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Abstract

Machine learning has achieved remarkable success in data-intensive
applications, yet it still encounters challenges when data is insufficient.
To tackle this issue, few-shot learning (FSL) has been proposed. FSL aims
to develop methods that can rapidly generalize to new tasks with minimal
labeled samples. It is particularly beneficial in scenarios where acquiring
labeled data is difficult or impractical.

In this thesis, we explore the use of synthetic data generation tech-
niques to enhance FSL. To achieve this, we employ generative models to
capture the feature distribution within a continuous latent space, which
allows the sampling of new features to facilitate learning in data-scarce
scenarios. We demonstrate the capability of this framework to synthesize
diverse and reliable features that can enhance FSL across various tasks, in-
cluding few-shot image classification, fine-grained few-shot classification,
few-shot object detection, and class-agnostic object counting. Specifically,
for few-shot image classification, we propose a method to generate reliable
features via sample selection. For fine-grained few-shot classification, we
propose sampling diverse features representing the distribution of intra-
class variance. For few-shot object detection, we focus on how to generate
features with increased crop-related diversity. For class-agnostic object
counting, we present a method for generating reliable features that can
serve as object templates. Finally, to conclude this thesis, we investigate a
more general question: under what conditions do generative models pro-
duce high-quality samples? To address this, we introduce a method for
quality assessment based on latent space analysis, ensuring a more reli-
able use of generated samples beyond FSL scenarios.
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Chapter 1

Introduction

1.1 Overview

Deep learning has achieved significant success in numerous computer vi-
sion tasks with sufficiently large-scale labeled training data. However,
in many real-world scenarios, annotated data can be hard and costly to
obtain, such as rare medical conditions, rare animal species, satellite im-
ages, or failure cases in autonomous driving systems. Recently, there has
been increasing attention on the development of few-shot learning (FSL)
[119, 131, 159, 181], which aims to design models capable of solving tasks
using just a few or even zero labeled examples.

In this thesis, we demonstrate that generative models can effectively
enhance FSL through data generation. Generative models capture the un-
derlying data distribution by modeling it in a unified latent space. Sam-
pling from this latent space enables the creation of new samples, which
can be utilized as additional training data for FSL. Throughout this thesis,
we explore multiple strategies to enhance the diversity and reliability of
generated samples to facilitate FSL in various scenarios.

Specifically, we achieve this by manipulating either 1) the data distri-
butions used to train generative models or 2) the structure of the latent
space itself. These manipulations guide generative models to generate
data that optimally supports various FSL tasks. For instance, training gen-
erative models exclusively on “easy-to-classify” samples generates reliable
data for constructing class prototypes in few-shot classification (see Chap-
ter 3). In another scenario, reorganizing the latent space facilitates the
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generation of data with increased difficulty levels, thereby enhancing the
performance of few-shot object detection tasks (see Chapter 5). Through
these strategies, we demonstrate the versatility and effectiveness of gener-
ative modeling in enhancing different FSL tasks.

Finally, to conclude this thesis, we aim to address a more general ques-
tion: under what conditions do generative models produce high-quality
samples? To address this, we propose a method for quality assessment
based on latent space analysis, ensuring a more reliable use of generated
samples beyond FSL scenarios.

1.2 Contributions

Our first contribution focuses on generating reliable data for few-shot
image classification. In this task, feature representations from few-shot
classes are often biased and fail to accurately represent the real data
distribution. We demonstrate that by training a generative model ex-
clusively on representative, i.e., “easy-to-classify” samples, the model
will subsequently generate strictly representative samples. These gen-
erated samples effectively augment the original training set and signifi-
cantly improve classification accuracy. Experimental results show that our
method enhances three few-shot learning baseline methods by substantial
margins, achieving state-of-the-art few-shot classification performance on
miniImageNet and tieredImageNet datasets for both 1-shot and 5-shot set-
tings.

In another case, we focus on generating diverse data for fine-grained
few-shot classification. Our assumption is that the intra-class variance
features, such as backgrounds and illuminations, are shared across differ-
ent fine-grained classes. Therefore, we propose using a generative model
to capture the distribution of intra-class variations from data-sufficient
classes. By sampling from this learned distribution, we generate diverse
intra-class variance features and incorporate them into the original train-
ing set of the few-shot classes for data augmentation. We show that our
method significantly outperforms the state-of-the-art methods on multi-
ple challenging fine-grained few-shot image classification benchmarks.

Our third contribution centers on generating data with increased di-
versity for few-shot object detection. We observe that in object detection,
the object proposals often overlap with objects in various ways, result-
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ing in proposals of varying difficulty levels. Training a robust classifier
against this crop-related diversity requires abundant training data, which
is not available in few-shot settings. To mitigate this issue, we propose a
novel generative model architecture, which is capable of generating data
with enhanced crop-related diversity. Specifically, we reorganize the la-
tent space such that latent codes with different norms correspond to object
crops with different difficulty levels. This reorganization method allows
us to generate data with increased crop-related diversity in difficulty lev-
els by adjusting the latent norm. In our experiments, our generated data
consistently improve state-of-the-art few-shot object detectionmethods on
benckmark datasets including PASCAL VOC [37] and MS COCO [90].

Furthermore, we utilize generative models to construct reliable class
prototypes based on class labels, which enables a new task - counting
objects without any annotated exemplars, i.e., zero-shot object counting.
Specifically, we leverage the recent advancements in vision-languagemod-
els, including CLIP [124] and Stable Diffusion [134], to construct class
prototypes based on the class name. These prototypes can accurately lo-
calize patches containing objects of interests, thereby eliminating the need
for human-annotated counting exemplars. Experimental results on a re-
cent class-agnostic counting dataset, FSC-147 [128] validate the effective-
ness of our method.

To conclude this thesis, we investigate the conditions under which gen-
erative models produce high-quality samples. Our intuition is that the
quality of a generated sample directly relates to the amount of the training
samples that closely resemble it, and we can infer this information solely
by examining the density of the latent space. To this end, we propose a la-
tent density score function for quantifying sample quality. We show that
the proposed score highly correlates with the sample quality for various
generative models including Variational Autoencoders (VAEs) [72], Gen-
erative Adversarial Networks (GANs) [46] and Latent Diffusion Models
(LDMs) [134]. Compared to existing methods, our method offers several
key advantages including efficiency, generalizability and applicability.

1.3 Organization

The remaining of this thesis is organized as follows. In Chapter 2, we re-
view related approaches in the above aspects. In Chapter 3, we describe
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our proposed method for generating representative data through sample
selection for few-shot image classification. In Chapter 4, we present how
to generate data representing the distribution of intra-class variance to
diversify fine-grained few-shot categories. In Chapter 5, we focus on gen-
erating data with increased crop-related diversity to facilitate few-shot ob-
ject detection. In Chapter 6, we present a method for generating data that
can serve as reliable object templates for class-agnostic object counting.
Finally, Chapter 7 details our proposed latent-based quality assessment
method, which measures sample quality by examining the latent space of
generative models.

1.4 Publications List

Works presented in this thesis are supported by the following list of pub-
lications:

1. Jingyi Xu, Hieu Le, Mingzhen Huang, ShahRukh Athar, Dimitris
Samaras, Variational Feature Disentangling for Fine-Grained Few-Shot
Classification, ICCV, 2021.

2. Jingyi Xu, Hieu Le, Generating Representative Samples for Few-Shot
Classification, CVPR, 2022.

3. Jingyi Xu, Hieu Le, Dimitris Samaras, Generating Features with Crop-
Related Diveristy for Few-Shot Object Detection, CVPR, 2023.

4. Jingyi Xu, Hieu Le, Vu Nguyen, Viresh Ranjan, Dimitris Samaras,
Zero-Shot Object Counting, CVPR, 2023.

5. Jingyi Xu, Hieu Le, Dimitris Samaras, Assessing Sample Quality via
the Latent Space of Generative Models, Under Review.
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Chapter 2

Literature Review

In this dissertation, we focus on enhancing the diversity and reliability of
generated samples to better support downstream vision tasks. We employ
variational autoencoders (VAEs) and diffusion models as our generative
frameworks. We demonstrate that the generated data can facilitate var-
ious tasks, particularly in data-scarce scenarios such as few-shot image
classification, fine-grained few-shot classification, few-shot object detec-
tion, and class-agnostic object counting. Furthermore, we investigate the
conditions under which generative models perform well, ensuring a more
reliable use of generated samples.

In this chapter, we will review the literature related to this research
work, including VAEs, few-shot classification, few-shot object detection,
zero-shot learning, class-agnostic object counting and related quality as-
sessment methods.

2.1 Few-shot Classification

Few-shot classification has been receiving increasing attention over the
past few years. Concretely, few-shot classification learns classifiers given
only a few labeled examples of each class. In a typical N -way K-shot few-
shot setting, we are given a training set Dtrain and a testing set Dtest . The
training set Dtrain contains I = K ∗N examples from N classes each with
K examples. K is often small (i.e., K = 1 or K = 5). The goal is to learn a
classifier on Dtrain which performs well on Dtest .

The problem of learning from very few examples firstly attracted the
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attention of E. G. Miller et al. in 2000 [107], who postulated a shared
density on digit transforms and proposed a Congealing algorithm to
bring test digit image into correspondence with class-specific congealed
digit image. Thereafter, more and more efforts were devoted to FSL re-
search. The development process of FSL research can be roughly divided
into two periods, non-deep period (from 2000 to 2015) and deep period
(from 2015 to now). In particular, most of the famous early FSL ap-
proaches in non-deep period are based on the generative model. They
seek to estimate the joint distribution or the conditional distribution given
a supervision, albeit on very few observed training samples and then
make predictions for test samples. With deep learning booming, espe-
cially the great success achieved by CNNs on visual tasks, many FSL re-
searchers began to shift their sights from non-deep models to deep mod-
els. Representative FSL approaches in this deep period can be roughly di-
vided into four main categories: metric-based approaches, optimization-
based approaches, augmentation-based approaches and semantics-based
approaches.

Metric-based approaches

Metric-based approaches [116, 150, 154, 155, 159, 187, 193] tackle the
few-shot learning problem by learning to transform the data to a lower di-
mension representation and then clustered and compared using a specific
distance/metric function.

Figure 2.1: Few-shot prototypes ck are computed as themean of embedded
support examples for each class. Image Source: [150].

ProtoNet [150] is one of the most popular and effective approaches in
the FSL literature. It is based on episode training, where an episode con-

6



sists of randomly selected tasks from the training set with k number of
labeled samples from each class. ProtoNet learns to classify samples by
comparing the distance to the representatives of each class. The network
calculates a prototype representation (an M-dimensional representation)
of each class using an embedding function fθ : RD → R

M , where θ is the
learnable parameters. The prototype is given by ck ∈ RM which is calcu-
lated using the mean vector of the embedded support points in the class
space, as shown in Figure 2.1. ck is given by:

ck =
1

sk

∑

(xn,yn)∈sk
fθ(xn), (2.1)

where sk is the number of samples in class k. Then Euclidean distance is
leveraged to predict the probability:

p(yj = k|xj ) =
exp(−d(fθ(xj ), ck))

∑K
k′=1 exp(−d(fθ(xj ), c′k))

, (2.2)

where d(xi ,xj ) denotes the Euclidean distance between xi and xj and K is
the total number of classes.

Figure 2.2: MatchingNet architecture. Image Source: [159].

Vinyals et al. propose MatchingNet [159] to accumulate information
on a given task with memory mechanism and utilize cosine distance in an
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attention kernel as measurement. Figure 2.2 shows the overall architec-
ture of MatchingNet. Given a test sample x̂, MatchingNet predicts output
class ŷ as follows:

ŷ =

k
∑

i=1

a(x̂,xi)yi , (2.3)

where xi , yi are the samples and labels from the support set S = {(xi , yi)}ki=1,
and a is an attention mechanism which is the softmax over the cosine dis-
tance c:

a(x̂,xi) =
ec(f (x̂),g(xi ))

∑k
j=1 e

c(f (x̂),g(xj ))
, (2.4)

where f and g are embedding functions to embed x̂ and xi (potentially
with f = g).

Unlike ProtoNet and MatchingNet which use the non-parametric Eu-
clidean distance or cosine distance to measure the similarity between pair-
wise features, RelationNet [154] adopts a learnable CNN to measure pair-
wise similarity. The CNN takes the concatenation of the feature maps of
support sample xi and query sample xj as input and outputs the relation
score r(xi ,xj ), as shown in Figure 2.3.

Figure 2.3: RelationNet architecture. Image Source: [154].
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Optimization-based approaches

Optimization-based [42, 83, 88, 89, 125, 139, 143] suggest to fine-tune a
base learner for task T using its few support samples and make the base
learner converge fast on these samples within several parameter update
steps. Generally, optimization-based approaches contain a base-learner
and a meta-learner. Let θb and θm denote the parameters of base-learner
and meta-learner, respectively. The learning process occurs at two levels,
i.e., gradual learning and rapid learning. Gradual learning is performed
across tasks, which aims to optimize the meta-learning parameters θm.
The rapid learning of the base-learner for each specific task θb can be fa-
cilitated by the gradual learning.

MAML is a meta-learning framework which has a profound influence
on the field of FSL. Its core idea is to search for a good parameter initializa-
tion for θb by cross-task training strategy such that the base-learner with
this initialization can rapidly generalize new tasks using a few support
samples. Algorithm 1 depicts the overall learning process of the MAML
approach.

Algorithm 1 MAML process summarization.

Require: Task distribution p(τ), step size γ , learning rate β
Initialize random values for θ
while not done do
Perform task batch τi ∼ p(τ)
for all τi do
Evaluate ∇θLτi (fθ) wrt. k samples
Calculate the adapted parameters:
θ′i = θ −γ ∗ ∇θLτi (fθ)

end for
Update θ← θ − β ∗ ∇θ∑τi∼p(τ)Lτi (fθ)

end while

Another representative optimization-based approach is Meta-Learner
LSTM [129]. It is based on a Long Short-Term Memory meta-learner
(LSTM) to fine-tune the base-learner on the few support samples. As
shown in Figure 2.4, the LSTM-based meta-learner takes as input the loss
and gradient of the base-learner with respect to each support sample. Its
hidden state is treated as the updated base-learner parameter. In this
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framework, the vanilla gradient-based optimization for base-learner pa-
rameters is superseded by an LSTM in the hope of learning appropriate
parameter updates specifically for the scenario where a few updates will
be made.

Figure 2.4: Computational graph for the forward pass of the meta-learner.
The dashed line divides examples from the training set and test set. Each
(Xi , Xi) is the i th batch from the training set whereas (X, Y) is all the
elements from the test set. The dashed arrows indicate that the back-
propagation is disabled when training the meta-learner. M denotes the
learner and M(X;θ) is the output of learner M using parameters θ for
inputs X. Image Source: [129].

Augmentation-based approaches

Augmentation-based approaches aim to compensate for the insufficient
number of available samples by generation. Most methods use the idea
of Generative Adversarial Networks (GANs) or autoencoder to generate
samples or features to augment the training set.

∆−Encoder [141] learns to extract transferable intra-class variation
(called ∆) from the base classes and apply this variation to the novel
classes so as to synthesize additional samples for the novel classes. It
develops an encoder-decoder network whose bottleneck embedding is ex-
pected to capture the intra-class variation ∆.

Another representative augmentation-based FSL method is Halluci-
nator [165] proposed by Wang et al. As shown in Figure 2.5, Hallucinator
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Figure 2.5: Meta-learning with hallucination. The initial training set Strain
is augmented by a set of generated samples SGtrain. S

G
train is obtained by

sampling real seed examples and noise vectors z and passing them to a
parametric hallucinator G. The hallucinator is trained end-to-end along
with the classification algorithm h. Dotted red arrows indicate the flow of
gradients during back-propagation. Image Source: [165].

uses an MLP-based generator G to augment features for the support set,
i.e., f̂ = G(f , z), where f is an original feature and z is a noise vector. The
proposed generator can be incorporated into a variety of meta-learners
and provides significant gains.

Dual TriNet [29] leverages semantic space to learn the transforma-
tion between the image features at multiple layers and the semantic space.
In semantic space, they search for related concepts, which are then pro-
jected back into the image feature spaces by the decoder. They explore
two strategies to augment the semantic space and these strategies result
in complex augmented feature distributions in the image feature space,
leading to substantially better performance.

Semantic-based approaches

For semantic-basedmethods, the semantics of the data are used along with
the prior knowledge for the model to either learn or optimize to novel
categories.

Xing et al. proposed AM3 [179], which adaptively combine informa-
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Figure 2.6: Overview of the Dual TriNet architecture. The image features
are extracted by ResNet-18 and augmented features are generated by dual
TriNet. Encoder TriNet projects features to the semantic space. After aug-
menting data in semantic space, the decoder TriNet is used to obtain the
corresponding augmented features. Both real and augmented data are
used to train the classification model. Image Source: [29].

tion from both visual and semantics modalities according to new image
categories to be learned. Specifically, the prototype representation is mod-
eled as a convex combination of the visual and the semantic feature rep-
resentations:

p′c = λc ∗pc + (1−λc) ∗wc,
where λc is the adaptive mixture coefficient (conditioned on the category)
and wc = g(ec) is a transformed version of the label embedding for class c.
The representation ec is the pre-trained word embedding of label c. The
coefficient λc is conditioned on category and calculated as follows:

λc =
1

1+ exp(−h(wc))
,

where h is the adaptive mixing network, with parameters θh. Figure 2.7
illustrates the proposed model.

Another representative semantics-based approach isKTN [119], which
jointly incorporates visual feature learning, knowledge inferring and clas-
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Figure 2.7: Adaptive modality mixture model. The final category proto-
type is a convex combination of the visual and the semantic feature rep-
resentations. The mixing coefficient is conditioned on the semantic label
embedding. Image Source: [179].

sifier learning into one unified framework, as shown in Figure 2.8. Specif-
ically, a visual feature extractor based on Convolutional Neural Network
(CNN) is trained by optimizing cosine similarity with the training data of
base categories, which is used to extract the representation of examples
and generate vision-based classifiers of novel categories. To well leverage
the prior knowledge, a semantic-visual mapping network (M-Net) is de-
veloped to conduct knowledge inference and the semantic relationship of
all categories is explicitly explored by employing the graph convolutional
network and knowledge graph. This mapping can serve as the knowledge-
based classifiers generator of novel categories. Finally, an adaptive fusion
scheme is proposed to infer the final classifiers by integrating the above
two classifiers.

2.2 Few-Shot Object Detection

Few-shot object detection aims at detecting novel objects with only few
annotated instances. A number of prior methods [39–41, 50, 51, 66,
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Figure 2.8: Illustration of the proposed Knowledge Transfer Network ar-
chitecture (KTN) for few-shot image recognition. Image Source: [119].

66, 78, 87, 99, 100, 121, 152, 169–171, 200] have been proposed to ad-
dress this challenging task. One line of work focuses on the meta-
learning paradigm, which has been widely explored in few-shot classi-
fication [38, 62, 142, 166, 177, 182, 185, 186]. Meta-learning based ap-
proaches introduce a meta-learner to acquire meta-knowledge that can
be then transferred to novel classes. [62] propose a meta feature learner
and a reweighting module to fully exploit generalizable features from
base classes and quickly adapt the prediction network to predict novel
classes. [166] propose specializedmeta-strategies to disentangle the learn-
ing of category-agnostic and category-specific components in a CNN based
detection model. Meta R-CNN [182] extends Faster / Mask R-CNN by
proposing meta-learning over RoI (Region-of-Interest) features.

Another line of work adopts a two-stage fine-tuning strategy and has
shown great potential recently [18, 122, 152, 162, 172]. [162] propose
to fine-tune only box classifier and box regressor with novel data while
freezing the other paramters of the model. This simple stragetegy out-
performs previous meta-learners. FSCE [152] leverages a contrastive pro-
posal encoding loss to promote instance level intra-class compactness and
inter-class variance. FADI [18] associates each novel category to one base
category and then the network is trained to align the feature distribution
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of the novel category to the associated base category. Guirguis et al [47]
propose a constraint-based finetuning approach (CFA) to alleviate catas-
trophic forgetting, while achieving competitive results without increasing
the model capacity. Fan et al [41] propose a few-shot detector without
forgetting, Retentive R-CNN, which can assist novel class adaptation with
base class knowledge and ensemble base and novel class detectors.

Other data augmentationworks try to increase the variance of the data
for novel categories. Zhang et al [197] introduce a hallucinator network
that learns to generate additional training examples for novel categories.
The features in the RoI head of novel category samples are augmented by
leveraging the shared within-class feature variation from base categories.
Kaul et al [66] show in their experiments that data augmentation, i.e., color
jittering, random cropping, mosaicing, and dropout for the extracted fea-
tures for each RoI, significantly improves the performance.

2.3 Variational Autoencoder

Variational Autoencoder (VAE) can be regarded as a mixture of an encoder
and a decoder Bayesian network. The encoder maps an input data (e.g.,
an image) x to a latent vector z, and then, the decoder maps the latent
vector z back to image or data space. The true posterior distribution p(z|x)
is approximated with another distribution q(zV |X). The Kullback-Leibler
divergence between the true distribution and the approximation is:

KL[q(z|x)||p(z|x)] =

∫

Z

q(z|x)logq(z|x)
p(z|x) . (2.5)

Since the Kullback-Leibler divergence is always greater than or equal to
zero, maximizing the marginal likelihood p(x) is equivalent to maximizing
the evidence lower bound (ELBO) defined as follows:

ELBO = Eq(z|x)[log p(x|z)]−KL (q(z|x)||p(z)) . (2.6)

Different VAE variants have been proposed to generate diverse data
[49, 58, 73, 144]. β-VAE [58] imposes a heavy penalty on the KL diver-
gence term to enhance the disentanglement of the latent dimensions. By
traversing the values of latent variables, β-VAE can generate data with
disentangled variations. ControlVAE [144] improves upon β-VAE by in-
troducing a controller to automatically tune the hyperparameter added in
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the VAE objective. However, disentangled representation learning can not
capture the desired properties without supervision. Some VAE methods
allow explicitly controllable feature generation including CSVAE [73] and
PCVAE [49]. CSVAE [73] learns latent dimensions associated with binary
properties. The learned latent subspace can easily be inspected and inde-
pendently manipulated. PCVAE [49] uses a Bayesian model to inductively
bias the latent representation. Thus, moving along the learned latent di-
mensions can control specific properties of the generated data.

