Hennessy, J.L. and Patterson, D.A. A new golden age
for computer architecture. Commun. ACM 62, 2 (Feb.
2019), 48–60.

18. Ioffe, S. and Szegedy, C. Batch normalization:
Accelerating deep network training by reducing
internal covariate shift. 2015; arXiv preprint
arXiv:1502.03167.

19. Jouppi, N.P. et al. In-datacenter performance analysis
of a tensor processing unit. In Proceedings of the 44th
Int’l Symp. on Computer Architecture, (June 2017),
1–12.

20. Jouppi, N.P., Young, C., Patil, N. and Patterson, D.
A domain- specific architecture for deep neural
networks. Commun. ACM 61, 9 (Sept. 2018), 50–59.

21. Kalamkar, D. et al. A study of Bfloat16 for
deep learning training. 2019; arXiv preprint
arXiv:1905.12322.

22. Köster, U. et al. Flexpoint: An adaptive numerical

format for efficient training of deep neural networks.
In Proceedings of the 31st Conf. on Neural Information
Processing Systems, (2017).

23. Kung, H.T. and Leiserson, C.E. Algorithms for VLSI
processor arrays. Introduction to VLSI Systems, 1980.

24. Lie, S. Wafer scale deep learning. In Proceedings of
the IEEE Hot Chips 31 Symp., (Aug 2019).

25. Mellempudi, N. et al. Mixed precision training with 8-bit
floating point. 2019; arXiv preprint arXiv:1905.12334.

26. Micikevicius, P. et al. Mixed precision training. 2017;
arXiv preprint arXiv:1710.03740.

27. Mikolov, T. et al. Distributed representations of words and
phrases and their compositionality. Advances in Neural
Information Processing Systems (2013), 3111–3119.

28. Nicol, C. A dataflow processing chip for training deep
neural networks. In Proceedings of the IEEE Hot
Chips 29 Symp., (Aug 2017I.

29. Olah, C. Deep learning, NLP, and representations.
Colah’s blog, 2014; http://colah.github.io/posts/2014-
07-NLP-RNNs-Representations/.

30. Polyak, B.T. Some methods of speeding up the
convergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics 4, 5 (1964), 1–17.

31. Robbins, H. and Monro, S. A Stochastic approximation
method. The Annals of Mathematical Statistics 22, 3
(Sept. 1951), 400–407.

32. Shallue, C.J. et al. Measuring the effects of data
parallelism on neural network training. 2018; arXiv
preprint arXiv:1811.03600.

33. Shaw, D.E. et al. Anton, a special-purpose machine for
molecular dynamics simulation. Commun. ACM 51, 7
(July 2008), 91–97.

34. Silver, D. et al. A general reinforcement learning
algorithm that Master’s chess, Shogi, and Go through
self-play. Science 362, 6419 (2018), 1140–1144.

35. Thottethodi, M. and Vijaykumar, T. Why the GPGPU
is less efficient than the TPU for DNNs. Computer
Architecture Today Blog, 2019; www.sigarch.org/why-
the-gpgpu-is-less-efficientthan-the-tpu-for-dnns/

36. Vaswani, A. et al. Attention is all you need. Advances
in Neural Information Processing Systems (2017),
5998–6008.

37. Venkataramani, S. et al. Scaledeep: A scalable
compute architecture for learning and evaluating deep
networks. In Proceedings of the 45th Int’l Symp. on
Computer Architecture, (2017), 13–26.

38. Ward-Foxton, S. Habana debuts record-breaking AI
training chip, (June 2019); https://www.eetimes.com/
document.asp?doc_id=1334816.

39. Wilkinson, J.H. Rounding Errors in Algebraic Processes,
1st Edition. Prentice Hall, Englewood Cliffs, NJ, 1963.

40. Yang, A. Deep learning training at scale Spring
Crest Deep Learning Accelerator (Intel® Nervana™
NNP-T). In Proceedings of the Hot Chips, (Aug. 2019);
www.hotchips.org/hc31/HC31_1.12_Intel_Intel.
AndrewYang.v0.92.pdf.

41. Ying, C. et al. Image classification at supercomputer
scale. 2018; arXiv preprint arXiv:1811.06992.

42. Zoph, B. and Le, Q.V. Neural architecture search
with reinforcement learning. 2019; arXiv preprint
arXiv:1611.01578.

Norman P. Jouppi is a Distinguished Hardware Engineer
at Google, Mountain View, CA, USA.

Doe Hyun Yoon is a staff software engineer at Google,
Mountain View, CA, USA.

George Kurian is a senior staff software engineer at
Google, Mountain View, CA, USA.

Sheng Li is a staff software engineer and tech lead on ML
Accelerator Optimization at Scale at Google, Mountain
View, CA, USA.

Nishant Patil is a senior staff software engineer at
Google, Mountain View, CA, USA.

James Laudon is an engineering director at Google,
Mountain View, CA, USA.

Cliff Young is a software engineer at Google, Mountain
View, CA, USA.

David Patterson is a Distinguished Engineer at Google,
Mountain View, CA, USA, a professor of Graduate School
at the University of California, Berkeley, CA, USA, and
Director of the RISC-V International Open Source
Laboratory at Berkeley, CA, and Shenzhen, China.

Copyright held by authors/owners.

gains. Anton systems33 showed two or-

der-of-magnitude speedups over tra-

ditional supercomputers on molecular

dynamics workloads. They also result-

ed from hardware/software/algorithm

codesign, with custom chips, intercon-

nect, and arithmetic.

Conclusion

Benchmarks suggests the TPUv3 chip

performs similarly to the contempo-

rary Volta GPU chip, but parallel scal-

ing for production applications is

stronger for the TPUv3 supercomputer:
 ˲ Three scale to 1,024 chips at 99%

linear speedup;
 ˲ One scales to 1,024 chips at 96%

linear speedup; and
 ˲ Two scale to 1,024 chips but are

limited by embeddings.

Remarkably, a TPUv3 supercomputer

runs a production application using real-

world data at 70% of peak performance,

higher than general-purpose supercom-

puters run the Linpack benchmark us-

ing weak scaling of manufactured data.

Moreover, TPU supercomputers with

256–1,024 chips running a production

application have 5x–10x performance/

Watt of the #1 traditional supercomput-

er on the Green500 list running Linpack

and 24x–44x of the #4 supercomputer

on the Top500 list. Reasons for this suc-

cess include the built-in ICI network,

large systolic arrays, and bf16 arithmetic,

which we expect will become a standard

data type for DNN DSAs.

TPUv2/v3 have smaller dies in an old-

er semiconductor process and lower

cloud prices despite being less mature at

many levels of hardware/software sys-

tem stack than CPUs and GPUs. These

good results despite technological dis-

advantages suggests the TPU approach

is cost-effective and can deliver high ar-

chitectural efficiency into the future.
Going forward, our ravenous DNN

colleagues want the fastest computer
that we can build.2 Despite Moore’s
Law ending, we expect the demand for
faster DNN-specific supercomputers to
grow even more quickly than Moore
predicted. Trying to satisfy that de-
mand without the help of Moore’s Law
offers exciting new challenges for com-
puter architects for at least a decade.17

Acknowledgments

The authors analyzed TPU systems
that involved contributions from many

