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A computationally feasible multi-trait 
single-step genomic prediction model 
with trait-specific marker weights
Ismo Strandén1*   and Janez Jenko2 

Abstract 

Background Regions of genome-wide marker data may have differing influences on the evaluated traits. This can 
be reflected in the genomic models by assigning different weights to the markers, which can enhance the accuracy 
of genomic prediction. However, the standard multi-trait single-step genomic evaluation model can be computation-
ally infeasible when the traits are allowed to have different marker weights.

Results In this study, we developed and implemented a multi-trait single-step single nucleotide polymorphism best 
linear unbiased prediction (SNPBLUP) model for large genomic data evaluations that allows for the use of precom-
puted trait-specific marker weights. The modifications to the standard single-step SNPBLUP model were minor 
and did not significantly increase the preprocessing workload. The model was tested using simulated data and marker 
weights precomputed using BayesA. Based on the results, memory requirements and computing time per iteration 
slightly increased compared to the standard single-step model without weights. Moreover, convergence of the model 
was slower when using marker weights, which resulted in longer total computing time. The use of marker weights, 
however, improved prediction accuracy.

Conclusions We investigated a single-step SNPBLUP model that can be used to accommodate trait-specific marker 
weights. The marker-weighted single-step model improved prediction accuracy. The approach can be used for large 
genomic data evaluations using precomputed marker weights.

Background
Genes influencing traits evaluated in livestock produc-
tion, such as milk production and fertility, are usually 
unknown. Therefore, most genomic evaluations in prac-
tice use about 50,000 single nucleotide polymorphisms 
(SNPs) and they are a-priori assumed to have the same 
weight. However, if the most important SNPs or regions 
of the genome for a trait are identified and given more 
weight in the genomic prediction model, the accuracy of 

the model can be improved [1, 2]. These and other stud-
ies have used a single-trait model. In practice, genetic 
evaluations of dairy cattle often use a multi-trait model, 
and the most advanced model is the single-step genomic 
model [3, 4]. A computationally efficient approach for 
including marker weights in a multi-trait single-step 
model has not been presented.

Single-trait single-step genomic best linear unbi-
ased prediction (GBLUP) models typically use equal 
marker weights in the genomic relationship matrix 
[1, 5] which is inverted and used in standard software 
to estimate genomic breeding values (GEBV). In this 
approach, even single-step GBLUP using the algorithm 
for proven and young [6] and the T relationship matrix 
[7] (GTBLUP) approaches can be used, provided the 
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preprocessing step to compute the necessary matrices 
allows the inclusion of weights in the computations. 
This has been tested to work in single-trait single-step 
models [1]. The use of marker weights is equivalent to 
using different variances for the markers.

Brøndum et al. [2] investigated GBLUP types of mod-
els and observed that adding quantitative trait loci 
(QTL) markers improved prediction reliability. Spe-
cifically, when the added QTL markers were included 
using a separate variance component, the model could 
better emphasize these known QTL. When using the 
GBLUP model to include QTL markers in the analysis, 
reliability was increased by up to 4 percentage points 
for production traits in Nordic Holsteins, up to 3 per-
centage points for Nordic Red dairy cattle, and up to 
5 percentage points for French Holsteins. Zhang et  al. 
[1] presented and investigated several approaches 
for computing marker weights for single-trait single-
step models. They observed that the marker-weighted 
single-step method gave more accurate GEBV than 
GBLUP, BayesC, and BayesB. Likewise, Fragomeni 
et al. [5] observed that adding selected variants slightly 
increased the reliabilities of single-step GBLUP GEBV 
for stature in US Holstein.

Genetic evaluation software usually applies the same 
marker weights to all traits in a multi-trait model. Using 
different marker weights for each trait requires a different 
genomic relationship matrix for each trait variance and 
trait-by-trait covariance, e.g., [8]. This increases compu-
tations in the preprocessing and solving steps, compared 
to using no marker weights and a common genomic rela-
tionship matrix for all traits. Single-step SNPBLUP mod-
els [9–12] are equivalent to single-step GBLUP, but avoid 
the use of a genomic relationship matrix by explicitly 
including marker effects in the model. Modeling marker 
effects explicitly may allow for a computationally simpler 
approach for the inclusion of marker-specific weights 
because they do not need to be included in a genomic 
relationship matrix and can be incorporated into the 
marker covariance matrix.