Using a conditional VAE to model a feature distribution has been
used before in many computer vision tasks such as image classification
[69, 140, 181, 194], image generation [36, 95], image restoration [34], or
video processing [118]. Using VAE models for generating features con-
ditioned on the corresponding semantic embedding is fairly common in
zero-shot learning (ZSL) methods[9, 48, 109, 140, 191, 195]. Mishra et
al [109] are the first to propose to use a conditional VAE for ZSL where
they view ZSL as a case of missing data. They find that such an approach
can handle well the domain shift problem. Similarly, Arora et al [5] show
that a conditional VAE can be used together with a GAN system to syn-
thesize images for unseen classes effectively. Keshari et al [67] focus on
generating a specific set of hard samples which are closer to another class
and the decision boundary.

2.4 Zero-shot Learning

Zero-shot learning (ZSL) is also closely related to FSL, which aims to ad-
dress the novel class categorizations without any labeled samples. The
key idea is to learn a mapping function between the semantic and the vi-
sual space on the base classes, then apply the mapping to categorize novel
classes. The semantic spaces in ZSL are typically attribute-based [160],
text description-based [130], and word vector-based [43].

Using VAE models for generating features conditioned on the corre-
sponding semantic embedding is fairly common in ZSL methods[9, 48,
109, 140, 191, 195]. Mishra [109] propose to use a conditional VAE to
learn the underlying probability distribution of the image features condi-
tioned on the class embedding vector. Specifically, the input x and the se-
mantics class embedding vector Ay are concatenated and passed through
an encoder. The encoder generates the probability distribution q(z|x,Ay)
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which is assumed to be an isotropic Gaussian. The sampled z is projected
to the image space to reconstruct the original x by a decoder. Once the
CVAE is properly trained, one can use the decoder part of the model to
generate any number of samples of a particular class using a simple al-
gorithm: Sample z from a standard normal, concatenate Ay , and pass it
through the decoder.

Arora [5] also synthesize exemplars from the unseen classes using a
CVAE-based architecture for ZSL. Moreover, the architecture is further
coupled with a discriminator (a multivariate regressor) that learns a map-
ping from the VAE generator’s output to the class attribute, as shown in
Figure 2.9. This feedback helps to improve the generator by encouraging
it to generate exemplars that are of highly discriminative nature. They
show that such an explicit feedback driven mechanism yields much better
prediction accuracies compared to a vanilla conditional generative model.

Figure 2.9: The architecture for zero-shot set-up proposed by [5]. Each
block represents a feed-forward neural network. The encoder to zn link is
stochastic similar to a VAE. The blue lines direct feedback connection into
regressor and recognition network for the generated Xn. The red-lines
represent the back propagation direction. Image Source: [5].

Keshari et al. [67] further improves CVAE-based FSL performance by
introduing the concept of Over-Complete Distribution (OCD). The objec-
tive of over-complete distributions is to generate challenging samples that
are closer to other classes, which consequently helps in increasing the gen-
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eralizability of the network with respect to the unseen classes. In addition,
they propose to incorporate Online Batch Triplet Loss (OBTL) to enforce
separability between classes and Center Loss (CL) to reduce the spread
within the class. The proposed framework is shown in Figure 2.10. It uses
CVAE with encoder and decoder modules. The output of CVAE is given
to the regressor where regressor maps the generated samples to its respec-
tive attributes. To generate the unseen synthetic data, attributes of unseen
samples and randomly sampled z are provided to the trained decoder.

Figure 2.10: Illustration of the proposed OCD-CVAE framework. The
framework uses CVAE with encoder pE(z|x) and decoder pG(x̂|z,a) mod-
ules. The output of CVAE is given to the regressor pR(â|x̂) where regressor
maps the generated samples to its respective attributes. To generate the
unseen synthetic data, attributes of unseen samples and randomly sam-
pled z are provided to the trained decoder. Image Source: [67].

2.5 Class-agnostic Object Counting

Class-agnostic object counting aims to count arbitrary categories given
only a few exemplars [6, 45, 93, 97, 113, 128, 146, 184, 189]. GMN [97]
uses a shared embedding module to extract feature maps for both query
images and exemplars, which are then concatenated and fed into a match-
ing module to regress the object count. FamNet [128] adopts a similar
way to do correlation matching and further applies test-time adaptation.
These methods require human-annotated exemplars as inputs. Recently,
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Ranjan et al. have proposed RepRPN [127], which achieves exemplar-free
counting by identifying exemplars from the most frequent objects via a
Region Proposal Network (RPN)-based model. However, the class of in-
terest can not be explicitly specified for the RepRPN. In comparison, our
proposed method for class-agnostic object counting 6 can count instances
of a specific class given only the class name.

2.6 Quality Assessment Metrics

Previous metrics for quality assessment can be grouped into two main cat-
egories: model-wise evaluation metrics and instance-wise evaluation met-
rics. Model-wise evaluation metrics measure the performance of different
generative models, while instance-wise evaluation metrics aim to compare
the quality of each individual generated sample.

Prevalent model-wise metrics include Inception Score (IS) [137], Ker-
nel Inception Distance (KID) [12] and Frechèt Inception Distance (FID)
[57]. They quantify the performance of a generative model by measuring
the distribution discrepancy between the generated samples and real sam-
ples in a high-dimensional feature space. Sajjadi et al. [136] propose to fur-
ther disentangle this discrepancy between distributions into two compo-
nents: precision and recall. Precision represents the quality of generated
samples while recall corresponds to the coverage of the real target distri-
bution. Naeem et al. [112] improve upon precision and recall by introduc-
ing density and coverage: density improves upon precision by being more
robust to outliers and coverage improves upon recall by preventing the
overestimation of the latent manifold. Although the above metrics have
demonstrated their effectiveness in assessing generative models, they are
not suitable to measure individual sample quality since they work on a set
of generations.

Unlike model-wise metrics, instance-wise metrics are applied on indi-
vidual generated samples for performance evaluation. They are helpful
for users to select samples from generative models, which might produce
noisy, unrealistic samples with artifacts, especially for underrepresented
cases [82] such as rare categories or extreme object poses. The realism
score [74] measures the perceptual quality of individual samples by es-
timating how close a given fake sample is to the latent manifold of real
samples. Recently, Han et al. have proposed the rarity score [52], which
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measures how rare a synthesized sample is based on the real data distri-
bution. Our proposed method and rarity score share the spirit of esti-
mating the density around the target fake sample on the real manifold.
Nevertheless, rarity score defines this manifold using a pre-trained clas-
sification network, e.g., VGG16, while our method directly leverages the
latent manifold of the generative models themselves. We show that in this
latent manifold, the density correlates with the perceptual quality of the
generated samples.
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Chapter 3

Generating Representative Data
for Few-Shot Classification

3.1 Overview

In this Chapter, we focus on generating reliable data for few-shot image
classification. Few-shot image classification methods aim to learn use-
ful representations with limited training data. They are extremely use-
ful for situations where machine learning solutions are required but large
labelled datasets are not trivial to obtain (e.g. rare medical conditions
[117, 161], rare animal species [167], failure cases in autonomous systems
[102, 103, 133]). Generally, FSL methods learn knowledge from a fixed set
of base classes with a surplus of labelled data and then adapt the learned
model to a set of novel classes for which only a few training examples are
available [164].

Many FSLmethods [24, 69, 96, 150, 150, 179, 192] employ a prototype-
based classifier for its simplicity and good performance. They aim to find
a prototype for each novel class such that it is close to the testing sam-
ples of the same class and far away from testing samples for other classes.
However, it is challenging to estimate a representative prototype just from
a few available support samples [94, 183]. An effective strategy to enhance
the representativeness of the prototype is to employ textual semantic em-
beddings learned via NLP models[31, 108, 120, 123] using large unsu-
pervised text corpora [179, 192]. These semantic embeddings implicitly
associate a class name, such as “Yorkshire Terriers”, with the class repre-
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Figure 3.1: Representative Samples. We refer representative samples to
the “easy-to-recognize” samples that faithfully reflect the key characteris-
tics of the category. We identify those samples and then use them to train
a VAE model for feature generation, conditioned on class-representative
semantic embeddings. We show that the generated data significantly im-
proves few-shot classification performance.

sentative semantic attributes such as “smallest dog” or “long coat” [1] (
Fig. 6.1), providing strong and unbiased priors for category recognition.

For the most part, current FSL methods focus on learning to adaptively
leverage the semantic information to complete the original biased proto-
type estimated from the few available samples. For example, the recent
FSL method of Zhang et al [192] learns to fuse the primitive knowledge
and attribute features into a representative prototype, depending on the
set of given few-shot samples. Similarly, Xing et al [179] propose a method
that computes an adaptive mixture coefficient to combine features from
the visual and textual modalities. However, learning to recover an arbi-
trarily biased prototype is challenging due to the drastic variety of the
possible combinations of few-shot samples.

In this work, we propose a novel method to obtain class-representative
prototypes. Inspired by zero-shot learning (ZSL) methods[9, 48, 195], we
propose to generate visual features via a variational autoencoder (VAE)
model [151] conditioned on the semantic embedding of each class. This
VAE model learns to associate a distribution of features to a conditioned
semantic code. We assume that such association generalizes across the
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base and novel classes [5, 109]. Therefore, the model trained with suf-
ficient data from the base classes can generate novel-class features that
align with the real unseen features. We then use the generated features to-
gether with the few-shot samples to construct class prototypes. We show
that this strategy achieves state-of-the-art results on both miniImageNet
and tieredImageNet datasets. It works exceptionally well for 1-shot sce-
narios where our method outperforms state-of-the-art methods[168, 187]
by 5 ∼ 6% in terms of classification accuracy.

Moreover, to enhance the representativeness of the prototype, we guide
the VAE to generate more representative samples. Here we refer represen-
tative samples to the “easy-to-recognize” samples that faithfully reflect the
key characteristics of the category (see Fig. 3.1). The embeddings of these
representative samples often lie close to their corresponding class centers,
which are particularly useful for constructing class-representative proto-
types.

Specifically, we guide the VAE model to generate representative sam-
ples by selecting only representative data from the base classes for training
it. In essence, our VAE model is trained to model the data distribution of
the training set. As the training set contains only representative data, the
trained VAE model outputs samples that are also representative. Specifi-
cally, to select those representative features, we first assume that the fea-
ture vectors of each class follow a multivariate Gaussian distribution and
estimate this distribution for each base class. Based on these distributions,
we compute the probability of each sample belonging to its correspond-
ing category to measure the representativeness for the sample. We filter
out the non-representative samples and train the VAE using only repre-
sentative samples. Interestingly, we show that the representativeness of
the training set highly corresponds to the accuracy of the few-shot classi-
fier. We obtain the highest accuracy when training the VAE with the most
representative samples. In this case, we only use a small percentage of
the whole training set, e.g., 10% for the case of miniImagenet dataset, to
obtain the best results. Our analyses show that this approach consistently
improves the FSL classification performance by 1 ∼ 2% across all bench-
marks for three different baselines[24, 96, 150].

The main contributions in this Chapter can be summarized as follows:

• We are the first to use a VAE-based feature generation approach con-
ditioned on class semantic embeddings for few-shot classification.
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• We propose a novel sample selection method to collect representa-
tive samples. We use these samples to train a VAE model to obtain
reliable data points for constructing class-representative prototypes.

• Our experiments show that our methods achieve state-of-the-art per-
formance on two challenging datasets, tieredImageNet and mini-
ImageNet.

Feature 

extractor Encoder Decoder

Concatenation

Latent 

code

KL loss

Reconstruction loss

Input 

image

Likelihood 

threshold
deep features

Semantic embedding

Gaussian 

distribution

Figure 3.2: Overview – The key aspect of our approach is to subset our
training set to the most representative samples to train a conditional VAE
model that generates more representative features. (a) To select represen-
tative samples, we assume that the features of each class follow a mul-
tivariate Gaussian distribution. We estimate the distribution parameters
and compute a probability for each data point belonging to the class distri-
bution. We identify a set of representative samples by setting a threshold
on the probability. (b) We train a VAE to generate visual features, condi-
tioned on the semantic embedding of each class. Using only representative
samples (the output of the sample selection step) to train this VAE model
improves the representativeness of the generated samples.

3.2 Proposed Method

3.2.1 Problem Definition

In a typical few-shot classification setting, we are given a set of data-label
pairs D = {(xi , yi)}. Here xi ∈ Rd is the feature vector of a sample and yi ∈ C,
where C denotes the set of classes. The set of classes is divided into base

24



classes Cb and novel classes Cn. The sets of class Cb and Cn are disjoint, i.e.
Cb ∩Cn = ∅. For a N -way K-shot problem, we sample N classes from the
novel set Cn, and K samples are available for each class. K is often small
(i.e., K = 1 or K = 5). Our goal is to classify query samples correctly using
the few samples from the support set.

3.2.2 Overall Pipeline

Fig. 3.2 gives an overview of our sample selection method and VAE train-
ing approach. We propose a method to select a set of representative sam-
ples from a set of base classes. We use these selected representative data
to train a conditional VAE model for feature generation. To select rep-
resentative samples, we assume that the features of each class follow a
multivariate Gaussian distribution. We estimate the parameters for each
class distribution and compute the probability for each data point belong-
ing to its class. By setting a threshold on the probabilities, we identify a
set of representative samples. We then use these selected representative
samples to train a VAE model that generates samples conditioned on the
semantic attributes of each class.

We train this VAE on the base classes and use the trained model to gen-
erate samples for the novel classes. The generated features are then used
together with the few-shot samples to construct the prototype for each
class. Our method is a simple plug-and-play module and can be built on
top of any pretrained feature extractors. In our experiments, we show
that our method consistently improves three baseline few-shot classifica-
tion methods: Meta-Baseline [24], ProtoNet [150] and E3BM [96] by large
margins.

Class-representative Sample Selection

In this work, we are interested in representative samples as they can
serve as reliable data points for constructing a class-representative
prototype[24, 150]. The main idea is to train a feature generator with only
representative data to obtain more representative generated samples.

To select the representative features, we assume that the feature distri-
bution of the base classes follows a Gaussian distribution and estimate the
parameters of this distribution for each class. We calculate the Gaussian
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mean of a base class i as the mean of every single dimension in the vector:

µi =
1

ni

ni
∑

j=1

xj , (3.1)

where xj is a feature vector of the j-th sample from the base class i and ni

is the total number of samples in class i. The covariance matrix Σ
i for the

distribution of class i is calculated as:

Σ
i =

1

ni − 1

ni
∑

j=1

(xj −µi)(xj −µi)T . (3.2)

Once we estimate the parameters of the Gaussian distribution using the
adequate samples from the base classes, the probability density of observ-
ing a single feature, xj , being generated from the Gaussian distribution of
class i is given by:

p(xj |µi ,Σi) =
exp{−12(xj −µi)TΣi

−1
(xj −µi)}

(2π)k/2|Σi |1/2 , (3.3)

where k is the dimension of the feature vector.
Here we assume that the probability of a single sample belongs to its

category’s distribution reflects the representativeness of the sample, i.e.,
the higher the probability, the more representative the sample is. By set-
ting a threshold ϵ on the estimated probability, we filter out those samples
with small probabilities and get a set of representative features for class i:

D
i = {xj | p(xj |µi ,Σi) > ϵ}, (3.4)

whereDi stores the features for class i with the probabilities larger than a
threshold ϵ.

Conditional VAE Model for Feature Generation

We use our sample selection method to select a set of representative sam-
ples and use them for training our feature generation model. We de-
velop our feature generator based on a conditional variational autoen-
coder (VAE) architecture[151] (see Fig. 3.2b). The VAE is composed of
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an Encoder E(x,a), which maps a visual feature x to a latent code z, and a
decoder G(z,a) which reconstructs x from z. Both E and G are conditioned
on the semantic embedding a. The loss function for training the VAE for a
feature xj of class i can be defined as:

LV (x
j ) =KL

(

q(z|xj , ai)||p(z|ai)
)

− logp(xj |z,ai),
(3.5)

where ai is the semantic embedding of class i. The first term is the
Kullback-Leibler divergence between the VAE posterior q(z|x,a) and a
prior distribution p(z|a). The second term is the decoder’s reconstruction
error. q(z|x,a) is modeled as E(x,a) and p(x|z,a) is equal to G(z,a). The
prior distribution is assumed to beN (0, I ) for all classes.

The loss for training the feature generator is the loss over all selected
representative training samples:

LV =

Cb
∑

i=1

∑

x∈Di

LV (x) (3.6)

Constructing Class Prototypes

After the VAE is trained on the base set, we generate a set of features for a
class y by inputting the respective semantic vector ay and a noise vector z
to the decoder G:

G
y = {x̂|x̂ = G(z,ay), z ∼N (0, I )}. (3.7)

The generated features along with the original support set features for a
few-shot task is then served as the training data for a task-specific classi-
fier. Following our baseline methods, we compute the prototype for each
class and apply the nearest neighbour classifier. Specifically, we first com-
pute two separated prototypes: one using the support features and the
other using the generated features. Each prototype is the mean vector of
the features of each group. We then take a weighted sum of the two pro-
totypes to obtain the final prototype py for class y:

py = wg ∗
1

|Gy |
∑

x̂j∈Gy
x̂j +ws ∗

1

|Sy |
∑

xj∈Sy
xj , (3.8)
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Method Backbone miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

Matching Net [159] ResNet-12 65.64 ± 0.20 78.72 ± 0.15 68.50 ± 0.92 80.60 ± 0.71
MAML [42] ResNet-18 64.06 ± 0.18 80.58 ± 0.12 - -
SimpleShot [163] ResNet-18 62.85 ± 0.20 80.02 ± 0.14 69.09 ± 0.22 84.58 ± 0.16
CAN [60] ResNet-12 63.85 ± 0.48 79.44 ± 0.34 69.89 ± 0.51 84.23 ± 0.37
S2M2 [104] ResNet-18 64.06 ± 0.18 80.58 ± 0.12 - -
TADAM [116] ResNet-12 58.50 ± 0.30 76.70 ± 0.30 62.13 ± 0.31 81.92 ± 0.30
AM3 [179] ResNet-12 65.30 ± 0.49 78.10 ± 0.36 69.08 ± 0.47 82.58 ± 0.31
DSN [148] ResNet-12 62.64 ± 0.66 78.83 ± 0.45 66.22 ± 0.75 82.79 ± 0.48
Variational FSL [194] ResNet-12 61.23 ± 0.26 77.69 ± 0.17 - -
MetaOptNet [83] ResNet-12 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53
Robust20-distill [35] ResNet-18 63.06 ± 0.61 80.63 ± 0.42 65.43 ± 0.21 70.44 ± 0.32
FEAT [187] ResNet-12 66.78 ± 0.20 82.05 ± 0.14 70.80 ± 0.23 84.79 ± 0.16
RFS [155] ResNet-12 62.02 ± 0.63 79.64 ± 0.44 69.74 ± 0.72 84.41 ± 0.55
Neg-Cosine [92] ResNet-12 63.85 ± 0.81 81.57 ± 0.56 - -
FRN [168] ResNet-12 66.45 ± 0.19 82.83 ± 0.13 71.16 ± 0.22 86.01 ± 0.15
Meta-Baseline [24] ResNet-12 63.17 ± 0.23 79.26 ± 0.17 68.62 ± 0.27 83.29 ± 0.18
Meta-Baseline + SVAE (Ours) ResNet-12 69.96 ± 0.21 79.92 ± 0.16 73.05 ± 0.24 83.96 ± 0.18
Meta-Baseline + R-SVAE (Ours) ResNet-12 72.79 ± 0.19 80.70 ± 0.16 73.90 ± 0.24 84.17 ± 0.18
ProtoNet [187] ResNet-12 62.39 80.53 68.23 84.03
ProtoNet + SVAE (Ours) ResNet-12 73.01 ± 0.24 83.13 ± 0.40 76.36 ± 0.65 85.65 ± 0.50
ProtoNet + R-SVAE(Ours) ResNet-12 74.84 ± 0.23 83.28 ± 0.40 76.98 ± 0.65 85.77 ± 0.50
E3BM [96] ResNet-12 64.09 ± 0.37 80.29 ± 0.25 71.34 ± 0.41 85.82 ± 0.29
E3BM + SVAE (Ours) ResNet-12 73.07 ± 0.39 80.82 ± 0.31 79.85 ± 0.43 86.82 ± 0.32
E3BM + R-SVAE(Ours) ResNet-12 73.35 ± 0.37 80.95 ± 0.31 80.46 ± 0.43 86.99 ± 0.32

Table 3.1: Comparison to prior works on miniImageNet and
tieredImageNet. Average 5-way 1-shot and 5-way 5-shot accuracy (%)
with 95% confidence intervals. SVAE denotes our method using the VAE
trained with all features in the base set. R-SVAE denotes the one trained
with only representative features. The best performance is highlighted in
bold.

where S
y is the support set features and (wg ,ws) are the coefficients of

the generated feature prototype and the real feature prototype, respec-
tively. We classify samples by finding the nearest class prototype for an
embedding query feature. We conduct further analysis to show that our
generated features can benefit all types of classifiers (see Section 3.4.2).
Compared to the methods that correct the original biased prototype, our
model does not require any carefully designed combination scheme.
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3.3 Experiments

3.3.1 Experimental Settings

Datasets. We evaluate our method on two widely-used benchmarks
for few-shot learning, miniImageNet [159] and tieredImageNet [131].
miniImageNet is a subset of the ILSVRC-12 dataset [30] It contains 100
classes and each class consists of 600 images. The size of each image is 84 ×
84. Following the evaluation protocol of [129], we split the 100 classes into
64 base classes, 16 validation classes, and 20 novel classes for pre-training,
validation, and testing. tieredImageNet is a larger subset of ILSVRC-12
dataset, which contains 608 classes sampled from hierarchical category
structure. The average number of images in each class is 1281. It is first
partitioned into 34 super-categories that are split into 20 classes for train-
ing, 6 classes for validation, and 8 classes for testing. This leads to 351
actual categories for training, 97 for validation, and 160 for testing.

Baseline methods. Our method can be used as a simple plug-and-play
module for many existing few-shot learning methods without fine-tuning
their feature extractors. We investigate three baseline few-shot classifica-
tion methods used in conjunction with our method: ProtoNet [187], Meta-
Baseline [24] and E3BM [96]. ProtoNet is known as a strong and classic
prototypical approach. In our experiments, we use the ProtoNet imple-
mentation of Ye et al [187]. Meta-Baseline [24] uses a ProtoNet model to
fine-tune a generic classifier via meta-learning. E3BM [96] meta-learns
the ensemble of epoch-wise models to achieve robust predictions for FSL.
For each baseline method, we extract the corresponding feature represen-
tations to train our feature generation VAEmodel. We then use the trained
VAE to generate features and obtain the class prototypes for few-shot clas-
sification.

Evaluation protocol. We use the top-1 accuracy as the evaluation met-
ric to measure the performance of our method. We report the accuracy
on standard 5-way 1-shot and 5-shot settings with 15 query samples per
class. We randomly sample 2000 episodes from the test set and report the
mean accuracy with the 95% confidence interval.
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3.3.2 Implementation Details

All the three baselines use ResNet12 backbone as the feature extractor.
The feature representation is extracted by average pooling the final resid-
ual block outputs. The dimension of the feature representation is 640 for
ProtoNet [187], 512 for Meta-Baseline [24], and 640 for E3BM[96]. For our
feature generation model, both the encoder and the decoder are two-layer
fully-connected (FC) networks with 4096 hidden units. LeakyReLU and
ReLU [55] are the nonlinear activation functions in the hidden and output
layers, respectively. The dimensions of the latent space and the semantic
vector are both set to be 512. The network is trained using the Adam op-
timizer with 10−4 learning rate. Our semantic embeddings are extracted
from CLIP [123]. We empirically set the combination weights [wg ,ws] in

Equation 3.8 to [12 ,
1
2 ] for 1-shot settings and to [16 ,

5
6 ] for 5-shot settings.

We set the probability threshold to 0.9 for the main experiments and dis-
cuss the performance under different values of this threshold in Section
3.4.1.

3.3.3 Results

Table 7.1 presents the 5-way 1-shot and 5-way 5-shot classification results
of our methods onminiImageNet and tieredImageNet in comparision with
previous FSL methods. Here all methods use ResNet12/ResNet18 archi-
tectures as feature extractors with input images of size 84 × 84. Thus, the
comparison is fair. For the rest of this chapter, we denote our VAE trained
with all data as SVAE (Semantic-VAE) and the model trained with only
representative data as R-SVAE (Representative-SVAE).

We apply ourmethods on top of theMeta-Baseline [24], ProtoNet[187],
and E3BM[96]. Our methods consistently improve all three baselines un-
der all settings and for all datasets. They work particularly well under the
1-shot settings, in which sample bias is a more pronounced issue. Using
the model trained on all data - SVAE, we report 6.8% ∼ 10% 1-shot accu-
racy improvements for all three baselines. Our 1-shot performance for all
the baselines outperforms the state-of-the-art method [168] by large mar-
gins. In 5-shot, our method consistently brings a 0.5 ∼ 2.7% performance
gains to all baselines.

Using representative samples to train our VAEmodel further improves
the three baseline methods under all settings and for all datasets. Com-
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pared to SVAE, training on strictly representative data improves the 1-
shot classification accuracy by 0.3% ∼ 2.8% and the 5-shot classification
accuracy by 0.2% ∼ 0.8%. R-SVAE achieves state-of-the-art few-shot clas-
sification on miniImageNet dataset with the ProtoNet baseline and on
tieredImageNet dataset with the E3BM baseline.
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Figure 3.3: Few-shot classification results with different probability
thresholds. We report the classification accuracy (%) (red) and the num-
ber of samples (green) when setting different thresholds for the probabil-
ities. A higher threshold means we select samples that are more represen-
tative, resulting in a less amount of training data points. In general, the
classification performance increases when the number of training samples
decreases with increasing representativeness thresholds.

3.4 Analyses

All the following analyses use the feature extractor from the Meta-
Baseline method [24].

3.4.1 Analysis on the Probability Threshold

In our main setting, we set a threshold of 0.9 on the probabilities to se-
lect those class-representative samples as the training data for our VAE
model (the higher, the more representative). In this section, we conduct
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miniImageNet tieredImageNet
Classifier support samples + SVAE + R-SVAE support samples + SVAE +R-SVAE
Prototype [24] 63.17 ± 0.23 69.96 ± 0.21 72.79 ± 0.19 68.62 ± 0.27 73.05 ± 0.24 73.90 ± 0.24
1-N-N 63.28 ± 0.23 67.25 ± 0.20 69.27 ± 0.19 68.73 ± 0.26 68.05 ± 0.25 69.82 ± 0.24
SVM 63.41 ± 0.23 70.30 ± 0.20 72.84 ± 0.19 68.88 ± 0.25 69.26 ± 0.25 71.28 ± 0.24
LR 63.33 ± 0.22 72.11 ± 0.20 73.41 ± 0.19 69.15 ± 0.25 74.99 ± 0.23 75.98 ± 0.23

Table 3.2: Choices of the classifiers. One-shot classification accuracy on
miniImageNet and tieredImageNet using different types of classifiers, i.e.,
1-N-N, SVM and LR. All methods use the feature extractor from the Meta-
Baseline method [24].

experiments with different threshold values to see how it affects the clas-
sifier’s performance. Fig. 3.3 shows the classification accuracy under dif-
ferent thresholds on miniImageNet and tieredImageNet datasets. As the
threshold increases, more non-representative samples are filtered out, re-
sulting in less training data for R-SVAE. Interestingly, we observe that
the model generally performs better with higher threshold values under
both 1-shot and 5-shot settings. For example, under the 1-shot setting on
miniImageNet dataset, we only use 58 images per class on average when
setting the threshold to 0.9. Training the VAE model with this small set
of images improves the performance by 2.95% compared with the model
trained using all data in the base set with 600 images per class on av-
erage. The results suggest that the performance of our method strongly
corresponds to the representativeness of training data. Moreover, it shows
that our sample selection method provides a reliable measurement for the
representativeness of the training samples.

3.4.2 Performance with Different Classifiers

In ourmain experiments, we classify samples by finding the nearest neigh-
bor among class prototypes. In this section, we apply another three dif-
ferent types of classifiers: 1-nearest neighbor classifier (1-N-N), Support
Vector Machine (SVM), and Logistic Regression (LR).

Table 3.2 shows the 1-shot performance of different classifiers using
our generated features on miniImageNet and tieredImageNet datasets. It
shows that the features generated by our VAEs improve the performance
of all three classifiers. For example, the 1-shot accuracy on miniImageNet
using LR is improved by 8.8% with SVAE and by 10.1% with R-SVAE. The
consistent performance improvements show that our generated features
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(a)

Support Features

(b)

Query Features

(c)

Generated Features with SVAE

(d)

Generated Features with R-SVAE

Figure 3.4: Feature Visualization. We show the t-SNE visualization of
the original features (marked as dark points) and our generated features
(marked as transparent points) on tieredImageNet dataset. Different col-
ors represent different classes. From left to right, we show the original
support set (a), the query set (b), the features generated by SVAE (c), and
the features generated by R-SVAE (d).

can benefit different types of classifiers.

3.4.3 Feature Distribution Analysis

In Fig. 3.4, we show the t-SNE representation [101] of different sets of fea-
tures for three classes from the novel set of tieredImageNet dataset. From
left to right, we visualize the distribution of the original support set (a),
the query set (b), the features generated by SVAE (c), and the features gen-
erated by R-SVAE (d). Note that our methods do not rely on the support
features to generate features.

Fig. 3.4(c) and (d) visualize the effect of our sample selection method.
Fig. 3.4(c) visualizes features generated from our method trained with all
available data from the base classes, which consist of 1281 images per class
on average. In Fig. 3.4(d), we train the same model with only 484 repre-
sentative images per class on average. Our model trained with a represen-
tative subset of data generates features that lie closer to the real features,
showing the effectiveness of our sample selection method.

Moreover, we plot the distance distributions between the estimated
prototypes and the ground truth prototypes of each class. Specifically, for
each class, we first obtain the ground-truth prototype by taking the mean
of all the features of the class. Then we calculate the L2 distance between
the ground truth prototype and three different prototypes: 1) Baseline:
the prototype was estimated using only the support samples. 2) SVAE:
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Figure 3.5: Distance Distributions. Kernel Density Estimation of the dis-
tance between the estimated prototypes and the ground truth prototype.
A smaller value means the estimated prototypes are closer to the ground
truth prototypes.

the prototype was estimated using the support samples and the generated
samples from our SVAE model. 3) R-SVAE: the prototype was estimated
using the support samples and the generated samples from our R-SVAE
model.

We sample 2400 tasks from miniImageNet dataset under both 5-way
1-shot and 5-way 5-shot settings. For each task, we obtain five distances,
one distance per class. Then we plot the probability density distribution
of the distance, shown in Fig. 3.5. The probability density is calculated
by binning and counting observations and then smoothing them with a
Gaussian kernel, namely, Kernel Density Estimation [25]. As can be seen
the Fig., our estimated class prototypes are much closer to the ground
truth prototypes, compared to the baseline.

3.4.4 Sample Visualization

In Fig. 3.6, we visualize some representative samples and non-
representative samples based on the representativeness probability com-
puted via our method. The samples on the left panel are images with high
probabilities. These images mostly contain the main object of the category
and are easy to recognize. On the contrary, the samples on the right panel
are those with small probabilities. They contain various class-unrelated
objects and can lead to noisy features for constructing class prototypes.
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Representative Non-representative

Figure 3.6: Examples of representative samples (left) and non-
representative samples (right). We visualize 5 images with high proba-
bilities and 5 images with small probabilities computed via our proposed
method for 3 classes from tieredImageNet dataset.

1-shot 5-shot
Meta-Baseline 63.17 ± 0.23 79.26 ± 0.17
Meta-Baseline + SVAE 67.39 ± 0.21 79.77 ± 0.17
Meta-Baseline + R-SVAE 68.03 ± 0.22 79.93 ± 0.16

Table 3.3: Classification accuracy usingWord2Vec[106] as the semantic
feature extractor.

3.4.5 Performance with Different Semantic Embedding

We use CLIP features in our main experiments. The performance of our
method trained withWord2Vec[106] features are shown in Table 3.3. Note
that CLIP model is trained with 400M pairs (image and its text title) col-
lected from the web while Word2Vec is trained with only text data. Our
model outperforms state-of-the-art methods in both cases.

3.4.6 Using a Deeper Network for the Decoder

The decoder of our proposed VAE plays a vital role in our framework
as it maps the latent space of the VAE and the semantic embedding to
the visual feature embedding space. We use a network with two fully-
connected (FC) layers for the decoder in our main setting. We experiment
with a deeper network where we add an FC layer with 4096 hidden units
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and a LeakyReLU [55] layer to the decoder. Table 3.4 summarizes the re-
sults. Using a deeper network degrades the performance of our model
under both 1-shot and 5-shot settings for both miniImageNet [159] and
tieredImageNet [131].

miniImageNet tieredImageNet
Decoder 1-shot 5-shot 1-shot 5-shot
2-FC Layers (Main paper) 72.79 ± 0.19 80.70 ± 0.16 74.21 ± 0.24 84.17 ± 0.18
3-FC Layers 71.68 ± 0.20 80.32 ± 0.16 73.84 ± 0.24 84.05 ± 0.25

Table 3.4: Few-shot classification performance of our method using dif-
ferent network architecture for the decoder. In our main setting, we use
as our decoder a network with two fully-connected (FC) layers. “3-FC Lay-
ers” denotes the setting where we add an FC layer with 4096 hidden units
and a LeakyReLU layer to the decoder. The performance degrades for both
1-shot and 5-shot settings with a deeper network.

3.4.7 Performance on CIFAR-FS and FC-100

In Table 3.5, we provide the performance of our method on two additional
FSL datasets - CIFAR-FS and FC-100. On these both datasets, our method
improves the Meta-Baseline method by large margins.

Dataset 1-shot 5-shot
Meta-Baseline 64.96 ± 0.51 75.85 ± 0.40
Meta-Baseline + SVAE CIFAR-FS 72.07 ± 0.45 77.18 ± 0.39
Meta-Baseline + R-SVAE 73.25 ± 0.44 78.89 ± 0.37
Meta-Baseline 41.31 ± 0.42 51.84 ± 0.40
Meta-Baseline + SVAE FC-100 45.65 ± 0.40 54.37 ± 0.40
Meta-Baseline + R-SVAE 45.75 ± 0.40 54.44 ± 0.40

Table 3.5: 1-shot and 5-shot classification accuracy on CIFAR-FS and FC-
100.

3.5 Limitations and Discussion

We propose a feature generation method using a conditional VAE model.
Here we focus on modeling the distribution of the representative samples
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rather than the whole data distribution. To accomplish that, we propose a
sample selection method to collect a set of strictly representative training
samples for training our VAEmodel. We show that ourmethod brings con-
sistent performance improvements over multiple baselines and achieves
state-of-the-art performance on both miniImageNet and tieredImageNet
datasets. Our method requires a pre-trained NLP model to obtain the
semantic embedding of each class. It might also inherit some potential
biases from the textual domain. Note that our method does not aim to
generate diverse data with large intra-class variance [91, 181]. Building a
system that can generate both representative and non-representative sam-
ples can greatly benefit various downstream computer vision tasks and is
an interesting direction to extend our work.
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Chapter 4

Generating Diverse Intra-Class
Variance for Fine-Grained
Few-Shot Classification

4.1 Overview

In this Chapter, we focus on generating diverse data with diverse intra-
class variance for fine-grained few-shot classification. Fine-grained few-
shot learning is a more challenging task compared with general few-shot
classification task since fine-grained visual data are hard to collect and
costly to annotate [68, 158, 167]. Fine-grained datasets often become quite
long-tailed and lead to classifiers overfitting to the abundant classes when
trained in vanilla settings. Fine-grained few-shot learning methods alle-
viate this problem since they learn discriminative class features, among
visually similar classes, using as few as 5 or 1 training instances.

Augmenting the few-shot classes by generating additional data is a
straightforward way to mitigate issues of overfitting in FSL. Neverthe-
less, generating diverse data reliably remains an open question [75, 147].
The generated samples should contain the class-discriminative features
while exhibiting high intra-class diversity. A typical data synthesis
approach is generating new samples based on adversarial frameworks
[4, 44, 76, 77, 79, 85, 156, 196]. However, these methods suffer from a
lack of diversity in the generated samples as adversarial training often
mode-collapses. Another approach is the feature transfer that transfers
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Delta-
encoder

Ours

Figure 4.1: Nearest “real sample” neighbors of the augmented exam-
ples. We train data augmentation methods using the base classes and
search for the nearest-neighbors of the generated samples in the novel
classes of the CUB dataset. The input images are shown in the first col-
umn. Each row shows the nearest neighbors of some augmented features
computed from: ∆-encoder [141] (1st and 2nd rows) and our method (3rd
and 4th rows). Green borders indicate that the images have the same class
as the input image and red borders indicate otherwise.

the intra-class variance from the base classes, which have many training
samples, to augment features for the novel classes, in which only few sam-
ples are available [53, 141, 188]. These methods are based on a common
assumption that intra-class variations induced by poses, backgrounds, or
illumination conditions are shared across categories. The intra-class vari-
ations are either modelled as low-level statistics [188] or pairwise vari-
ations [53, 141] and are applied directly on the novel samples. In this
work, we discuss two potential issues with these approaches. First, these
transformations can introduce certain class-discriminative features that
could alter the class-identity of the transformed features. For example,
only 8.7% of the augmented features using the ∆-encoder[141] have their
nearest “real sample” neighbors belong to the same classes as the original
samples (see Fig. 4.1). Second, the extracted variations might not be rele-
vant to a specific novel sample, i.e., some bird species would never appear
in sea backgrounds. Applying irrelevant variations would result in noisy
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or meaningless samples and degrade classification results (see Sec. 4.4.1).
These two issues are more pronounced for fine-grained classification since
a small change in feature space might change the category of the feature
due to the small inter-class distances.

We address these issues in this work via a novel data augmentation
framework. First, we disentangle each feature into two components: one
that captures the intra-class variance, which we refer as intra-class vari-
ance features, and the other that encodes the class-discriminative features.
Second, we model intra-class variance via a common distribution from
which we can easily sample the new intra-class variations that are rele-
vant for diversifying a specific instance. We show that both the feature
disentanglement and the distribution of intra-class variability can be ap-
proximated using data from the base classes and it generalizes well to the
novel classes. The two key supervision signals that drive the training of
our framework are: 1) A classification loss that ensures that the class-
discriminative features contain class specific information, 2) A Variational
Auto-Encoder (VAE) [72] system that explicitly models intra-class vari-
ance via an isotropic Gaussian distribution. Our method works especially
well for fine-grained datasets where the intra-class variations are simi-
lar across classes, achieving state-of-the-art few-shot classification perfor-
mances on the CUB[167], NAB[158], and Stanford Dogs[68] datasets, out-
performing previous methods [83, 141] by a large margin. We show in
our analyses that the data generated by our method lies closely to the real-
and-unseen features of the same class and can closely approximate the
distribution of the real data.

To sum up, our contributions are:

1. We are the first to propose a VAE-based feature disentanglement
method for fine-grained FSL.

2. We show that we can train such a system using sufficient data from
the base classes. We can sample from the learnt distribution to ob-
tain relevant variations to diversify novel training instances in a re-
liable manner.

3. Our method outperforms state-of-the-art FSL methods in multiple
fine-grained datasets by a large margin.
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4.2 Proposed Method

4.2.1 Few-shot Learning Preliminaries

In FSL, abundant labeled images of base classes and a small number of
labeled images of novel classes are given. Our goal is to train a classifier
that can correctly classify novel class images with the few given examples.
The standard FSL procedure includes a training stage and a fine-tuning
stage. During the training stage, we use base class images to train a feature
extractor and the classifier. Then in the fine-tuning stage, we freeze the
parameters of the pre-trained feature extractor and train a new classifier
head using the few labeled examples in the novel classes . In the testing
stage, the learned classifier predicts labels on a set of unseen novel class
images.

Since the available samples during the fine-tuning stage are scarce and
lack diversity, the learned classifier tends to overfit to the few samples and
thus performs poorly on the test images. To address this, we augment the
training samples with our proposed data augmentation method, which
significantly improves the performance of the baseline.

4.2.2 Overall Pipeline

Our goal is to generate additional features of the few novel class images
which contain larger intra-class variance. Fig. 4.2 illustrates the pipeline
of our proposed method. We decompose the feature representation of
an input image into two components, the class-specifc feature zI and the
intra-class variance feature zV . zV is constrained to follow a prior dis-
tribution. Then we repeatedly sample new intra-class variance features
z̃V from the distribution and add them to the class-specific feature zI to
get augmented features. The augmented features are used together with
the original features to train the final classifier. In the following sections,
we will describe how we model the distribution of intra-class variability
via variational inference and how we use it to diversify samples from the
novel set.
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Figure 4.2: The pipeline of our proposed method. The input image is
mapped into the image feature maps X. We input X into an Encoder to ob-
tain the mean and variance of the intra-class variability distribution that
are used to sample the intra-class variance feature zV . The class-specific
feature zI is obtained by max-pooling X. zV is forced to follow an isotropic
multivariate Gaussian distribution. Both zI and the combined features are
used to train a classifier. We sample from the learned distribution repeat-
edly to get multiple zV and add them to the class-specific feature zI to get
the augmented features. These augmented features are used together with
the original ones to train a more robust classifier.

4.2.3 Variational Inference for Intra-class Variance

Given an input image (i), we first use a feature extractor to map it into

a feature map X(i). We then compute the intra-class variance feature z
(i)
V

and the class-specific feature z
(i)
I from X(i) such that the embedding of the

input image, z(i), can be expressed as:

z(i) = z
(i)
I + z

(i)
V . (4.1)

Here we assume that the intra-class variance feature is generated from
some conditional distribution p(zV ) and the feature map X(i) is generated
from some conditional distribution p(X |z).

The class-specific feature z
(i)
I can be learned by minimizing the cross-

entropy loss given the class label y(i):

Lcls(X
(i)) = Lcross−entropy

(

W (z
(i)
I ), y(i)

)

(4.2)
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whereW is a classifier with a single fully connected layer.
We use variational inference to model the posterior distribution of the

variable zV . Specifically, we approximate the true posterior distribution
p(zV |X) with another distribution q(zV |X). The Kullback-Leibler diver-
gence between the true distribution and the approximation is:

KL[q(zV |X)||p(zV |X)] =

∫

Z

q(Z |X)logq(Z |X)
p(Z |X) . (4.3)

Since the Kullback-Leibler divergence is always greater than or equal
to zero, maximizing the marginal likelihood p(X(i)) is equivalent to maxi-
mizing the evidence lower bound (ELBO) defined as follows:

ELBO(i) = E
q(z

(i)
V |X (i))

[log p(X(i)|z(i)V )]

−KL
(

q(z
(i)
V |X(i))||p(zV )

)

.
(4.4)

Prior work [91, 188, 194] has shown that the distribution of intra-class
variability can be modelled with a Gaussian distribution. Here we set the
prior distribution of zV to be a centered isotropic multivariate Gaussian:
p(zV ) =N (0, I ). For the posterior distribution, we set it to be amultivariate
Gaussian with diagonal covariance:

q(z
(i)
V |X(i)) =N (µ(i),σ (i)), (4.5)

where µ(i) and σ (i) are computed by a probablistic encoder. With the repa-

rameterization trick, we obtain z
(i)
V as follows:

z
(i)
V = µ(i) +σ (i) ∗ ϵ,ϵ ∼N (0, I ). (4.6)

Since z
(i)
I is deterministic given X(i), we have p(X(i)|z(i)V ) =

p(X(i)|z(i)V , z
(i)
I ) = p(X(i)|z(i)). To estimate the maximum likelihood

p(X(i)|z(i)), we use a decoder to reconstruct the original feature map from
z(i) and minimize the L2 distance between the original feature map and
the reconstructed one.

From Eq. 4.4, we now derive the loss function for the modeling of
intra-class variance:

Lintra(X
(i)) = ∥X(i) − X̂(i)∥2 +KL

(

q(z
(i)
V |X(i))||p(zV )

)

, (4.7)
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where X̂(i) is the reconstructed feature map synthesized from the sum of

class-specific feature z
(i)
I and intra-class variance feature z

(i)
V sampled from

the distributionN (µ(i),σ (i)).
The Lintra loss includes two terms. The first term is the reconstruction

term, which ensures that the encoder extracts meaningful information
from the inputs. The second term is a regularization term, which forces

the latent code, z
(i)
V , to follow a standard normal distribution. Here, in-

stead of minimizing the Kullback-Leibler divergence directly, we decom-
pose it into three terms as in [21]:

KL[q(zV |X)||p(zV )] = KL (q(zV ,X)||q(zV )p(X))+
KL(q(zV )||

∏

j

q(zVj )) +
∑

j

KL(q(zVj )||p(zVj )), (4.8)

where zVj denotes the j-th dimension of the latent variable.

The three terms in Eq. 4.8 are referred to as the index-code mutual in-
formation, total correlation, and dimension-wise KL respectively. Prior work
[3, 17, 21] has shown that penalizing the index-code mutual information
and total correlation terms leads to a more disentangled representation
while the dimension-wise KL term ensures that the latent variables do not
deviate too far form the prior. Similar to [21], we penalize the total corre-
lation with a weight α and rewrite Lintra as follows:

Lintra(X
(i)) = ∥X(i) − X̂(i)∥2 +KL

(

q(z
(i)
V ,X

(i))||q(z(i)V )p(X)
)

+

α∗KL
















q(z
(i)
V )||

∏

j

q(z
(i)
Vj
)

















+
∑

j

KL
(

q(z
(i)
Vj
)||p(zVj )

)

.
(4.9)

The combination of Lcls and Lintra drives the model to extract discrimi-

native class-specific features z
(i)
I and model the distribution of intra-class

variability simultaneously.

4.2.4 Objective Function

Given the distribution of intra-class variability, we can generate additional
samples for the base classes during the training stage. For input image (i)
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with extracted class-specific feature z
(i)
I and intra-class variability mean

and variance µ(i) and σ (i) respectively, we sample new intra-class vari-

ance features, z̃
(i)
V , for this image from the distribution N (µ(i),σ (i)) and

add them to z
(i)
I to obtain the augmented features z̃(i) = z

(i)
I + z̃

(i)
V . We use

these features to train our system using the following cross-entropy loss:

Laug (X
(i)) = Lcross−entropy

(

W (z̃(i)), y(i)
)

. (4.10)

The overall loss function in the training stage is a weighted combina-
tion of the aforementioned terms:

L = Lcls +Lintra + β ∗Laug , (4.11)

where β is the coefficient of Laug .

4.2.5 Diversifying Samples for Few-Shot Classes

In this section, we discuss how to use our model to diversify samples
for few-shot classes. Our intra-class variance is modelled by an isotropic
Gaussian distribution. Sampling from this distribution would result in an
arbitrary intra-class variance feature. However, we conjecture that such
an arbitrary feature may not be relevant for all instances, i.e., some birds
never appear with a background of the sea. Note that here as all intra-
class variations are mapped into a common continuous embedding space
via variational inference and closely related or similar intra-class varia-
tions likely form local neighborhoods in the embedding space. Thus, in-
stead of sampling from the zero-mean and unit-variance distribution, we
only sample from the mean and variance estimated directly from the con-
ditional sample to obtain the likely relevant intra-class variations to this
sample.

Specifically, given an image of novel class (i)* with class label y(i)∗, we

first extract the feature map X(i)∗, the class-specific feature z
(i)∗
I , and the

mean and variance of the intra-class variability distribution µ(i)∗ and σ (i)∗

for this instance. We then generate additional features by adding the class-

specific features z
(i)∗
I with a biased term sampled from the distribution of

intra-class variability.

z̃(i)∗ = z(i)∗I + z̃
(i)∗
V , z̃

(i)∗
V ∼N (µ(i)∗,σ (i)∗), (4.12)
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where z̃(i)∗ is the augmented feature and z̃
(i)∗
V is sampled from the poste-

rior distribution N
(

µ(i)∗,σ (i)∗
)

. By sampling from N
(

µ(i)∗,σ (i)∗
)

multiple

times, we get multiple augmented features z̃(i)∗ that can be used to train
the classifier. In Sec. 4.4.1, we verify the effectiveness of this sampling
scheme.

4.3 Experiments

4.3.1 Datasets

We evaluate our method on three fine-grained image classification
datasets: Caltech UCSD Birds (CUB) [167], North America Birds (NAB)
[158] and Stanford Dogs [68]. The CUB dataset contains 11,788 bird im-
ages from 200 bird species in total. Following the setup introduced in
[167], we sample the base classes from the 100 classes provided for train-
ing, and sample the novel set from the 50 classes provided for testing.
The NAB dataset contains 48,527 bird images with 555 classes, which is
four times larger than CUB. Similar to [156], we adopt a 2:1:1 training,
validation and test set split. The Stanford Dogs dataset is a subset of the
Imagenet dataset designed for fine-grained image classification with 90
categories for training and validation and 30 testing categories.

4.3.2 Implementation Details

We conduct experiments with two architectures of our feature extractor:
ResNet12 and Conv4 for fair comparisons with other methods using simi-
lar architectures. ResNet12 [56] contains 4 Residual blocks. Each residual
block is composed of 3 conv layers with 3 × 3 kernels. A 2 × 2 max-pooling
layer is applied at the end of each residual block. Conv4 consists of 4 lay-
ers with 3 × 3 convolutions and 32 filters, followed by batch normalization
(BN) , a ReLU nonlinearity, and 2 × 2 max-pooling.

The class-specific features are calculated by average-pooling the out-
put of the feature extractor. The encoder consists of three conv blocks
followed by two fully-connected heads that output the µ and logσ2 re-
spectively. The decoder consists of a fully connected layer followed by
three Convolutional blocks.

46



Method CUB NAB Stanford Dogs
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Baseline [23] 63.90 ± 0.88 82.54 ± 0.54 70.36 ± 0.89 87.91 ± 0.49 63.53 ± 0.89 79.95 ± 0.59
Baseline++ [23] 68.46 ± 0.85 81.02 ± 0.46 76.00 ± 0.85 90.99 ± 0.41 58.30 ± 0.35 73.77 ± 0.68
MAML [42] 71.11 ± 1.00 82.08 ± 0.72 80.08 ± 0.93 88.87 ± 0.54 66.56 ± 0.66 79.32 ± 0.35
MatchingNet [159] 72.62 ± 0.90 84.14 ± 0.50 73.91 ± 0.72 88.17 ± 0.45 65.87 ± 0.81 80.70 ± 0.42
ProtoNet [150] 71.57 ± 0.89 86.37 ± 0.49 73.60 ± 0.83 89.72 ± 0.41 65.02 ±0.92 83.69 ± 0.48
RelationNet [154] 70.20 ± 0.84 84.28 ± 0.46 67.41 ± 0.82 85.47 ± 0.43 59.38 ± 0.79 79.10 ± 0.37
MTL [153] 73.31 ± 0.92 82.29 ± 0.51 78.69 ± 0.78 87.74 ± 0.34 54.96 ± 1.03 68.76 ± 0.65
∆-encoder [141] 73.91 ± 0.87 85.60 ± 0.62 79.42 ± 0.77 92.32 ± 0.59 68.59 ± 0.53 78.60 ± 0.78
MetaOptNet [83] 75.15 ± 0.46 87.09 ± 0.30 84.56 ± 0.46 93.31 ± 0.22 65.48 ± 0.49 79.39 ± 0.25
Ours 79.12 ± 0.83 91.48 ± 0.39 88.62 ± 0.73 95.22 ± 0.32 76.24 ± 0.87 88.00 ± 0.47

Table 4.1: Few-shot classification accuracy on the CUB [167], NAB [158],
and Stanford Dogs [68] dataset. All experiments are from 5-way classifi-
cation with the same backbone network (ResNet12). The best performance
is indicated in bold.

Training policies. The whole network is trained from scratch in an
end-to-end manner. In the training stage, we use the Adam optimizer [70]
on all datasets with initial learning rate 0.001 . We train our model for 100
epochs in total with a batch size of 16 and reduce the learning rate by 0.1
at the 40-th and 80-th epochs. We empirically set α = 4 in Eq. 4.9 and β =
1 in Eq.4.11.

We follow a standard few-shot evaluation scheme. In the fine-tuning
stage, we select 5 classes from the novel classes randomly. For each class,
we pick k instances as the support set and 16 instances for the query set
for a k-shot task. The extracted features of all support set images along
with the augmented features are used to train a linear classifier for 100
iterations with a batch size of 4. For each feature extracted from a support
image, we obtain five augmented features. The final results are averaged
over 600 experiments. For data augmentation, we adopt random crop-
ping, horizontal flipping and color jittering as in [23]. The final size of the
input images is 84× 84 .

4.3.3 Results

Tab. 4.1 summarizes the 5-way classification accuracy of various methods
using ResNet12 backbones. The results are obtained using the publicly
available code of each method. Our proposed method outperforms the
previous methods by a large margin for both 1-shot and 5-shot settings on
all three datasets. Compared with the ∆-encoder [141], another data aug-
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Method CUB Stanford Dogs
1-shot 5-shot 1-shot 5-shot

MatchingNet [159] 45.30 ± 1.03 59.50 ± 1.01 35.80 ± 0.99 47.50 ± 1.03
ProtoNet [150] 37.36 ± 1.00 45.28 ± 1.03 37.59 ±1.00 48.19 ± 1.03
RelationNet [154] 58.99 ± 0.52 71.20 ± 0.40 43.29 ± 0.46 55.15 ± 0.39
MAML [42] 58.13 ± 0.36 71.51 ± 0.30 44.84 ± 0.31 58.61 ± 0.30
adaCNN [111] 56.76 ± 0.50 61.05 ± 0.44 42.16 ± 0.43 54.12 ± 0.39
CovaMNet [98] 52.42 ± 0.76 63.76 ± 0.64 49.10 ± 0.76 63.04 ± 0.65
DN4 [86] 53.15 ± 0.84 81.90 ± 0.60 45.73 ± 0.76 61.51 ± 0.85
LRPABN [61] 63.63 ± 0.77 76.06 ± 0.58 45.72 ± 0.75 60.94 ± 0.66
MattML [203] 66.29 ± 0.56 80.34 ± 0.30 54.84 ± 0.53 71.34 ± 0.38
Ours 68.42 ± 0.92 82.42 ± 0.61 57.03 ± 0.86 73.00 ± 0.66

Table 4.2: Few-shot classification accuracy on the CUB [167] and Stanford
Dogs [68] dataset. All experiments are from 5-way classification with the
same backbone network (Conv4). The best performance is indicated in
bold.

mentation based method, our proposed method achieves 7.40%, 9.20%
and 7.65% performance gain for the 1-shot setting and 5.88%, 2.90% and
9.40% performance gain for the 5-shot setting on the three datasets re-
spectively. It can be seen that our improvement in the 1-shot setting is
more pronounced than in the 5-shot setting since the 1-shot setting is a
more extreme case of data scarcity, in which augmenting the training data
tends to be more useful.

We compare with methods using Conv4 architectures as the backbone
networks in Tab. 4.2. Here the majority of methods only report their
results on the CUB and Stanford Dogs datasets. Our proposed method
achieves state-of-the-art performance for both the 1-shot and 5-shot set-
tings. Especially for the 1-shot setting, our method obtains 2.12% per-
formance gain for the CUB and 2.19% gain for the Stanford Dogs over
MattML [203], a newly proposed method that is aimed specifically at fine-
grained few-shot visual recognition.

Our method also achieves competitive few-shot classification perfor-
mances on non fine-grained datasets such as CIFAR-FS[11] and mini-
ImageNet[129, 159].
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Figure 4.3: Analysis on the generated intra-class variations. We augment
samples with the intra-class variance features sampled from the estimated
mean and variance (green lines) or from the zero-mean and unit-variance
(red lines). Our sampling scheme generates features that consistently im-
prove classification.

4.4 Analyses

In this section, we provide additional experiments to clarify different as-
pects of our methods.

4.4.1 Analysis on the Generated Intra-class Variations

We conduct a simple experiment to verify the effectiveness of our
sampling method (Sec.4.2.5). Instead of sampling from the instance-
conditionedmean and variance, we sample the intra-class variance feature
from the zero-mean and unit-variance distribution.

Fig. 4.3 summarizes the results of this experiment for 5-way 1-shot
classification on the CUB and NAB dataset. As can be seen, intra-class
variance features sampled from zero-mean and unit-variance do not im-
prove the results (red lines). In contrast, our method of sampling from the
instance-conditioned posterior distribution generates features that con-
sistently improve classification performance as the number of augmented
samples increases.
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4.4.2 Comparison to Other Augmentation Methods

We compare our method with two other data augmentation based FSL
methods: MetaIRNet[156] and ∆-encoder[141]. MetaIRNet uses a pre-
trained image generator to synthesize additional images and combine
them with the original images to form additional training samples. The
∆-encoder learns to synthesize transferable non-linear deformations be-
tween pairs of examples of seen classes and apply these deformations to
the few provided samples of novel categories.

We use the additional samples synthesized by both of these methods to
train three types of classifiers: K-nearest neighbors (KNN), Support Vec-
tor Machine (SVM), and Logistic Regression (LR), which are then used to
classify novel images. The comparisons between these methods and our
method are shown in Tab. 4.3. The superior performance of our method
demonstrates that the augmented features obtained by our framework is
beneficial for various types of classifiers. Note that for MetaIRNet [156],
the results in Tab. 4.3 are lower than their numbers reported in the origi-
nal paper since they pre-trained the backbone network on ImageNet while
here all methods are trained from scratch.

Method KNN SVM LR
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MetaIRNet [156] 63.18 74.82 63.76 76.77 63.53 79.95
∆-Encoder [141] 67.31 82.67 76.02 82.87 76.22 85.17
Ours 75.46 83.17 79.07 87.59 78.34 89.30

Table 4.3: Analysis of different classifiers. Few-shot classification accu-
racy on the CUB [167] dataset in 1-shot and 5-shot settings with different
types of classifiers.

In Tab. 4.4, we directly compare our method withthe ∆-encoder us-
ing K-NN classifiers (K=1). Interestingly, it can be seen that the aug-
mented features generated using the delta-encoder decrease classification
performance. In fact, we observe that the majority (91.3%) of the nearest
neighbors of the∆-encoder’s generated features belong to different classes,
suggesting that the pairwise transformations extracted from this method
might alter the class-identities of the transformed features. On the other
hand, our generated features preserve well the class identity and mildly
improve the classification results.
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Method ∆-Encoder Ours
w/o Aug w/ Aug w/o Aug w/ Aug

5-way 69.37 67.31 74.95 75.46
10-way 58.69 52.19 62.05 63.17
20-way 48.10 38.84 50.19 50.72

Table 4.4: Effect of augmented features on 1NN classifier. Few-shot clas-
sification accuracy on the CUB [167] dataset using 1NN classifier with
original features vs augmented features. The original features of the ∆-
Encoder are from a pre-trained ResNet18 network.

Intra-class distribution model CUB NAB
1-shot 5-shot 1-shot 5-shot

Gaussian Mixture Model [33] 75.16 86.46 86.49 94.72
Covariance Matrix [188] 75.28 87.84 84.71 94.19
No disentanglement [194] 73.40 86.60 81.83 92.83
Isotropic Gaussian (Proposed) 79.12 91.48 88.62 95.22

Table 4.5: Few-shot classification accuracy on the CUB [167] and NAB
[158] dataset in 1-shot and 5-shot setting with different methods to model
intra-class variance.

4.4.3 Comparison to Other Intra-class Variance Modeling
Methods

We assume that the intra-class variance can be modelled with an isotropic
multivariate Gaussian distribution in a latent space. In this section, we
compare this method with other methods that model the intra-class vari-
ance including Gaussian mixture variational autoencoder (GMVAE) [33],
covariance matrix [188], and a baseline model where we do not disentan-
gle intra-class variance features from class-discriminative features.

Tab. 4.5 summarizes the results. The first row shows the results for
GMVAE. This method enforces that the latent space is divided into distinct
clusters for different classes. However, for this model, the accuracy drops
by 6.15% and 2.13% for the 1-shot setting and 5.02% and 0.50% for the 5-
shot setting on the CUB and NAB datasets respectively. The results align
with our assumption that the intra-class variance is shared across different
classes. Thus, enforcing a multi-modal prior distribution would lead to
performance degradation.

The second row shows the results for the method proposed in [188]
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∆

Figure 4.4: Distance Distributions. Kernel Density Estimation of the dis-
tance between the estimated prototypes and the ground truth prototype.
A smaller value means the estimated prototypes are closer to the ground
truth prototypes.

based on covariance matrices. Specifically, this method assumes a Gaus-
sian prior on the distribution of intra-class variability across different
classes which can be transferred from the base classes to the rare classes.
However, instead of modelling the distribution by variational inference,
[188] uses a covariance matrix to estimate the feature variance distribu-
tion.Here we apply this method on our extracted features to generate ad-
ditional features on the CUB and NAB datasets under both 1-shot and
5-shot settings. Compared with the non-parametric estimate of the Gaus-
sian distribution, modelling intra-class variance via variational inference
in an end-to-end manner brings 6.03% and 1.91% improvement for the
1-shot setting and 3.64% and 1.03% improvement for the 5-shot setting
on the CUB and NAB dataset respectively. Last, we provide the results for
our method without feature disentanglement, denoted as “No disentan-
glement” in the third row. In spirit, this model is similar to [194] which
models each point as a distribution via variational inference. Given a new
sample, we augment it via sampling repeatedly from the estimated mean
and variance. Without feature disentanglement and explicit modelling of
the intra-class variance, this model does not achieve comparable results
compared to other methods.

4.4.4 Data Distribution Analysis

We compare the data distributions between the real data and the gener-
ated data from our method in comparison to other state-of-the-art data
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generation methods [141, 188]. Here we measure the average intra-class
variance, the distances between classes (inter-class distances), and the data
clusterability via the Davies–Bouldin index (DBI) [28]. Specifically, the
DBI for a cluster i is calculated by:

DBIi =max
i,j

Intra(i) + Intra(j)

Inter(i,j)
(4.13)

where Intra(i) is the intra-class variance of cluster i, calculated by taking
the average of squared deviations from the class center. Inter(i,j) is the
distance between the two class centers of clusters i and j . The lower the
value of the DBI, the better the separation between the clusters and the
“tightness” inside the clusters.

Dintra Dinter DBI
Support data (5 samples) 21.52 32.77 2.21
All data 28.97 35.89 3.02
Covariance matrix [188] 17.98 35.24 1.79
Encoder-based Model [141] 10.34 11.69 1.77
Ours 27.27 34.12 2.53

Table 4.6: Data Distribution analysis for different sets of features. We
augment features using our method and other data generation method
based on covariance matrices [188] or the ∆-encoder [141]. All methods
augment features from the support set (first row).

Tab. 4.6 shows the average values of the intra-class variance, inter-class
distances, and the DBI (denoted as Dintra, Dinter , and DBI respectively)
across all novel classes of the CUB dataset. The inter-class distances are
averaged across all pairs of classes. As shown in the table, features from
the support set exhibit smaller intra-class variance compared to features
from all data. All methods augment features from the support set. In-
terestingly, both sets of generated features using the method proposed in
[188] and the ∆-encoder[141] decrease intra-class variance. On the other
hand, the set of features augmented by our method closely approximate
the data distribution of the set of all real features.

Fig. 4.4 demonstrates how real samples and generated samples from
our method are distributed in a 2D space in comparison with the ∆-
encoder [141] using t-SNE [101]. The original features are marked as light
colors while the augmented features are marked as dark colors. Different
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colors denote different classes. The visualization for the base classes with
the augmented features from our method is shown in Fig. 4.4a. Fig. 4.4b
visualizes the real features and the generated features of our method for
the novel classes. Our method generates samples that follow closely the
real samples. The visualization for the novel classes and the generated
features from the ∆-encoder is shown in Fig. 4.4c. As can be seen, the
generated data from each novel class forms into a new cluster and does
not lie close to the actual data points.

4.5 Conclusion

We have proposed a simple, yet effective, feature augmentation method
via feature disentanglement and variational inference to address the data
scarcity problem in few-shot fine-grained classification. The generated
features enlarge the intra-class variance for novel set images while pre-
serving the class-discriminative features. The consistent performance im-
provement with the increase of the number of augmented samples sug-
gests that the learned features are meaningful and nontrivial. The higher
accuracy compared with other data augmentation based methods further
demonstrate the superiority of our method. While this work mainly fo-
cuses on few-shot recognition problems, a promising future direction is to
apply the feature transfer idea to other data-scarce or label-scarce tasks.
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Chapter 5

Generating Data with Increased
Crop-Related Diversity for
Few-Shot Object Detection

5.1 Overview

In this Chapter, we focus on generating data with increased diversity for
few-shot object detection. Object detection plays a vital role in many com-
puter vision systems. However, training a robust object detector often
requires a large amount of training data with accurate bounding box an-
notations. Thus, there has been increasing attention on few-shot object
detection (FSOD), which learns to detect novel object categories from just
a few annotated training samples. It is particularly useful for problems
where annotated data can be hard and costly to obtain such as raremedical
conditions [117, 161], rare animal species [167], satellite images [14, 80],
or failure cases in autonomous driving systems [102, 103, 133].

For the most part, state-of-the-art FSOD methods are built on top of
a two-stage framework [132], which includes a region proposal network
that generates multiple image crops from the input image and a classifier
that labels these proposals. While the region proposal network generalizes
well to novel classes, the classifier is more error-prone due to the lack of
training data diversity [152]. To mitigate this issue, a natural approach is
to generate additional features for novel classes [54, 197, 202]. For exam-
ple, Zhang et al [197] propose a feature hallucination network to use the
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variation from base classes to diversify training data for novel classes. For
zero-shot detection (ZSD), Zhu et al [202] propose to synthesize visual fea-
tures for unseen objects based on a conditional variational auto-encoder.
Although much progress has been made, the lack of data diversity is still
a challenging issue for FSOD methods.
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(a) DeFRCN [122] (b) Ours

Figure 5.1: Robustness to different object crops of the same object in-
stance. (a) The classifier head of the state-of-the-art FSOD method [122]
classifies correctly a simple crop of the bird but misclassifies a hard crop
where some parts are missing. (b) Our method can handle this case since it
is trained with additional generated features with increased crop-related
diversity. We show the class with the highest confidence score.

Here we discuss a specific type of data diversity that greatly affects the
accuracy of FSOD algorithms. Specifically, given a test image, the classi-
fier needs to accurately classify multiple object proposals1 that overlap the
object instance in various ways. The features of these image crops exhibit
great variability induced by different object scales, object parts included
in the crops, object positions within the crops, and backgrounds. We ob-
serve a typical scenario where the state-of-the-art FSODmethod, DeFRCN
[122], only classifies correctly a few among many proposals overlapping

1Note that an RPN typically outputs 1000 object proposals per image.
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an object instance of a few-shot class. In fact, different ways of cropping
an object can result in features with various difficulty levels. An example
is shown in Figure 5.1 a where the image crop shown in the top row is
classified correctly while another crop shown in the bottom row confuses
the classifier due to some missing object parts. In general, the perfor-
mance of the method on those hard cases is significantly worse than on
easy cases (see section 5.4.4). However, building a classifier robust against
crop-related variation is challenging since there are only a few images per
few-shot class.

In this work, we propose a novel data generation method to mitigate
this issue. Our goal is to generate features with diverse crop-related vari-
ations for the few-shot classes and use them as additional training data
to train the classifier. Specifically, we aim to obtain a diverse set of fea-
tures whose difficulty levels vary from easy to hard w.r.t. how the object
is cropped.2 To achieve this goal, we design our generative model such
that it allows us to control the difficulty levels of the generated samples.
Given a model that generates features from a latent space, our main idea
is to enforce that the magnitude of the latent code linearly correlates with
the difficulty level of the generated feature, i.e., the latent code of a harder
feature is placed further away from the origin and vice versa. In this way,
we can control the difficulty level by simply changing the norm of the
corresponding latent code.

In particular, we use conditional VAE to build our data generation
model. The VAE consists of an encoder that maps the input to a latent
representation and a decoder that reconstructs the input from this latent
code. In our case, inputs to the VAE are object proposal features, extracted
from a pre-trained object detector. The goal is to associate the norm (mag-
nitude) of the latent code with the difficulty level of the object proposal.
To do so, we rescale the latent code such that its norm linearly correlates
with the Intersection-Over-Union (IoU) score of the input object proposal
w.r.t. the ground-truth object box. This IoU score is a proxy that partially
indicates the difficulty level: A high IoU score indicates that the object
proposal significantly overlaps with the object instance while a low IoU
score indicates a harder case where a part of the object can be missing.
With this rescaling step, we can bias the decoder to generate harder sam-
ples by increasing the latent code magnitude and vice versa. In this work,

2In this work, the difficulty level is strictly related to how the object is cropped.
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we use latent codes with different norms varying from small to large to
obtain a diverse set of features which can then serve as additional training
data for the few-shot classifier.

To apply our model to FSOD, we first train our VAEmodel using abun-
dant data from the base classes. The VAE is conditioned on the seman-
tic code of the input instance category. After the VAE model is trained,
we use the semantic embedding of the few-shot class as the conditional
code to synthesize new features for the corresponding class. In our exper-
iments, we use our generated samples to fine-tune the baseline few-shot
object detector - DeFRCN [122]. Surprisingly, a vanilla conditional VAE
model trained with only ground-truth box features brings a 3.7% nAP50
improvement over the DeFRCN baseline in the 1-shot setting of the PAS-
CAL VOC dataset [37]. Note that we are the first FSOD method using
VAE-generated features to support the training of the classifier. Our pro-
posed Norm-VAE can further improve this new state-of-the-art by another
2.1%, i.e., from 60% to 62.1%. In general, the generated features from
Norm-VAE consistently improve the state-of-the-art few-shot object de-
tector [122] for both PASCAL VOC and MS COCO [90] datasets.

The main contributions in this Chapter can be summarized as follows:

• We show that lack of crop-related diversity in training data of novel
classes is a crucial problem for FSOD.

• We propose Norm-VAE, a novel VAE architecture that can effectively
increase crop-related diversity in difficulty levels into the generated
samples to support the training of FSOD classifiers.

• Our experiments show that the object detectors trained with our ad-
ditional features achieve state-of-the-art FSOD in both PASCALVOC
and MS COCO datasets.

5.2 Proposed Method

In this section, we first review the problem setting of few-shot object de-
tection and the conventional two-stage fine-tuning framework. Then we
introduce ourmethod that tackles few-shot object detection via generating
features with increased crop-related diversity.
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5.2.1 Preliminaries

In few-shot object detection, the training set is divided into a base set DB

with abundant annotated instances of classes CB, and a novel set DN with
few-shot data of classes CN , where CB and CN are non-overlapping. For
a sample (x,y) ∈ DB ∪DN , x is the input image and y = {(ci , bi), i = 1, ...,n}
denotes the categories c ∈ CB ∪CN and bounding box coordinates b of the
n object instances in the image x. The number of objects for each class in
CN is K for K-shot detection. We aim to obtain a few-shot detection model
with the ability to detect objects in the test set with classes in CB ∪CN .

Recently, two-stage fine-tuning methods have shown great potential in
improving few-shot detection. In these two-stage detection frameworks,
a Region Proposal Network (RPN) takes the output feature maps from a
backbone feature extractor as inputs and generates region proposals. A
Region-of-Interest (RoI) head feature extractor first pools the region pro-
posals to a fixed size and then encodes them as vector embeddings, known
as the RoI features. A classifier is trained on top of the RoI features to clas-
sify the categories of the region proposals.

The fine-tuning often follows a simple two-stage training pipeline, i.e.,
the data-abundant base training stage and the novel fine-tuning stage. In
the base training stage, the model collects transferable knowledge across
a large base set with sufficient annotated data. Then in the fine-tuning
stage, it performs quick adaptation on the novel classes with limited data.
Our method aims to generate features with diverse crop-related variations
to enrich the training data for the classifier head during the fine-tuning
stage. In our experiments, we show that our generated features signifi-
cantly improve the performance of DeFRCN [122].

5.2.2 Overall Pipeline

Figure 5.2 summarizes the main idea of our proposed VAE model. For
each input object crop, we first use a pre-trained object detector to obtain
its RoI feature. The encoder takes as input the RoI feature and the se-
mantic embedding of the input class to output a latent code z. We then
transform z such that its norm linearly correlates with the IoU score of the
input object crop w.r.t. the ground-truth box. The new norm is the output
of a simple linear function g(·) taking the IoU score as the single input.
The decoder takes as input the new latent code and the class semantic em-
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Figure 5.2: Norm-VAE for modelling crop-related variations. The origi-
nal latent code z is rescaled to ẑ such that the norm of ẑ linearly correlates
with the IoU score of the input crop (w.r.t. the ground truth box). The orig-
inal latent codes are colored in blue while the rescaled ones are colored in
yellow. The norm of the new latent code is the output of a simple linear
function g(·) taking the IoU score as the single input. As can be seen, the
two points whose IoU = 0.7 are both rescaled to norm g(0.7) while another
point whose IoU = 0.9 is mapped to norm g(0.9). As a result, different
latent norms represent different crop-related variations, enabling diverse
feature generation.

bedding to output the reconstructed feature. Once the VAE is trained, we
use the semantic embedding of the few-shot class as the conditional code
to synthesize new features for the class. To ensure the diversity w.r.t. ob-
ject crop in generated samples, we vary the norm of the latent code when
generating features. The generated features are then used together with
the few-shot samples to fine-tune the object detector.

Norm-VAE for Feature Generation

We develop our feature generator based on a conditional VAE architecture
[151]. Given an input object crop, we first obtain its Region-of-Interest
(RoI) feature f via a pre-trained object detector. The RoI feature f is the
input for the VAE. The VAE is composed of an Encoder E(f ,a), which
maps a visual feature f to a latent code z, and a decoder G(z,a) which
reconstructs the feature f from z. Both E and G are conditioned on the
class semantic embedding a. We obtain this class semantic embedding
a by inputting the class name into a semantic model [108, 124]. It con-
tains class-specific information and serves as a controller to determine the
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categories of the generated samples. Conditioning on these semantic em-
beddings allows reliably generating features for the novel classes based on
the learned information from the base classes [180]. Here we assume that
the class names of both base and novel classes are available and we can
obtain the semantic embedding of all classes.

We first start from a vanilla conditional VAE model. The loss function
for training this VAE for a feature fi of class j can be defined as:

LV (fi) = KL
(

q(zi |fi , aj )||p(z|aj )
)

−
Eq(zi |fi ,aj )[log p(fi |zi , a

j )],
(5.1)

where aj is the semantic embedding of class j . The first term is the
Kullback-Leibler divergence between the VAE posterior q(z|f ,a) and a
prior distribution p(z|a). The second term is the decoder’s reconstruction
error. q(z|f ,a) is modeled as E(f ,a) and p(f |z,a) is equal to G(z,a). The
prior distribution is assumed to beN (0, I ) for all classes.

The goal is to control the crop-related variation in a generated sample.
Thus, we establish a direct correspondence between the latent norm and
the crop-related variation. To accomplish this, we transform the latent
code such that its norm correlates with the IoU score of the input crop.
Given an input RoI feature fi of a region with an IoU score si , we first
input this RoI feature to the encoder to obtain its latent code zi . We then
transform zi to z̃i such that the norm of z̃i correlates to si . The new latent
code z̃i is the output of the transformation function T (·, ·):

z̃i = T (zi , si) =
zi
∥zi∥
∗ g(si), (5.2)

where ∥zi∥ is the L2 norm of zi , si is the IoU score of the input proposal
w.r.t. its ground-truth object box, and g(·) is a simple pre-defined linear
function that maps an IoU score to a norm value. With this new transfor-
mation step, the loss function of the VAE from equation 5.1 for an input
feature fi from class j with an IoU score si thus can be rewritten as:

LV (fi , si) = KL
(

q(zi |fi , aj )||p(z|aj )
)

−
Eq(zi |fi ,aj)

[

log p(fi |T (zi , si), aj )
]

.
(5.3)
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Generating Diverse Data for Improving Few-shot Object Detection

After the VAE is trained on the base set, we generate a set of features with
the trained decoder. Given a class y with a semantic vector ay and a noise
vector z, we generate a set of augmented features Gy :

G
y = {f̂ |f̂ = G(

z

∥z∥ ∗ β,a
y)}, (5.4)

where we vary β to obtain generated features with more crop-related vari-
ations. The value range of β is chosen based on the mapping function
g(·). The augmented features are used together with the few-shot samples
to fine-tune the object detector. We fine-tune the whole system using an
additional classification loss computed on the generated features together
with the original losses computed on real images. This is much simpler
than the previous method of [197] where they fine-tune their system via
an EM-like (expectation-maximization) manner.

5.3 Experiments

5.3.1 Datasets and Evaluation Protocols

We conduct experiments on both PASCAL VOC (07 + 12) [37] and MS
COCO datasets [90]. For fair comparison, we follow the data split con-
struction and evaluation protocol used in previous works [62]. The PAS-
CAL VOC dataset contains 20 categories. We use the same 3 base/novel
splits with TFA [162] and refer them as Novel Split 1,2, 3. Each split con-
tains 15 base classes and 5 novel classes. Each novel class has K annotated
instances, where K = 1,2,3,5,10. We report AP50 of the novel categories
(nAP50) on VOC07 test set. For MS COCO, the 60 categories disjoint with
PASCAL VOC are used as base classes while the remaining 20 classes are
used as novel classes. We evaluate our method on shot 1,2,3,5,10,30 and
COCO-style AP of the novel classes is adopted as the evaluation metrics.

5.3.2 Implementation Details

Feature generationmethods like ours in theory can be built on top of many
few-shot object detectors. In our experiments, we use the pre-trained
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Faster-RCNN [132] with ResNet-101 [56] following previous work De-
FRCN [122]. The dimension of the extracted RoI feature is 2048. For our
feature generation model, the encoder consists of three fully-connected
(FC) layers and the decoder consists of two FC layers, both with 4096 hid-
den units. LeakyReLU and ReLU are the non-linear activation functions in
the hidden and output layers, respectively. The dimensions of the latent
space and the semantic vector are both set to be 512. Our semantic embed-
dings are extracted from a pre-trained CLIP [124] model in all main ex-
periments. An additional experiment using Word2Vec [106] embeddings
is reported in Section 5.4.2. After the VAE is trained on the base set with
various augmented object boxes , we use the trained decoder to generate
k = 30 features per class and incorporate them into the fine-tuning stage
of the DeFRCN model. We set the function g(·) in Equation 5.2 to a sim-
ple linear function g(x) = w ∗ x + b which maps an input IoU score x to
the norm of the new latent code. Note that x is in range [0.5,1] and the
norm of the latent code of our VAE before the rescaling typically centers
around

√
512 (512 is the dimension of the latent code). We empirically

choose g(·) such that the new norm ranges from
√
512 to 5 ∗

√
512. For

each feature generation iteration, we gradually increase the value of the
controlling parameter β in Equation 5.4 with an interval of 0.75.

5.3.3 Few-shot Detection Results

We use the generated features from our VAE model together with the
few-shot samples to fine-tune DeFRCN. We report the performance of
two models: “Vanilla-VAE” denotes the performance of the model trained
with generated features from a vanilla VAE trained on the base set of
ground-truth bounding boxes and “Norm-VAE” denotes the performance
of the model trained with features generated from our proposed Norm-
VAE model.

PASCAL VOC Table 5.1 shows our results for all three random novel
splits from PASCAL VOC. Simply using a VAE model trained with the
original data outperforms the state-of-the-art method DeFRCN in all shot
and split on PASCAL VOC benchmark. In particular, vanilla-VAE im-
proves DeFRCN by 3.7% for 1-shot and 4.3% for 3-shot on Novel Split 1.
Using additional data from our proposed Norm-VAE model consistently
improves the results across all settings. We provide qualitative examples
in the supplementary material.
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Novel Split 1 Novel Split 2 Novel Split 3
Method 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

TFA w/ fc [162] 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2
TFA w/ cos [162] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
MPSR [172] 41.7 - 51.4 55.2 61.8 24.4 - 39.2 35.1 39.9 47.8 - 42.3 48.0 49.7
FsDetView [177] 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6
FSCE [152] 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5
CME [84] 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5
SRR-FSD [200] 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4
Halluc. [197] 45.1 44.0 44.7 55.0 55.9 23.2 27.5 35.1 34.9 39.0 30.5 35.1 41.4 49.0 49.3
FSOD-MC [40] 40.1 44.2 51.2 62.0 63.0 33.3 33.1 42.3 46.3 52.3 36.1 43.1 43.5 52.0 56.0
FADI [18] 50.3 54.8 54.2 59.3 63.2 30.6 35.0 40.3 42.8 48.0 45.7 49.7 49.1 48.3 51.5
CoCo-RCNN [99] 43.9 44.5 53.1 64.6 65.5 29.4 31.3 43.8 44.3 51.8 39.1 43.9 47.2 54.7 60.3
MRSN [100] 47.6 48.6 57.8 61.9 62.6 31.2 38.3 46.7 47.1 50.6 35.5 30.9 45.6 54.4 57.4
FCT [51] 49.9 57.1 57.9 63.2 67.1 27.6 34.5 43.7 49.2 51.2 39.5 54.7 52.3 57.0 58.7
Pseudo-Labelling [66] 54.5 53.2 58.8 63.2 65.7 32.8 29.2 50.7 49.8 50.6 48.4 52.7 55.0 59.6 59.6
DeFRCN [122] 56.3 60.3 62.0 67.0 66.1 35.7 45.2 51.5 54.1 53.3 54.5 55.6 56.6 60.8 62.7

Vanila-VAE (Ours) 60.0 63.3 66.3 68.3 67.1 39.3 46.2 52.7 53.5 53.4 56.0 58.8 57.1 62.6 63.6
Norm-VAE (Ours) 62.1 64.9 67.8 69.2 67.5 39.9 46.8 54.4 54.2 53.6 58.2 60.3 61.0 64.0 65.5

Table 5.1: Few-shot object detection performance (nAP50) on PASCAL
VOC dataset. We evaluate the performance on three different splits. Our
method consistently improves upon the baseline for all three splits across
all shots. Best performance in bold.

nAP nAP75
Method 1 2 3 5 10 30 1 2 3 5 10 30

TFA w/ fc [162] 2.9 4.3 6.7 8.4 10.0 13.4 2.8 4.1 6.6 8.4 9.2 13.2
TFA w/ cos [162] 3.4 4.6 6.6 8.3 10.0 13.7 3.8 4.8 6.5 8.0 9.3 13.2
MPSR [172] 2.3 3.5 5.2 6.7 9.8 14.1 2.3 3.4 5.1 6.4 9.7 14.2
FADI [18] 5.7 7.0 8.6 10.1 12.2 16.1 6.0 7.0 8.3 9.7 11.9 15.8
FCT [51] - 7.9 - - 17.1 21.4 - 7.9 - - 17.0 22.1
Pseudo-Labelling [66] † - - - - 17.8 24.5 - - - - 17.8 25.0
DeFRCN [122] 6.6 11.7 13.3 15.6 18.7 22.4 7.0 12.2 13.6 15.1 17.6 22.2

Vanilla-VAE (ours) 8.8 13.0 14.1 15.9 18.7 22.5 7.9 12.5 13.4 15.1 17.6 22.2
Norm-VAE (ours) 9.5 13.7 14.3 15.9 18.7 22.5 8.8 13.7 14.2 15.3 17.8 22.4

Table 5.2: Few-shot detection performance for the novel classes on MS
COCO dataset. Our approach outperforms baseline methods in most
cases, especially in low-shot settings (K < 10). † applies mosaic data
augmentation introduced in [13] during fine-tuning. Best performance
in bold.

MS COCO Table 5.2 shows the FSOD results on MS COCO dataset.
Our generated features bring significant improvements in most cases, es-
pecially in low-shot settings (K ≤ 10). For example, Norm-VAE brings
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a 2.9% and a 2.0% nAP improvement over DeFRCN in 1-shot and 2-shot
settings, respectively. Pseudo-Labeling is better than ourmethod in higher
shot settings. However, they apply mosaic data augmentation [13] during
fine-tuning.

5.4 Analyses

Data 1-shot 2-shot 3-shot

DeFRCN [122] - 56.3 60.3 62.0
VAE Orginal 60.0 63.3 66.3
VAE Augmented 60.1 62.7 66.4

Norm-VAE Augmented 62.1 64.9 67.8

Table 5.3: Performance comparisons between vanilla VAE and Norm-
VAE on PASCAL VOC dataset. Training a the vanilla VAE with the aug-
mented data does not bring performance improvement. One possible rea-
son is that the generated samples are not guaranteed to be diverse even
with sufficient data.

5.4.1 Effectiveness of Norm-VAE

We compare the performance of Norm-VAE with a baseline vanilla VAE
model that is trained with the same set of augmented data. As shown in
Table 5.3, using the vanilla VAE with more training data does not bring
performance improvement compared to the VAE model trained with the
base set. This suggests that training with more diverse data does not
guarantee diversity in generated samples w.r.t. a specific property. Our
method, by contrast, improves the baseline model by 1.3% ∼ 1.9%, which
demonstrates the effectiveness of our proposed Norm-VAE.

5.4.2 Performance Using Different Semantic Embeddings

We use CLIP [124] features in our main experiments. In Table 5.4, we
compare this model with another model trained with Word2Vec [106] on
PASCAL VOC dataset. Note that CLIP model is trained with 400M pairs
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Method
Semantic Novel Split 1 Novel Split 2 Novel Split 3
Embedding 1-shot 2-shot 3-shot 1-shot 2-shot 3-shot 1-shot 2-shot 3-shot

DeFRCN [122] - 56.3 60.3 62.0 35.7 45.2 51.5 54.5 55.6 56.6

Vanilla VAE
Word2Vec

60.4 62.9 66.7 38.7 45.2 52.9 55.6 58.7 57.9
Norm-VAE 61.6 63.4 66.3 40.7 46.4 53.3 56.8 59.0 60.2

Vanilla VAE
CLIP

60.0 63.3 66.3 39.3 46.2 52.7 56.0 58.8 57.1
Norm-VAE 62.1 64.9 67.8 39.9 46.8 54.4 58.2 60.3 61.0

Table 5.4: FSOD Performance of VAE models trained with different
class semantic embeddings. CLIP [124] is trained with 400M pairs (im-
age and its text title) collected from the web while Word2Vec [106] is
trained with only text data.

(image and its text title) collected from the web while Word2Vec is trained
with only text data. Our Norm-VAE trained with Word2Vec embedding
achieves similar performance to the model trained with CLIP embedding.
In both cases, the model outperform the state-of-the-art FSOD method in
all settings.

5.4.3 Robustness against Inaccurate Localization

In this section, we conduct experiments to show that our object detec-
tor trained with features with diverse crop-related variation is more ro-
bust against inaccurate bounding box localization. Specifically, we ran-
domly select 1000 testing instances from PASCAL VOC test set and cre-
ate 30 augmented boxes for each ground-truth box. Each augmented box
is created by enlarging the ground-truth boxes by x% for each dimension
where x ranges from 0 to 30. The result is summarized in Figure 5.3 where
“Baseline” denotes the performance of DeFRCN[122], “VAE” is the perfor-
mance of the model trained with features generated from a vanilla VAE,
and “Norm-VAE” is the model trained with generated features from our
proposed model.

Figure 5.3 (a) shows the classification accuracy of the object detector
on the augmented box as the IoU score between the augmented bounding
box and the ground-truth box decreases. For both the baseline method
DeFRCN and the model trained with features from a vanilla VAE, the ac-
curacy drops by ∼ 10% as the IoU score decreases from 1.0 to 0.5. These
results suggest that these models perform much better for boxes that have
higher IoU score w.r.t. the ground-truth boxes. Our proposed method has
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(a) Accuracy (b) Probability score

Figure 5.3: Classification accuracy and probability score of the object
detector on the augmented box. We compare between the baseline De-
FRCN [122], the model trained with features from vanilla VAE and our
proposed Norm-VAE. By generating features with diverse crop-related
variations, we increase the object detector’s robustness against inaccurate
object box localization.

higher robustness to these inaccurate boxes: the accuracy of the model
trained with features from Norm-VAE only drops by ∼ 5% when IoU score
decreases from 1 to 0.5.

Figure 5.3 (b) plots the average probability score of the classifier on the
ground-truth category as the IoU score decreases. Similarly, the probabil-
ity score of both baseline DeFRCN and the model trained with features
from a vanilla VAE drops around 0.08 as the IoU score decreases from 1.0
to 0.5. The model trained with features from Norm-VAE, in comparison,
has more stable probability score as the IoU threshold decreases.

Method 1-shot 2-shot 3-shot

DeFRCN[122] 16.6 13.3 15.2
Ours (↑ Improvement) 18.8 (↑2.2) 16.4 (↑ 3.1) 19.2 (↑4.0)

Table 5.5: AP50∼75 of our method and DeFRCN on PASCAL VOC
dataset. AP 50∼75 refers to the average precision computed on the pro-
posals with the IoU thresholds between 50% and 75% and discard the
proposals with IoU scores larger than 0.75, i.e., only “hard” cases.
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5.4.4 Performance on Hard Cases

In Table 5.5, we show AP 50∼75 of our method on PASCAL VOC dataset
(Novel Split 1) in comparison with the state-of-the-art method DeFRCN.
Here AP 50∼75 refers to the average precision computed on the proposals
with the IoU thresholds between 50% and 75% and discard the proposals
with IoU scores (w.r.t. the ground-truth box) larger than 0.75. Thus, AP
50∼75 implies the performance of the model in “hard” cases where the
proposals do not significantly overlap the ground-truth object boxes. In
this extreme test, the performance of both models are worse than their
AP50 counterparts (Table 5.1), showing that FSOD methods are gener-
ally not robust to those hard cases. Our method mitigates this issue, out-
performing DeFRCN by substantial margins. However, the performance
is still far from perfect. Addressing these challenging cases is a fruitful
venue for future FSOD work.

5.4.5 Detection Results for Inaccurate Bounding Boxes

In this section, we provide qualitative visualizations of the detected ob-
jects of the 1-shot model on PASCAL VOC Novel Split 1. As shown in
Figure 5.4, for each input image, the blue box is the original prediction
result from the object detector. We then randomly create an augmented
bounding box based on the ground-truth bounding box and input the aug-
mented box to the classifier of the object detector. The prediction result on
the augmented box is denoted as the yellow box. For the examples shown
in the figure, the baseline DeFRCN model [122] and the model trained
with features from a vanilla VAE predict the class labels correctly on the
original input boxes while both fail on the augmented boxes. By contrast,
themodel trained with features fromNorm-VAE can classify both the orig-
inal box and the augmented box correctly. As can be seen, crop-related
variation is crucial for object detection and our method can enhance the
object detector’s robustness against the variation successfully.

5.4.6 Number of Generated Samples

In our main experiment, we generate 30 samples per class and use them
together with the original few-shot samples to fine-tune the object detec-
tor. In this section, we investigate the impact of the number of the gen-
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DeFRCN [122] Vanilla-VAE Norm-VAE

Figure 5.4: Qualitative visualizations of the detected objects on PAS-
CAL Novel Split 1. “Vanilla-VAE” denotes the model trained with fea-
tures generated from a vanilla VAE and “Norm-VAE” denotes the model
trained with features generated from Norm-VAE. The blue box is the de-
tector’s prediction on the original image and the yellow box is the predic-
tion on the augmented box. Our proposed Norm-VAE can generate fea-
tures that enhance the model’s robustness against crop-related variation.
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erated samples. Table 5.6 shows the AP50 on PASCAL VOC Novel Split
1 with different numbers of generated features under 1-shot, 2-shot and
3-shot settings. As the number of generated samples increases, the perfor-
mance gradually improves and then plateaus and drops slightly (less than
0.5% decrease in performance).

# Generated Features 0 5 10 15 20 25 30 35

1-shot 56.3 60.5 61.6 61.8 62.0 61.9 62.1 62.0
2-shot 60.3 62.0 63.7 63.6 63.6 64.1 64.9 64.5
3-shot 62.0 65.6 67.0 67.2 67.2 67.8 67.8 67.3

Table 5.6: Impact of the number of the generated samples under PAS-
CAL VOC Novel Split 1. As the number of generated samples in-
creases, the performance gradually improves and then saturates and drops
slightly.

5.4.7 Visualization of the Detection Results on PASCAL
VOC dataset

We show a few visualization results of DeFRCN [122] and our proposed
method in Figure 5.5. As can be seen from the figure, the model trained
with additional features performs better than DeFRCN. For instance, in
the third row, DeFRCN fails to recognize both the two instances of the
“bird” class while both Vanilla-VAE and Norm-VAE recognize them. It can
be seen that with additional data from Norm-VAE, the FSOD model can
recognize objects that are undetected with the model trained with just the
original training data. The Norm-VAE model is generally more robust in
recognizing objects. It works well even when the objects are cropped (2nd
row) or small (two bottom rows).

5.4.8 Mapping Function Analyses

We use a simple pre-defined linear function g(x) = w × x + b to map from
an IoU score x to the new norm of a latent code. Here we only consider
proposals with IoU scores ranging from 0.5 to 1. Proposals with lower IoU
scores are noisy since they contain mostly background areas. With our
VAE architecture and the training data, we observe that the norms of the
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DeFRCN [122] Vanilla-VAE Norm-VAE

Figure 5.5: Visualization of the detection results on PASCAL VOC
dataset. The FSOD model trained with additional features performs
better than DeFRCN. It works well even when the objects are partially
cropped (2nd row) or small (two bottom rows). The detection score
threshold is 0.5. Please view in magnification for cases with small ob-
jects.

original latent codes are ranged approximately from
√
512 to 5

√
512. We

would like the rescaled norms to be in the same range and, at the same
time, the latent code of an easy proposal has a small norm and the latent
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code of a hard proposal has a large norm. Thus, we set the parameters of
g(x) such that g(0.5) = 5

√
512 and g(1) =

√
512.

We also conduct experiments with different ranges and the results are
shown in Table 5.7. Note that here

√
512 is a scaling constant that corre-

sponds to the number of dimensions (N = 512) of the latent space. As can
be seen from the table, we observe better performance when the IoU score
inversely correlates with the latent norm. In this case, a proposal with
a low IoU score (i.e., hard case) has a higher latent norm and is placed
further away from the origin. A possible reason is that features of hard
instances often exhibit higher variance. Thus, it is more optimal to use
latent codes with larger norms to represent them [105].

g(1) g(0.5) AP50

Inverse Correlation
1×
√
512 2×

√
512 61.6

1×
√
512 5×

√
512 62.1

1×
√
512 10×

√
512 61.8

Correlation
2×
√
512 1×

√
512 60.6

5×
√
512 1×

√
512 61.3

10×
√
512 1×

√
512 60.6

Table 5.7: Performance with different configurations of the mapping
function. We conduct experiments using different coefficients for func-
tion g(·), which defines the value range of the new norm of the latent code.

5.4.9 Details on Generating Augmented Training Data

We extract the image features from image crops from the base classes
and use them to train a feature generator to generate features for the
novel classes. Specifically, we apply the RoI head feature extractor on the
ground-truth bounding box bi from the base classes to get the RoI feature
fi . To enrich the diversity of the RoI feature, we randomly create N addi-
tional augmented bounding boxes by randomly moving the starting point
and the ending point of the original box, annotated as {b1i , b2i , ...bNi }. These
augmented bounding boxes overlap the ground-truth bounding box dif-
ferently and have different IoU scores. With a set of augmented bounding
boxes {b1i , b2i , ...bNi }, we extract the corresponding RoI features {f 1i , f 2i , ...f Ni }
and use them to train our VAE model.
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5.5 Conclusion

We tackle the lack of crop-related variability in the training data of FSOD,
which makes the model not robust to different object proposals of the
same object instance. To this end, we propose a novel VAE model that
can generate features with increased crop-related diversity. Experiments
show that such increased diversity in the generated samples significantly
improves the current state-of-the-art FSOD performance for both PASCAL
VOC and MS COCO datasets. Our proposed VAE model is simple, easy
to implement, and allows modifying the difficulty levels of the generated
samples. In general, generative models whose outputs can bemanipulated
according to different properties, are crucial to various frameworks and
applications. In future work, we plan to address the following limitations
of our work: 1) We bias the decoder to increase the diversity in generated
samples instead of explicitly enforcing it. 2) Our proposed method is de-
signed to generate visual features of object boxes for FSOD. Generating
images might be required in other applications. Another direction to ex-
tend our work is to represent other variational factors in the embedding
space to effectively diversify generated data.
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Chapter 6

Generating Class Prototypes for
Zero-Shot Object Counting

6.1 Overview

In this Chapter, we present a method for generating reliable data that can
serve as object templates for object counting. Object counting aims to infer
the number of objects in an image. Most of the existing methods focus
on counting objects from specialized categories such as human crowds
[138], cars [110], animals [7], and cells [178]. These methods count only
a single category at a time. Recently, class-agnostic counting [97, 128,
146] has been proposed to count objects of arbitrary categories. Several
human-annotated bounding boxes of objects are required to specify the
objects of interest (see Figure 6.1a). However, having humans in the loop
is not practical for many real-world applications, such as fully automated
wildlife monitoring systems or visual anomaly detection systems.

A more practical setting, exemplar-free class-agnostic counting, has
been proposed recently by Ranjan et al.[127]. They introduce RepRPN,
which first identifies the objects that occur most frequently in the im-
age, and then uses them as exemplars for object counting. Even though
RepRPN does not require any annotated boxes at test time, the method
simply counts objects from the class with the highest number of instances.
Thus, it can not be used for counting a specific class of interest. The
method is only suitable for counting images with a single dominant ob-
ject class, which limits the potential applicability.
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Be happy , Douya

(a) Few-shot Counting (b) Zero-Shot Counting

Figure 6.1: Our proposed task of zero-shot object counting (ZSC). Tradi-
tional few-shot counting methods require a few exemplars of the object
category (a). We propose zero-shot counting where the counter only needs
the class name to count the number of object instances. (b). Few-shot
counting methods require human annotators at test time while zero-shot
counters can be fully automatic.

Our goal is to build an exemplar-free object counter where we can spec-
ify what to count. To this end, we introduce a new counting task in which
the user only needs to provide the name of the class for counting rather
than the exemplars (see Figure 6.1b). In this way, the counting model can
not only operate in an automatic manner but also allow the user to define
what to count by simply providing the class name. Note that the class
to count during test time can be arbitrary. For cases where the test class
is completely unseen to the trained model, the counter needs to adapt to
the unseen class without any annotated data. Hence, we name this setting
zero-shot object counting (ZSC), inspired by previous zero-shot learning
approaches [10, 199].

To count without any annotated exemplars, we propose finding a few
patches in the input image containing the target object to use them as
counting exemplars. There are two challenges: 1) how to localize patches
that contain the object of interest based on the provided class name, and 2)
how to select good exemplars for counting. Ideally, good object exemplars
are visually representative for most instances in the image, which can ben-
efit the object counter. In addition, we want to avoid selecting patches that
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contain irrelevant objects or backgrounds, which likely lead to incorrect
object counts. To this end, we propose a two-step method that first local-
izes the class-relevant patches which contain the objects of interest based
on the given class name, and then selects among these patches the optimal
exemplars for counting. We use these selected exemplars, together with a
pre-trained exemplar-based counting model, to achieve exemplar-free ob-
ject counting.

The first step of our framework involves constructing a class prototype
based on the given class name. Essentially, this requires a mapping be-
tween the categorical label and its visual feature. We employ pre-trained
large language-vision models to accomplish this task via two approaches.

In the first approach, we learn this mapping between language queries
and visual features via a conditional variational autoencoder (VAE). This
VAE model is trained to generate visual features of object crops for any
arbitrary class, conditioned on its semantic embedding extracted from a
pre-trained language-vision model [123]. We take the average of the gen-
erated features to compute the class prototype, which can be then used to
select class-relevant patches through a simple nearest-neighbour lookup
scheme. In essence, our VAE-based approach creates a single prototypical
feature for each category that can be applied to any images of this class.

However, relying on a single prototypical feature may not sufficiently
capture the diversity within categories exhibiting significant intra-class
variance, where objects vary in color (e.g., a green apple versus a red ap-
ple), shape (e.g., an SUV versus a regular car), scale, or material compo-
sition (a wooden versus a fabric chair). To better address this variability,
we propose constructing a class prototype specific to each individual im-
age. To achieve this, we leverage recent advancements in text-to-image
generative models, i.e., Stable Diffusion [134], for prototype generation.
Unlike traditional VAE-based models, Stable Diffusion enables more real-
istic and diverse sample generation owing to its extensive training data.
This capability offers a robust solution to address the variations present
in query objects. Specifically, given a query image, we leverage Stable Dif-
fusion to generate a variety of images containing the objects of interest.
Then, we select from these generated images the object crops that most
closely resemble the query objects and use them for constructing the class
prototype. In this way, a unique prototype is constructed specifically for
each testing sample, as opposed to the VAE-based approach’s reliance on
a single universal prototype for all images. We show that using image-
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specific prototypes for patch selection generally leads to better counting
performance, compared to using a single generic categorical prototype.

After obtaining the class-relevant patches, we further select among
them the optimal patches to be used as counting exemplars. Here we ob-
serve that the feature maps obtained using good exemplars and bad exem-
plars often exhibit distinguishable differences. An example of the feature
maps obtained with different exemplars is shown in Figure 6.2. The fea-
ture map from a good exemplar typically exhibits some repetitive patterns
(e.g., the dots on the featuremap) that center around the object areas while
the patterns from a bad exemplar are more irregular and occur randomly
across the image. Based on this observation, we train a model to mea-
sure the goodness of an input patch based on its corresponding feature
maps. Specifically, given an arbitrary patch and a pre-trained exemplar-
based object counter, we train this model to predict the counting error of
the counter when using the patch as the exemplar. Here the counting er-
ror can indicate the goodness of the exemplar. After this error predictor is
trained, we use it to select those patches with the smallest predicted errors
as the final exemplars for counting.

Experiments on the FSC-147 dataset show that our method outper-
forms the previous exemplar-free counting method[127] by a large mar-
gin. We also provide analyses to show that patches selected by our
method can be used in other exemplar-based counting methods to achieve
exemplar-free counting. In short, our main contributions can be summa-
rized as follows:

• We introduce the task of zero-shot object counting that counts the
number of instances of a specific class in the input image, given only
the class name and without relying on any human-annotated exem-
plars.

• We leverage language-visionmodels to construct class prototypes via
two approaches: VAE-based approach and SD-based approach. We
show that in both cases the class prototypes can be used to accurately
select patches containing objects of interests for counting.

• We introduce an error prediction model to further select the optimal
patches that yield the smallest counting errors.

• We verify the effectiveness of our patch selectionmethod on the FSC-
147 dataset, through extensive ablation studies and visualization re-
sults.
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Figure 6.2: Feature maps obtained using different exemplars given a pre-
trained exemplar-based counting model. The feature maps obtained using
good exemplars typically exhibit some repetitive patterns while the pat-
terns from bad exemplars are more irregular.

Figure 6.3: Overview of the proposed method. We first obtain a class
prototype for the given class name (e.g. grape) in a pre-trained feature
space. Then given an input query image, we generate a set of object pro-
posals with a pre-trained RPN and crop the corresponding image patches.
We extract the feature embedding for each patch and select the patches
whose embeddings are the nearest neighbors of the class prototype as
class-relevant patches. Then for each selected class-relevant patch, we use
a pre-trained exemplar-based counting model to obtain the intermediate
feature maps. Our proposed error predictor then takes the feature maps
as input and predicts the counting error (here we use normalized count-
ing errors). We select the patches with the smallest predicted errors as the
final exemplar patches and use them for counting.
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6.2 Proposed Method

Figure 6.3 summarizes our proposed method. Given an input query im-
age and a class label, we first use a generative model to construct a class
prototype for the given class in a pre-trained feature space. We then ran-
domly sample a number of patches of various sizes and extract the feature
embedding for each patch. The class-relevant patches are those patches
whose embeddings are the nearest neighbors of the class prototype in the
embedding space. We further use an error predictor to select the patches
with the smallest predicted errors as the final exemplars for counting. We
use the selected exemplars in an exemplar-based object counter to infer
the object counts. For the rest of the chapter, we denote this exemplar-
based counter as the “base counting model". We will first describe how we
train this base counting model and then present the details of our patch
selection method.

6.2.1 Training Base Counting Model

We train our base counting model using abundant training images with
annotations. Similar to previous works [128, 146], the base counting
model uses the input image and the exemplars to obtain a density map
for object counting. The model consists of a feature extractor F and a
counter C. Given a query image I and an exemplar B of an arbitrary class
c, we input I and B to the feature extractor to obtain the corresponding
output, denoted as F(I ) and F(B) respectively. F(I ) is a feature map of size
d ∗ hI ∗wI and F(B) is a feature map of size d ∗ hB ∗wB. We further perform
global average pooling on F(B) to form a feature vector b of d dimensions.

After feature extraction, we obtain the similarity map S by correlating
the exemplar feature vector b with the image feature map F(I ). Specifi-
cally, if wij = Fij(I ) is the channel feature at spatial position (i, j), S can be
computed by:

Sij(I ,B) = w
T
ijb. (6.1)

In the case where n exemplars are given, we use Eq. 6.1 to calculate
n similarity maps, and the final similarity map is the average of these n
similarity maps.

We then concatenate the image feature map F(I ) with the similarity
map S , and input them into the counter C to predict a density map D.
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The final predicted count N is obtained by summing over the predicted
density map D:

N =
∑

i,j

D(i,j), (6.2)

where D(i,j) denotes the density value for pixel (i, j). The supervision sig-
nal for training the counting model is the L2 loss between the predicted
density map and the ground truth density map:

Lcount = ∥D(I ,B)−D∗(I )∥22, (6.3)

where D∗ denotes the ground truth density map.

6.2.2 Zero-shot Object Counting

In this section, we describe how we count objects of any unseen category
given only the class name without access to any exemplar. Our strategy is
to select a few patches in the image that can be used as exemplars for the
base counting model. These patches are selected such that: 1) they contain
the objects that we are counting and 2) they benefit the counting model,
i.e., lead to small counting errors.

Selecting Class-relevant Patches

To select patches that contain the objects of interest, we first generate a
class prototype based on the given class name. The class prototype can be
considered as a class center representing the patch-level feature distribu-
tion of the corresponding class in an embedding space. Then we use the
generated class prototype to select the class-relevant patches from a set of
object patches cropped from the testing image.

Specifically, we introduce two ways of generating prototypes, i.e., gen-
erating semantics prototypes using conditional VAE and generating visual
prototypes using samples from a latent text-to-image diffusion model, i.e.,
Stable Diffusion.

VAE-based prototype generation. To generate class prototypes, we
train a conditional VAE model to generate patch-level visual features for
an arbitrary class based on the semantic embedding of the class. This
strategy is inspired by previous zero-shot learning approaches [174, 175].
The semantic embedding is obtained from a pre-trained text-vision model
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[123] given the corresponding class name. Specifically, we train a VAE
model to reconstruct deep features extracted from a pre-trained ImageNet
model. The VAE is composed of an Encoder E, whichmaps a visual feature
x to a latent code z, and a decoder G which reconstructs x from z. Both E
and G are conditioned on the semantic embedding a .The loss function for
training this VAE for an input feature x can be defined as:

LV (x) = KL(q(z|x,a)||p(z|a))
−Eq(z|x,a)[log p(x|z,a)].

(6.4)

The first term is the Kullback-Leibler divergence between the VAE pos-
terior q(z|x,a) and a prior distribution p(z|a). The second term is the de-
coder’s reconstruction error. q(z|x,a) is modeled as E(x,a) and p(x|z,a) is
equal to G(z,a). The prior distribution is assumed to be N (0, I ) for all
classes.

We can use the trained VAE to generate the semantics prototype for an
arbitrary target class for counting. Specifically, given the target class name
y, we first generate a set of features by inputting the respective semantic
vector ay and a noise vector z to the decoder G:

G
y = {x̂|x̂ = G(z,y), z ∼N (0, I )}. (6.5)

The class prototype py is computed by taking the mean of all the features
generated by VAE:

py =
1

|Gy |
∑

x̂∈Gy
x̂ (6.6)

SD-based prototype generation. In addition to VAE-based approach
for prototype generation, we further leverage the recent advancements in
text-to-image models, i.e., Stable Diffusion, to construct class prototypes
from SD-generated images. Compared to classic VAE-based models, Sta-
ble Diffusion enables more realistic and diverse sample generation, which
allows handling the intra-class variation among query objects more effec-
tively.

Specifically, given the target class name for counting, we first use a pre-
trained Stable Diffusion model to generate a set of images with the class
name as prompt. We observe that the SD-generated images often contain
multiple object instances in various contexts and backgrounds. However,
our goal is to obtain a few representative object crops of the target class
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Figure 6.4: Prototype generation using Stable Diffusion.

that can be used to construct reference prototypes. In particular, given a
query image, we aim to find a few diffusion-generated object crops that
most resemble the target objects in the query image. To do so, we first
apply a pre-trained RPN to predict object proposals on both the diffusion-
generated images and the query image. Thenwe compute the pairwise dis-
tance between the diffusion-generated object embeddings and the query
image’s object embeddings. We select the top-k diffusion-generated object
embeddings with the nearest mean distance over all query embeddings.
We average these k embeddings to construct the visual class prototype.
An example is shown in Figure 6.4 where the target objects are red apples.
We first obtain a set of object patches containing various crops of apples
and select from them a set of red apples to construct the prototype.

Class-relevant patch selection. Using the class prototype, either gen-
erated using VAE or Stable Diffusion, we can select the class-relevant
patches across the query image. Specifically, we first use a pre-trained
RPN to predict object proposals across the query image and extract their
corresponding ImageNet features {f1, f2, ..., fm}. To select the class-relevant
patches, we calculate the L2 distance between the class prototype and the
patch embedding, namely di = ∥fi−py∥2. Then we select the patches whose
embeddings are the nearest neighbors of the class prototype as the class-
relevant patches. Since the ImageNet feature space is highly discrimina-
tive, i.e., features close to each other typically belong to the same class, the
selected patches are likely to contain the objects of the target class.
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Selecting Exemplars for Counting

Given a set of class-relevant patches and a pre-trained exemplar-based
object counter, we aim to select a few exemplars from these patches that
are optimal for counting. To do so, we introduce an error prediction net-
work that predicts the counting error of an arbitrary patch when the patch
is used as the exemplar. The counting error is calculated from the pre-
trained counting model. Specifically, to train this error predictor, given a
query image Ī and an arbitrary patch B̄ cropped from Ī , we first use the
base counting model to get the image feature map F(Ī ), similarity map S̄ ,
and the final predicted density map D̄. The counting error of the base
counting model can be written as:

ϵ = |
∑

i,j

D̄(i,j) − N̄ ∗|, (6.7)

where N̄ ∗ denotes the ground truth object count in image Ī . ϵ can be used
to measure the goodness of B̄ as an exemplar for Ī , i.e., a small ϵ indicates
that B̄ is a suitable exemplar for counting and vice versa.

The error predictor R is trained to regress the counting error produced
by the base counting model. The input of R is the channel-wise concatena-
tion of the image feature map F(Ī ) and the similarity map S̄ . The training
objective is the minimization of the mean squared error between the out-
put of the predictor R(F(Ī ), S̄) and the actual counting error produced by
the base counting model ϵ.

After the error predictor is trained, we can use it to select the opti-
mal patches for counting. The candidates for selection here are the class-
relevant patches selected by the class prototype in the previous step. For
each candidate patch, we use the trained error predictor to infer the count-
ing error when it is being used as the exemplar. The final selected patches
for counting are the patches that yield the top-s smallest counting errors.

Using the Selected Patches as Exemplars

Using the error predictor, we predict the error for each candidate patch
and select the patches that lead to the smallest counting errors. The se-
lected patches can then be used as exemplars for the base counting model
to get the density map and the final count. We also conduct experi-
ments to show that these selected patches can serve as exemplars for other
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exemplar-based counting models to achieve exemplar-free class-agnostic
counting.

6.3 Experiments

6.3.1 Implementation Details

Network architecture For the base counting model, we use ResNet-50 as
the backbone of the feature extractor, initialized with the weights of a
pre-trained ImageNet model. The backbone outputs feature maps of 1024
channels. For each query image, the number of channels is reduced to
256 using an 1 × 1 convolution. For each exemplar, the feature maps are
first processed with global average pooling and then linearly mapped to
obtain a 256-d feature vector. The counter consists of 5 convolutional and
bilinear upsampling layers to regress a density map of the same size as the
query image. For the feature generation model, both the encoder and the
decoder are two-layer fully-connected (FC) networks with 4096 hidden
units. LeakyReLU and ReLU are the non-linear activation functions in
the hidden and output layers, respectively. The dimensions of the latent
space and the semantic embeddings are both set to be 512. For the error
predictor, 5 convolutional and bilinear upsampling layers are followed by
a linear layer to output the counting error.

Dataset We use the FSC-147 dataset [128] to train the base counting
model and the error predictor. FSC-147 is the first large-scale dataset
for class-agnostic counting. It includes 6135 images from 147 categories
varying from animals, kitchen utensils, to vehicles. The categories in
the training, validation, and test sets do not overlap. The feature gen-
erator is trained on the MS-COCO detection dataset. Note that the pre-
vious exemplar-free method [127] also uses MS-COCO to pre-train their
counter.

Training details Both the base counting model and the error predic-
tor are trained using the AdamW optimizer with a fixed learning rate of
10−5. The base counting model is trained for 300 epochs with a batch size
of 8. We resize the input query image to a fixed height of 384, and the
width is adjusted accordingly to preserve the aspect ratio of the original
image. Exemplars are resized to 128×128 before being input into the fea-
ture extractor. The feature generation model is trained using the Adam
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Exemplars Method
Val Set Test Set

MAE RMSE NAE SRE MAE RMSE NAE SRE

Exemplar-based

FamNet+ [128] 23.75 69.07 0.52 4.25 22.08 99.54 0.44 6.45
BMNet [146] 19.06 67.95 0.26 4.39 16.71 103.31 0.26 3.32
BMNet+ [146] 15.74 58.53 0.27 6.57 14.62 91.83 0.25 2.74
CounTR [93] 13.13 49.83 0.24 0.45 11.95 91.23 0.23 1.72

SAFECount [189] 14.46 51.88 0.26 0.91 13.58 91.31 0.25 1.66
Ours 18.55 61.12 0.30 3.18 20.68 109.14 0.36 7.63

Reference-less

RepRPN [127] 30.40 98.73 - - 27.45 129.69 - -
CounTR [93] 17.40 70.33 0.34 1.64 14.12 108.01 0.29 1.93

FamNet+ [128] + RPN 42.85 121.59 0.75 6.94 42.70 146.08 0.74 7.14
BMNet [146] + RPN 37.26 108.54 0.42 5.43 37.22 143.13 0.41 5.31
BMNet+ [146] + RPN 35.15 106.07 0.41 5.28 34.52 132.64 0.39 5.26

SAFECount [189] + RPN 34.98 107.46 0.38 5.22 33.89 139.92 0.39 5.34
Ours + RPN 32.19 99.21 0.38 4.80 29.25 130.65 0.35 4.35

Zero-Shot
Patch-Sel (VAE) 27.47 90.85 0.37 4.52 23.14 114.40 0.34 3.95
Patch-Sel (SD) 26.30 88.80 0.34 4.27 21.53 113.28 0.31 3.61

Table 6.1: Quantitative comparisons on the FSC-147 dataset. “RPN" de-
notes using the top-3 RPN proposals with the highest objectness scores as
exemplars. “Patch-Sel (VAE)" and “Patch-Sel (SD)" denotes using patch
selection method with VAE-generated prototypes and SD-generated pro-
totypes respectively.

optimizer and the learning rate is set to be 10−4. The semantic embed-
dings are extracted from CLIP [123]. To select the class-relevant patches,
we randomly sample 450 boxes of various sizes across the input query im-
age and select 10 patches whose embeddings are the 10-nearest neighbors
of the class prototype. The final selected patches are those that yield the
top-3 smallest counting errors predicted by the error predictor.

6.3.2 Evaluation Metrics

We use Mean Average Error (MAE) and Root Mean Squared Error (RMSE)
to measure the performance of different object counters. Besides, we fol-
low [113] to report the Normalized Relative Error (NAE) and Squared
Relative Error (SRE). In particular, MAE = 1

n

∑n
i=1 |yi − ŷi |; RMSE =

√

1
n

∑n
i=1(yi − ŷi)2; NAE = 1

n

∑n
i=1
|yi−ŷi |
yi

; SRE =
√

1
n

∑n
i=1

(yi−ŷi )2
yi

where n is

the number of test images, and yi and ŷi are the ground truth and the
predicted number of objects for image i respectively.
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6.3.3 Comparing Methods

We compare our method with the previous works on class-agnostic count-
ing, which can be categorized into exemplar-based counting methods
and reference-less counting methods. Exemplar-based methods include
FamNet (Few-shot adaptation and matching Network [128]), BMNet (Bi-
linear Matching Network [146]), CounTR (Counting TRansformer [93])
and SAFECount (Similarity-Aware Feature Enhancement block for object
Counting [189]). These methods require a few human-annotated exem-
plars as inputs. Reference-less methods, i.e., RepRPN [127] and CounTR
[93], do not require annotated boxes at test time. Nevertheless, the class
of interest can not be specified, which makes them only suitable for count-
ing images with a single dominant object class. Our proposed zero-shot
counting, is a new setup which allows the user to specify what to count by
simply providing the class name without any exemplar. We also make
exemplar-based methods work in the exemplar-free manner by replac-
ing the human-provided exemplars with the exemplars generated by a
pre-trained object detector. Specifically, we use the RPN of Faster RCNN
pre-trained on MS-COCO dataset and select the top-3 proposals with the
highest objectness score as the exemplars.

6.3.4 Results

Quantitative results. As shown in Table 6.1, the performance of all
exemplar-based counting methods drops significantly when replacing
human-annotated exemplars with RPN generated proposals. BMNet+
[146], for example, shows an 19.90 error increase w.r.t. the test MAE and
a 40.81 increase w.r.t. the test RMSE. In comparison, the performance
gap is much smaller when using our selected patches as exemplars. Our
patch selection method with VAE-generated prototype obtains 27.47 MAE
on the validation set and 23.14 MAE on the test set. By using the SD-
generated class prototype, the error rates can be further reduced, achiev-
ing 26.30 MAE on the validation set and 21.53 MAE on the test set. No-
ticeably, compared with the human-annotated exemplars, the NAE and
the SRE on the test set are even reduced when using our selected patches.

Qualitative analysis. In Figure 6.5, we present a few input images,
the image patches selected by our method, and the corresponding density
maps. Our method effectively identifies the patches that are suitable for
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Figure 6.5: Qualitative results on the FSC-147 dataset. We show the count-
ing exemplars and the corresponding density maps of ground truth boxes,
randomly selected patches, and our selected patches respectively. Pre-
dicted counting results are shown at the top-right corner. Our method
accurately identifies suitable patches for counting and the predicted den-
sity maps are close to the ground truth density maps.

object counting. The density maps produced by our selected patches are
meaningful and close to the density maps produced by human-annotated
patches. The counting model with random image patches as exemplars, in
comparison, fails to output meaningful density maps and infers incorrect
object counts.

In Figure 6.6, we visualize some images from the FSC-147 dataset and
the corresponding patches selected by RPN and our method respectively.
The RPN-selected patches are the top-3 proposals with the highest ob-
jectness scores. As can be seen from the figure, the patches selected by
RPN may contain objects not relevant to the provided class name or con-
tain multiple object instances. These patches are not suitable to be used
as counting exemplars and will lead to inaccurate counting results. This
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suggests that choosing counting exemplars based on objectness score is
not reliable. In comparison, our proposed method can accurately localize
image patches according to the given class name. These selected patches
can then be used as counting exemplars and yieldmeaningul densitymaps
and reasonable counting results.

101 11552

103 45 104

40 4526

Figure 6.6: Qualitative comparison with top-3 exemplars from RPN. Our
proposed method can select patches suitable for counting while RPN-
selected patches contain non-relevant objects or multiple object instances.

Figure 6.7: Qualitative ablation analysis. All the 10 selected class-relevant
patches exhibit some class-specific attributes. They are ranked by the pre-
dicted counting errors and the final selected patches with the smallest
errors are framed in green.
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6.4 Analyses

6.4.1 Ablation Studies

Our proposed patch selection method consists of two steps: the selection
of class-relevant patches via a generated class prototype and the selection
of the optimal patches via an error predictor. We analyze the contribu-
tion of each step quantitatively and qualitatively. Quantitative results are
in Table 6.2. We first evaluate the performance of our baseline, i.e. us-
ing 3 randomly sampled patches as exemplars without any selection step.
As shown in Table 6.2, using the class prototype to select class-relevant
patches reduces the error rate by 7.19 and 6.07 on the validation and test
set of MAE, respectively. Applying the error predictor can improve the
baseline performance by 7.22 on the validation MAE and 7.57 on the test
MAE. Finally, applying the two components together further boosts per-
formance, achieving 26.93 on the validation MAE and 22.09 on the test
MAE.

We provide further qualitative analysis by visualizing the selected
patches. As shown in Figure 6.7, for each input query image, we show
10 class-relevant patches selected using our generated prototype, ranked
by their predicted counting error (from low to high). All the 10 selected
class-relevant patches exhibit some class specific features. However, not
all these patches are suitable to be used as counting exemplars, i.e., some
patches only contain parts of the object, and some patches contain some
background. By further applying our proposed error predictor, we can
identify the most suitable patches with the smallest predicted counting
errors.

6.4.2 Generalization to Exemplar-based Methods

Our proposed method can be considered as a general patch selection
method that is applicable to other visual counters to achieve exemplar-
free counting. To verify that, we use our selected patches as the exemplars
for three other different exemplar-based methods: FamNet [128], BMNet
and BMNet+ [146]. Figure 6.8 (a) shows the results on the FSC-147 valida-
tion set. The baseline uses three randomly sampled patches as the exem-
plars for the pre-trained exemplar-based counter. By using the generated
class prototype to select class-relevant patches, the error rate is reduced
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Prototype Predictor
Val Set Test Set

MAE RMSE NAE SRE MAE RMSE NAE SRE

- - 35.20 106.70 0.61 6.68 31.37 134.98 0.52 5.92
✓ - 28.01 88.29 0.39 4.66 25.30 113.82 0.40 4.88
- ✓ 27.98 88.62 0.43 4.59 23.80 128.36 0.40 4.43
✓ ✓ 26.93 88.63 0.36 4.26 22.09 115.17 0.34 3.74

Table 6.2: Ablation study on each component’s contribution to the final
results. We show the effectiveness of the two steps of our framework: se-
lecting class-relevant patches via a generated class prototype and selecting
optimal patches via an error predictor.

by 5.18, 8.59 and 5.60 on FamNet, BMNet and BMNet+, respectively. In
addition, as the error predictor is additionally adopted, the error rate is
further reduced by 1.76, 1.00 and 1.08 on FamNet, BMNet and BMNet+,
respectively. Similarly, Figure 6.8 (b) shows the results on the FSC-147
test set. Our method achieves consistent performance improvements for
all three methods.

6.4.3 Multi-class Object Counting

Our method can count instances of a specific class given the class name,
which is particularly useful when there are multiple classes in the same
image. In this section, we show some visualization results in this multi-
class scenario. As seen in Figure 6.9, our method selects patches according
to the given class name and counts instances from that specific class in
the input image. Correspondingly, the heatmap highlights the image re-
gions that are most relevant to the specified class. Here the heatmaps are
obtained by correlating the exemplar feature vector with the image fea-
ture map in a pre-trained ImageNet feature space. Note that we mask
out the image region where the activation value in the heatmap is be-
low a threshold when counting. We also show the patches selected us-
ing another exemplar-free counting method, RepRPN [127]. The class of
RepRPN selected patches can not be explicitly specified. It simply selects
patches from the class with the highest number of instances in the image
according to the repetition score.
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Figure 6.8: Using our selected patches as exemplars for other exemplar-
based class-agnostic counting methods (FamNet, BMNet and BMNet+) on
FSC-147 dataset. Blue bars are theMAEs of using three randomly sampled
patches. Orange bars are the MAEs of using the class prototype to select
class-relevant patches as exemplars. Green bars are the MAEs of using the
class prototype and error predictor to select optimal patches as exemplars.

6.4.4 Qualitative Comparison between SD-generated Pro-
totypes and VAE-generated Prototypes

In this section, we provide qualitative comparison between patches se-
lected via SD-generated prototypes and VAE-generated prototypes. As
shown in Figure 6.10, we present a few input images and the correspond-
ing patches selected by VAE-generated prototypes and SD-generated pro-
totypes. Although the patches selected by VAE-generated prototypes gen-
erally contain the objects of interest, they miss parts of the objects in some
cases (e.g., the second patch of grape), or contain multiple object instances
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Broccoli:       19

Carrot:      25

RepRPN Pred: 23

“Broccoli” Pred: 10

“Carrot” Pred: 27

(a)

RepRPN Pred: 34

“Strawberry” Pred: 40

“Banana” Pred: 32

Banana:       31

Strawberry:      38

(b)

RepRPN Pred: 55

“Green Bean” Pred: 29

“Tomato” Pred: 59

Green Bean:       32

Tomato:      62

(c)

Figure 6.9: Visualization results of our method in some multi-class exam-
ples. Our method selects patches according to the given class name and
the corresponding heatmap highlights the relevant areas.

within one patch (e.g., the second patch of strawberry). In comparison, the
patches selected by SD-generated prototypes are generally better exem-
plars for counting, i.e., one patch mostly contains a single complete object
instance.
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(a) Patches selected by

VAE Prototypes

(b) Patches selected by

SD Prototypes

Figure 6.10: Visualization of the patches selected by VAE-generated pro-
totypes and SD-generated prototypes. Patches selected by SD-generated
prototypes are of higher quality.

6.4.5 Analysis on SD-generated Prototypes

Qualitative Visualization. To generate visual class prototypes, we first
use a pre-trained Stable Diffusion to generate a set of object patches for
the class of interest. Then given a query image, we select the generated
patches that most resemble the target objects in the query image. We com-
pute the average feature embeddings of the selected generated patches to
construct the prototype. In Figure 6.11, we demonstrate this process for
three different categories, i.e., grapes, eggs, and apples. For each cate-
gory, we show how we select different patches to construct the prototypes
for the given query image. As can be seen in the first column, the set
of RPN proposals extracted from SD-generated images exhibit rich vari-
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Prototype Patches SD Patches Test ImageSelected Exemplar

(a) Grapes

(b) Eggs

(c) Apples

Figure 6.11: Visualization of the diffusion-generated patches for proto-
type generation and the corresponding selected patches from query im-
ages. Our method constructs prototypes according to the query images
and selects the patches that most resemble the target objects.

94



ations. Among these proposals, our method selects those that are most
relevant to the testing images for constructing prototypes. For example,
in the last row of Figure 6.11 (c), only apples with mixed colors are se-
lected to match the objects’ colors in the testing image. Compared with
VAE-generated prototypes which remain the same for all query images,
SD-generated prototypes can better handle the variations of query images
and select more accurate counting exemplars.

Number of Patches for Prototype Generation. In our main experi-
ments, we select the top-5 SD-generated patches with the nearest mean
distance over query patches, and compute their average features to con-
struct prototypes. In this section, we conduct an ablation study on how the
number of patches selected for prototype generation affects the counting
performance. Specifically, we select top-5, top-25, top-50 and all patches
to construct class prototypes and use them to select exemplars. Results
are summarized in Table 6.3. We observe that the performance drops on
both the validation set and test set as the number of selected patches in-
creases. The counting errors are highest when using all generated patches
to construct prototypes. In this case, the same class prototype is applied
for all images of this class, which is not optimal for counting objects with
large intra-class diversity. Our method, in comparison, selects the most
similar patches based on the query image, which leads to more accurate
prototypes.

Prototype Val Set Test Set
Patches MAE RMSE MAE RMSE

top-5 27.76 97.06 21.99 113.31
top-25 28.03 97.87 22.12 113.71
top-50 28.33 98.50 22.34 113.88
all 30.13 101.70 23.37 116.04

Table 6.3: Ablation study on the number of diffusion-generated patches
for prototype generation.

6.5 Conclusion

We propose a new task, zero-shot object counting, to count instances of a
specific class given only the class name without access to any exemplars.
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To address this, we developed a two-step approach that accurately local-
izes the optimal patches to be used as counting exemplars. We leverage
language-vision models to construct class prototypes via two approaches:
VAE-based approach and diffusion-based approach. Through these two
approaches, we present a comprehensive study of prototype construction
at both category and image levels. In the context of our specific task, the
diffusion-based image prototype has notably outperformed the category-
level prototype constructed via VAE, thanks to its ability to customize pro-
totypes to match object appearances in each image. More generally, our
approach of employing language-vision models for zero-shot recognition
is applicable in various tasks. In scenarios where data of large-scale gen-
erative models do not exist such as medical imaging, or remote sensing,
VAE can be a useful choice.

We show that the prototypes can be used to select the patches con-
taining objects of interests. Furthermore, we introduce an error predic-
tion model to select those patches with the smallest predicted errors as
the final exemplars for counting. Extensive results demonstrate the effec-
tiveness of our method. We also conduct experiments to show that our
selected patches can be incorporated into other exemplar-based counting
methods to achieve exemplar-free counting.
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Chapter 7

Assessing Sample Quality via the
Latent Space of Generative
Models

7.1 Overview

In this Chapter, we propose a novel approach to estimate sample qual-
ity via the latent space of generative models. Generative models have
emerged as powerful modeling tools that can capture diverse and com-
plex distribution from a large training dataset to synthesize new data. A
single pre-trained diffusion model[135] can generate thousands of images
of “Yorkshire Terrier” or “Notre-Dame de Paris”. We aim to answer the
question: among the samples generated from the model, how to measure
the quality of each individual one? Such an instance-wise quality assess-
ment metric is essential for users and consumers to select samples among
the ones provided by those recently released text-to-image models, e.g.,
DALL-E 2 [126] and Stable Diffusion [135], rather than model-wise met-
rics such as Frechèt Inception Distance (FID) [57].

For the most part, previous instance-wise evaluation methods [52, 74]
rely on a pre-trained feature extractor (e.g., VGG16 [149]) to embed the
generated samples and real samples into a common feature space. K-
nearest neighbor (k-NN) based approaches are then applied under the
assumption that close samples in this feature space correspond to seman-
tically similar images. The realism score [74], for example, measures the
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maximum of the inverse relative distance of a fake sample in a real k-
NN latent sphere. The rarity score [52], on the other hand, measures the
minimum radius of a real k-NN sphere that contains the fake latent rep-
resentation. However, relying on a pre-trained feature extractor suffers
from two shortcomings. First, different feature extractors might lead to
inconsistent assessment outcomes: the rarity score shows a negative cor-
relation with Frechèt Inception Distance (FID) [57] when using VGG16
as backbone, while the correlation becomes positive under DINO [19] or
CLIP [124] backbones. Moreover, these methods are not applicable for do-
mains where a robust, universal feature extractor is not yet available, e.g.,
3D shapes, human-drawn art or medical images.

In this work, we propose to assess sample quality from another per-
spective: instead of using a pre-trained feature space, we directly use the
latent space of the generative models themselves. The intuition is that the
quality of a generated sample directly relates to the amount of the training
samples that closely resemble it, and we can infer this information solely
by examining the density of the latent space. Specifically, the samples
lying in the latent area with dense latent codes are likely to have suffi-
cient training data resembling them while low-density latent areas would
correspond to the rare cases in the data manifold. This is because gener-
ative models typically map similar data points to similar latent embed-
dings. The latent embeddings in those low-density areas are less exposed
in model training, consequently receiving less supervision, and leading to
potentially inferior reconstruction quality.

To this end, we propose a latent density score function to measure
the quality of generated samples. Given a pre-trained generative model,
our proposed function quantitatively measures the density of a randomly
sampled latent code w.r.t. a set of latent codes extracted from the train-
ing data. We show that the proposed latent density score highly cor-
relates with the sample quality for various generative models including
Variational Autoencoders (VAEs) [72], Generative Adversarial Networks
(GANs) [46] and Latent Diffusion Models (LDMs) [135]. Compared with
previous quality assessments that require an additional embedding net-
work for feature extraction, our method estimates the sample quality by
directly examining the latent space of the generative models, which brings
several key advantages: 1) efficiency: our method enables quality assess-
ment without generating image pixels, which significantly reduces the
computational cost; 2) generalizability: our method eliminates the re-
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liance on external feature extractors, which allows for generalization to
the domains where a universal pre-trained feature extractor might not
exist; 3) applicability: our method can be seamlessly incorporated into
latent-based image editing and generationmethods, which can benefit var-
ious downstream tasks.

In short, our main contributions can be summarized as follows:

• We demonstrate that we can directly assess sample quality via the
latent space of generative models themselves, while previous quality
assessment methods rely on a pre-trained feature extractor to embed
real and generated samples to a common space.

• We propose a score function to quantify sample quality by measur-
ing the density in latent space. The proposed function is applicable
to various generative models trained on a variety of datasets.

• We show the clear advantages of our proposed method over previ-
ous instance-wise evaluation methods, including significantly sav-
ing computational cost, generalizing across different domains and
facilitating various downstream tasks.

7.2 Latent Density Score

Given a well-trained generative model, e.g., GAN, VAE or latent diffusion
model, we aim to estimate the quality of the generated samples by exam-
ining the latent space of the model. Let Z = {z1, z2, ...zi} denote a set of
latent codes extracted from the training samples, and zg denote a latent
code randomly sampled from the latent space, we measure the latent den-
sity of zg quantitatively by calculating the latent density score as:

D(zg ,Z) =
1

|Z| ∗
∑

zi∈Z
e
− ∥zg−zi ∥

2

2σ2 , (7.1)

where σ is a hyper-parameter of this score function. Latent density score
measures the average Gaussian kernelized Euclidean distance [27] be-
tween zg and each latent code in Z. The score is high when zg resides
in an area where the trained codes are densely distributed. σ controls the

99



relative contribution of each latent code in Z to the final density value,
i.e., using a small σ places more emphasis on the local area surrounding
zg , while applying a large σ places more focus on the global density. In the
case where there are multiple local clusters in the latent manifold, differ-
ent values of σ will lead to different assessment results (see Section 7.5.2).

In GAN-based generative models, truncation trick [16, 63, 71] is a
widely used technique to increase the sample fidelity at the cost of lower-
ing the diversity. It works by shifting a randomly sampled code towards
the mean latent code. The mean code typically resides in a high-density
latent area. In fact, we observe that the proposed latent density score well
correlates with the degree of truncation. We analyze this correlation fur-
ther in Section 7.5.1 and provide more qualitative results in the Supple-
mentary Material. Another highly relevant quality assessment metric is
the realism score [74]. The realism score measures the relative distance
of a fake sample in a real latent sphere, which is defined by a pre-trained
feature extractor. We show that the latent density score behaves similarly
with the realism score for images from the domains previously seen by
the feature extractor (see Section 7.5.1). However, for images from non-
ImageNet-like domains (e.g., medical images and anime-style images) or
domains other than 2D images (e.g., 3D shapes), quality assessment with
realism score will be infeasible (see Section 7.3.2).

7.3 Experimental Results

7.3.1 Results on Different Generative Models

In this section, we provide the experimental results of the proposed met-
ric for various generative models and datasets. We experiment with three
types of generative models, i.e., GANs, VAEs and LDMs. For each trained
model, we extract latent codes from 60k training samples and calculate
the latent density scores for 20k randomly sampled latent codes. In par-
ticular, for VAEs and LDMs, we take the output of the image encoder as
the latent representation of each real input image. For LDMs, we further
flatten the 2D representations (before the denoising process) for comput-
ing the latent density score. We use the pre-trained Stable Diffusion v1.5
model [135] as the text-to-image diffusion model. For the unconditional
diffusion models, we choose the LDMs pre-trained on CelebA-HQ [26],
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(a) Latent Diffusion - CelebA-HQ

(b) Latent Diffusion - LSUN-Bedrooms

(c) Latent Diffusion - LSUN-Churches

Figure 7.1: Top 6, Middle 6 and Bottom 6 generated images in terms of
the proposed latent density score on CelebA-HQ, LSUN-Bedrooms and
LSUN-Churches for unconditional latent diffusion models. (Zoom-in for
best view). The proposed latent density scores highly correlate with the
quality of generated images.

LSUN-Bedrooms and LSUN-Churches [190] released by [135]. For GANs,
we experiment with StyleGAN2 [65] and StyleGAN2-ADA [64]. To obtain
the latent representations, we input vectors sampled from a normal dis-
tribution to their mapping networks and extract latent features from the
W -space. We use σ = 20 for computing latent density scores. We analyze
the choice of σ and how it affects the results in Section 7.5.2.
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Figure 7.2: Top 2 and bottom 2 Stable Diffusion generated samples for
eight classes in terms of the proposed latent density score. Images in
the ‘top 2’ rows are high-resolution images with natural, realistic back-
grounds, whereas images in the ‘bottom 2’ rows contain visual noise and
artifacts. The only difference in model configuration for images of top /
bottom rows is the initial noise.

Latent Diffusion Models

Latent diffusion models [135] use pre-trained autoencoders to construct
a low-dimensional latent space, from which the original data can be re-
constructed at high fidelity with reduced computational costs. In Figure
7.1, we show images synthesized by unconditional latent diffusion models
trained on CelebA-HQ, LSUN-Bedrooms and LSUN-Churches. For each
dataset, we show samples using latent codes with the top 6 highest, top 6
lowest and 6 middle latent density scores. As shown in the figure, the pro-
posed latent density scores highly correlate with the quality of generated
images. For example, on the CelebA-HQ dataset, we can see human faces
generated from codes with high latent density scores are visually realistic
with clear hair, eye and eyebrow details, whereas those with low latent
density scores are of degraded quality due to blur, artifacts or distorted
facial structures. Similarly, on LSUN-Bedrooms and LSUN-Churches, we
observe unrealistic artifacts (i.e., distorted textures or inharmonious col-
ors) from images with low latent density scores.
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(a) VAE - MNIST

(b) VAE - Fashion-MNIST

(c) VAE - CelebA

Figure 7.3: Top 10 and Bottom 10 generated images in terms of the pro-
posed latent density score on MNIST, Fashion-MNIST and CelebA for
VAE. The samples with high latent density scores display clear instances,
whereas those with low latent density scores are often distorted / blurred.

Figure 7.2 shows images synthesized by a pre-trained text-to-image
diffusion model, i.e., Stable Diffusion, using latent codes with the top 2
highest and lowest latent density scores from eight classes. As shown in
the figure, samples with high latent density scores have superior visual
quality while latent codes with low scores often lead to erroneous samples.
The most obvious failures are the unrealistic backgrounds. For example,
the boat images in the ‘top 2’ rows are high-resolution images with nat-
ural, realistic backgrounds, whereas the backgrounds of the boats in the
‘bottom 2’ rows contain visual noise and artifacts. In some other failure
cases, the generated objects exhibit structural integrity artifacts, i.e., the
spoons and the clocks. We note that all images here are generated with
the same model configuration and the only difference is the initial noise.
Previous works [32, 59, 114] have shown that the guidance methods used
in the denoising process are essential for improving the quality of gener-
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ated images. Here we observe that the randomly initialized noise can also
affect the sample quality significantly.

VAEs and GANs

Figure 7.3 presents images generated by VAEs using codes with the top 10
highest and top 10 lowest latent density scores. As shown in the figure,
our proposed score function is applicable to VAEs as well. For MNIST [81]
and Fashion-MNIST [176], for example, we observe the samples with high
latent density scores display clear instances from the given class, whereas
those with low latent density scores are often distorted / blurred to unrec-
ognizable.

Figure 7.4 shows images generated by StyleGAN2 [65] trained on
FFHQ [63], StyleGAN2-ADA [64] trained on AFHQ Dog [26] and Style-
GAN2 trained on AFHQ Cat [26] using codes with the top 6 highest, top
6 lowest and 6 middle latent density scores. We observe clear generation
quality differences between samples with different scores. For example, on
the AFHQ Dog dataset, the samples with high scores show clear, frontal
dog faces. On the other hand, the dog faces in samples with low density
scores are highly distorted in various ways.

7.3.2 Results on Other Domains and Modalities

Our proposed metric does not rely on any additional feature extrac-
tor, which enables quality assessment in the domains where robust pre-
trained models might not be available. In this section, we show the appli-
cations of our method on quality assessment for generated 3D shapes and
non-ImageNet-like images.

Quality Assessment for 3D Shapes

We first show the application of our method on generated 3D shapes.
Specifically, we generate shapes for four categories, i.e., airplane, chair,
table and rifle, using a StyleGAN2-based 3D shape generation frame-
work, SDF-StyleGAN [198] trained on ShapeNet Core V1 [20]. For each
shape category, we extract the latent embeddings in the W space of SDF-
StyleGAN for 30k randomly sampled vectors and compute the corre-
sponding latent density scores. Figure 7.5 visualizes the generated shapes

104



(a) StyleGAN2 - FFHQ

(b) StyleGAN2-ADA - AFHQ Dog

(c) StyleGAN2 - AFHQ Cat

Figure 7.4: Top 6, Middle 6 and Bottom 6 generated images in terms of
the proposed latent density score on FFHQ for StyleGAN2, on AFHQ Dog
for StyleGAN2-ADA and on AFHQ Cat for StyleGAN2. (Zoom-in for best
view). Samples with high scores are of better quality while samples with
low scores are often highly distorted.

with the top 5 highest and lowest scores. We observe that the generated
3D shapes with high scores have better visual quality with plausible 3D
shapes and complete geometry structures. The generated 3D shapes with
low scores, in contrast, exhibit unrealistic shapes and severe geometry dis-
tortion.

105



Figure 7.5: Top 5 and Bottom 5 generated 3D shapes for four categories
(i.e., airplane, chair, table and rifle) in terms of the proposed latent den-
sity score on ShapeNet Core V1 for SDF-StyleGAN. The generated samples
with high scores have plausible 3D shapes and complete geometry struc-
tures, while samples with low scores exhibit unrealistic shapes and severe
geometry distortion.

Quality Assessment on Non-ImageNet-like Images

Existing quality assessment methods operate under the assumption that
semantically similar images are mapped to points close to each other in
the embedding space of a pre-trained feature extractor. However, this as-
sumption might not hold true across different data domains. In this sec-
tion, we conduct quality assessment for images from two non-ImageNet-
like domains, i.e., the medical domain and anime-style domain. Figure 7.6
shows the samples with the highest and lowest latent density scores / real-
ism scores among 5k candidate samples on each domain. We can see that
the images with the highest and lowest latent density scores exhibit clear
visual difference. On the BreCaHAD dataset [2], for example, the high-
density images contain representative human cells while low-density im-
ages are mostly blank. We note that the low-density samples do not show
degraded perceptual quality. This is probably because although these im-
ages are underrepresented cases in the training set, reconstructing them is
relatively easy due to their simple layouts.

On the other hand, we do not observe visually distinguishable differ-
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(a) StyleGAN2 - Danbooru

(b) StyleGAN2 - BreCaHAD

Figure 7.6: Top and bottom generated images in terms of latent density
score and realism score using StyleGAN2 pre-trained on BreCaHAD [2]
and Danbooru [15] datasets. There is clear visual difference between im-
ages with the highest and lowest latent density scores. In comparison, we
do not observe visually distinguishable difference between samples with
the highest and lowest realism scores.

ences between samples with the highest and lowest realism scores. This
suggests that the pre-trained VGG space used by the realism score is not
semantically meaningful for non-ImageNet-like domain images. In addi-
tion, our method is more computationally efficient, since we directly oper-
ate on the latent codes instead of actually generating all the 5k candidate
images.

7.4 Applications

7.4.1 Latent Face Editing

Our proposed method operates directly on the latent space of the gen-
erator. Thus, it can be seamlessly incorporated into latent-based image
editing methods. Previous work [145] has shown that by moving a latent
code along certain directions in the latent space of a well-trained face syn-
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Figure 7.7: Latent-based face editing results and the corresponding latent
density scores. The latent density scores highly correlate with the quality
of the images.

thesis model, one could control facial attributes of the generated images.
However, if the code is moved too far from the well-behaved regions [201]
of the latent space, the generated samples will suffer from severe changes
[145] as well as degradation in image quality. Here we use our method
to estimate the perceptual quality of the edited samples. Specifically, we
take a latent code and move it along the direction for the attribute “pose"
in the latent space W of StyleGAN2 following [145]. We compute the la-
tent density score of the moved latent code based on Equation 7.1. Figure
7.7 shows the generated edited images and the corresponding scores.

As shown in the figure, the latent density scores well correlate with the
quality of the manipulated images: images with low scores contain arti-
facts while images with high scores are of better quality. Our method pro-
vides a reliable way to assess the quality of edited images even before gen-
erating them, which helps to avoid image corruption during latent space
traversal and facilitates meaningful image manipulation.

7.4.2 Few-Shot Image Classification

Our method enables selecting strictly high-quality generated images with
clear, high-resolution objects. These images are particularly useful for
augmenting the training set in low-shot scenarios. Here we show these
samples can be used in the task of few-shot image classification and
greatly boost performance. Specifically, we synthesize images using a pre-
trained text-to-image model, e.g., Stable Diffusion, with the class name as
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Support Samples
miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

Real - 63.17 ± 0.23 79.26 ± 0.17 68.62 ± 0.27 83.74 ± 0.18

SD-generated
bottom-k 63.43 ± 0.45 71.97 ± 0.37 64.62 ± 0.55 75.08 ± 0.45
random-k 63.87 ± 0.43 72.76 ± 0.38 66.04 ± 0.52 77.10 ± 0.44

top-k 67.15 ± 0.44 73.60 ± 0.37 68.39 ± 0.54 77.42 ± 0.43

Table 7.1: Few-shot image classification accuracy on miniImageNet and
tieredImageNet using images generated from different sets of latent codes.
Using images from the latent codes with highest latent density scores
achieves better classification performance, which validates the superior
quality of images with high latent density scores.

the text condition. The synthesized images are then used as support sam-
ples for the corresponding class. We generate k images for k-shot learning
(k = 1 or 5). For the feature extractor, we use ResNet12 [115] trained fol-
lowing previous work [24]. Table 7.1 compares the performance of using
different sets of latent codes during image generation including: 1) k ran-
domly sampled codes, 2) top-k codes with the highest, and 3) top-k codes
with the lowest latent density scores. Using samples with high latent den-
sity scores as support data leads to better few-shot performance on both
the miniImageNet [159] and tieredImageNet [131] datasets for the 1-shot
and 5-shot settings. In particular, results on 1-shot miniImageNet show
the largest margin, with a 3.28% improvement over using random codes.
This validates the superior quality of images generated from codes with
high latent density scores.

7.5 Analysis

7.5.1 Relationship with Existing Metrics

In this section, we investigate the relationship of our proposedmetric with
other existing metrics. In particular, we generate 2000 fake samples and
rank them based on the latent density score. Each time we select top-k
samples and calculate the corresponding precision / recall / realism scores
of the selected samples. The scores of these metrics under different k val-
ues are shown in Figure 7.8 (a) and Figure 7.8 (b). In addition, we show in
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Figure 7.8: Relationship between our proposed latent density score and
other metrics. Top-k samples are ranked according to our latent density
score. The results of our proposed metric are aligned with existing evalu-
ation metrics on images of common domains.

Figure 7.8 (c) how the latent density score changes when we increase the
value of truncation parameter used in truncation trick. We conduct this
experiment using StyleGAN2 trained on FFHQ [63] and LDM trained on
CelebA-HQ [26].

Precision and Recall. Precision and recall are commonly used evalu-
ation metrics in many tasks, such as image classification or natural lan-
guage processing. In particular, precision measures the fraction of the
generated samples that are realistic. Recall, on the other hand, measures
the fraction of the real data distribution which can be covered by the dis-
tribution of fake data. As shown in Figure 7.8 (a), a small value of k leads
to high precision and low recall. This suggests that the samples with high
latent density scores are of high quality. As k increases, more diverse sam-
ples are selected, which improves recall, while the decrease in precision
indicates the newly selected samples are of inferior quality. The correla-
tion between precision / recall and latent density score validates that our
proposed metric reliably indicates sample quality.

Realism Score. The realism score is a highly relevant metric that
measures the fidelity of an individual generated sample. As shown in Fig-
ure 7.8 (b), as k increases, the average realism score of the top-k selected
samples decreases for both StyleGAN2 and LDM. This suggests that our
proposed metric is aligned with realism score, i.e., samples with low la-
tent density scores also have low realism scores, and vice versa. However,
the realism score relies on another feature extractor to project the gener-
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ated samples to another space. Thus, it is not able to generalize to other
domains or modalities (as shown in Section 7.3.2). Moreover, computing
realism score requires generating image data, which is time-consuming
and not easily scalable, while our method directly operates on the latent
space without the need for generating images.

Truncation Trick. Truncation trick [63] is used to increase the fidelity
of the generated images in GAN-based generative models by moving the
latent code towards the mean latent code. The degree of truncation is
controlled by the truncation parameter ψ, i.e., ψ = 0 indicates full trun-
cation using the mean code and ψ = 1 indicates no truncation. We see
from Figure 7.8 (c) that the latent density score decreases as the trunca-
tion parameter increases. A higher degree of truncation typically leads to
high-fidelity image generation, which, as we show, corresponds to a higher
value of the latent density score. This suggests that the latent density score
is a valid measure for generated sample quality.

7.5.2 Effect of Hyper-Parameter σ
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Figure 7.9: Images with high latent density scores using high and low σ
values on the AFHQ Wild and AFHQ Cat datasets (a) and different recall
rates under different σ values (b). We observe that under a lower σ value,
the images selected as high-density ones exhibit more diversity, which cor-
responds to a higher recall rate.

In this section, we analyze how the choice of σ in Equation 7.1 affects
quality assessment. Equation 7.1 measures the average Gaussian kernel-
ized Euclidean distance between a given code and the latent codes ex-
tracted from training data, with σ being the standard deviation of the
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kernel function. When applying a small σ , the final density value will
rely relatively more on the area surrounding the given code. This will
increase the chance that points residing in local clusters are selected as
high-density points. As a result, the selected samples are likely to be more
diverse. Figure 7.9 (a) shows the images with high latent density scores
on the AFHQ Wild and AFHQ Cat datasets [26] under large and small
σ values respectively. We observe that the selected high-density samples
when using a small σ are more diverse compared to using a large σ . Cor-
respondingly, we observe a higher recall under a smaller σ (as shown in
Figure 7.9 (b)), indicating a more complete coverage of the latent mani-
fold. σ enables us to control the relative contribution of local density and
global density w.r.t to the final density score. In this case, applying a small
σ allows us to select more diverse samples.

7.6 Discussion and Conclusions

We propose a novel approach to estimate sample quality via the latent
space of generative models. Our method can be particularly useful in
many scenarios. When training generative models, our proposed score
points out the underrepresented cases that would possibly require col-
lecting additional data. It also allows us to select high-quality samples
that best benefit downstream tasks. For large-scale generative models,
pre-generation quality assessment can greatly reduce computational costs.
However, only sampling data with high scores, might result in an incom-
plete coverage of the data manifold. This is because the scores are likely to
be higher for large clusters of data representing common cases, as opposed
to minority groups such as rare animal species or uncommonmedical con-
ditions. One way to alleviate this issue is by considering only small neigh-
borhood areas when measuring the density, which can be achieved by ap-
plying a small value of σ . Further, previously proposed sampling tech-
niques such as accept-reject sampling [8] can be used together with our
method to increase sample diversity. Combining our score with diversity-
related scores also allows us to select diverse samples with high quality. In
future work, we intend to extend our method to generative models with
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high latent dimensions, such as deep hierarchical VAEs [157], or video
generative models [173] with an additional temporal dimension in latent
space. For these models, latent dimension reduction techniques might be
a potential solution.

113



Chapter 8

Summary and Future Work

8.1 Summary

In this thesis, we investigate how to generate diverse and reliable data for
few-shot learning tasks, i.e., few-shot classification, fine-grained few-shot
classification, few-shot object detection and class-agnostic object count-
ing. Additionally, we investigate the conditions under which generative
models perform well, ensuring the more reliable use of generated samples
in FSL.

In Chapter 3, we introduce a VAE-based method to generate reliable
data to construct class prototypes for few-shot classification. To achieve
this, we propose a sample selection method to collect a set of representa-
tive samples for training the VAE model. This training scheme effectively
enhances the representativeness of the generated samples and therefore,
improves the few-shot classification results.

In Chapter 4, we introduce a method to generate data that represents
the distribution of intra-class variance to diversify fine-grained few-shot
categories. Specifically, we decompose features into two components, i.e.,
intra-class variance features and class-discriminative features. We model
the intra-class variance features via a common distribution, allowing us to
sample variations to diversify unseen instances. This approach enlarges
the intra-class variance while preserving the class-discriminative features,
thereby benefiting fine-grained few-shot learning.

In Chapter 5, we present a VAE-basedmethod to generate features with
increased crop-related diversity for few-shot object detection (FSOD). We
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first identify the lack of crop-related diversity in few-shot training data as
a crucial problem. To resolve this issue, we propose a novel VAE architec-
ture designed to increase crop-related diversity in the generated samples,
supporting the training of FSOD classifiers. Our results demonstrate that
the increased diversity in the generated samples significantly improves
the current state-of-the-art FSOD performance.

In Chapter 6, we present our method to generate reliable class proto-
types for zero-shot object counting, a new task where only the class name
is available during test time. Starting from a class name, our method can
accurately identify the optimal patches which can then be used as count-
ing exemplars. Experimental results on the current class-agnostic count-
ing dataset validate the effectiveness of our method.

Finally, in Chapter 7, we propose a method to assess sample quality by
examining the latent space of the generative model. Our approach offers
key advantages over previous methods and facilitates downstream FSL
tasks.

8.2 Future Work

Throughout the work presented in this thesis, we have demonstrated var-
ious use cases of generative models for few-shot learning tasks. Along the
research direction of generative modeling, we present three interesting
topics for future development.

8.2.1 Diffusion Models for Semantic Segmentation

Text-to-image generative models have shown impressive performance in
generating photo-realistic images. One of the main advantages of these
models is the strong correspondence between visual pixels and language.
This visual-language correspondence is implicitly encoded in the interme-
diate layers of pre-trained diffusion models and could be highly beneficial
for tasks like semantic segmentation if effectively extracted. For example,
previous works have shown that the internal cross-attention maps con-
tain rich semantic relationships between the visual objects and the corre-
sponding prompts. If we can infer segmentation masks from these atten-
tion maps, we can synthesize an unlimited number of images with pixel-
wise pseudo masks for categories within the generative model’s vocabu-
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lary. These synthesized data, along with the pseudo labels, can serve as
a free data source for training segmentation models. This can be particu-
lar useful for medical imaging, autonomous driving, and satellite imagery
analysis.

8.2.2 Video Editing via Diffusion Models

Video editing using diffusion models presents a compelling direction
for future research. Current advancements involve constructing Text-to-
Video (T2V) generative models trained on large text-video paired datasets.
However, acquiring and annotating these datasets can be prohibitively
expensive. A promising approach is to explore self-supervised learning
techniques within diffusion models to augment their ability to learn from
unlabeled video data. This includes tasks like video inpainting, content
manipulation, and adaptation to various video styles or genres, all with-
out the need for extensive labeled datasets. This direction not only re-
duces dependency on costly annotations but also enhances the versatility
and applicability of diffusion models in video editing tasks.

8.2.3 Diffusion Models for Object Detection

Previous work using diffusion models for object detection [22] formulates
object detection as a denoising diffusion process from noisy boxes to ob-
ject boxes. Another potential direction is to leverage their powerful abil-
ity to generate high-quality and diverse data to improve object detection.
For example, we can create augmented images that introduce variations
in lighting, occlusions, and perspectives, thus enhancing the robustness
of object detectors. Additionally, diffusion models can denoise and en-
hance low-quality images, improving the overall quality of the training
data, which leads to better feature extraction by the detection algorithms.
Furthermore, these models can generate synthetic images that mimic real-
world scenarios, providing additional labeled data that enriches the train-
ing set. This combination of data augmentation, enhancement, and syn-
thetic data generation makes diffusion models a valuable tool for signifi-
cantly improving the accuracy and generalizability of object detection sys-
tems.
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