Karaman et  al. [13] investigated different ways of 
assigning weights or variances to SNPs in genomic pre-
diction models. They developed a Bayesian multi-trait 
regression model (BayesN0) where SNPs are grouped 
by genomic region which may have different covariance 
structures. This model was also applied in a single-step 
framework (ssBayesN0). The ssBayesN0 model gave 
higher prediction accuracies than the BayesN0 model. 
Their results suggested that using ssBayesN0 to estimate 
the marker (co)variance components and then apply-
ing them in a multi-trait single-step SNPBLUP approach 
could be a good strategy for routine genomic evaluations. 
However, a multi-trait Bayesian model is computationally 

demanding and not feasible for genetic evaluation of 
large genomic data sets.

In this study, we present and implement a multi-trait 
single-step SNPBLUP approach with trait-specific marker 
weights that can be used to analyze large data sets with 
many genotyped animals. We consider a two-step approach, 
where the first step estimates the marker weights and the 
second step uses them in the single-step model. Weights 
between trait covariances or marker-specific (co)variance 
matrices can be used in the model as well. The approach is 
tested on simulated data by single-step models with or with-
out marker weights. The analyses are contrasted by their 
computational efficiency and prediction ability.

Methods
Multi‑trait single‑step genomic model
We follow the notation presented in [14] but extend it to 
a multi-trait model. Consider a multi-trait linear mixed 
model for single-step GBLUP for T traits. The model for 
trait i is:

where yi is the vector of trait i observations, bi is the vec-
tor of trait i fixed effects, ui,n is the vector of trait i addi-
tive genetic effects for the non-genotyped animals, ui,g is 
the vector of trait i additive genetic effects for the geno-
typed animals, and ei is the vector of trait i residuals. The 
matrices Xi , Wi,n , and Wi,g relate records in yi to the cor-
responding effects.

The linear model (1) can be expressed simpler by com-

bining vectors and matrices. Denote ui =
[
ui,n
ui,g

]
 and 

Wi =

[
Wi,n 0
0 Wi,g

]
 for the additive genetic effects of trait 

i . Furthermore, let y =




y1
...
yT



 , b =




b1
...
bT



 , u =




u1
...
uT



 , 

and e =




e1
...
eT



 , and similarly for the matrices 

X =




X1 0 0

0
. . . 0

0 0 XT



 and W =




W1 0 0

0
. . . 0

0 0 WT



 . Then, the 

model can be written as:

The assumed distribution for the additive genetic effect 
in the models (1) and (2) is u ∼ MVN (0,G0 ⊗H) , where 
G0 is the variance–covariance matrix for the additive 

(1)yi = Xibi +

[
Wi,n 0
0 Wi,g

][
ui,n
ui,g

]
+ ei,

(2)y = Xb+Wu + e.
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effects and H combines pedigree and genomic relation-
ship among animals. Assume the residual covariance 
matrix to be R , i.e., e ∼ MVN (0,R).

Marker weights in single‑step GBLUP
The mixed model equations (MME) for the multi-trait 
model (2) are:

where H−1 = A−1 +

[
0 0

0 G−1
C − A−1

gg

]
 , GC is the genomic 

relationship matrix, A is the pedigree-based relationship 
matrix among all animals, and Agg is the pedigree-based 
relationship matrix among the genotyped animals. The 
GC matrix will be expressed in the following with equal 
or marker-specific weights.

The MME (3) is for the original single-step GBLUP 
model [3, 4] that applies the same genomic relationship 
matrix to all traits and their covariances. This formula-
tion can be used with the same set of marker weights 
applied to each trait. In the following, we will use the sin-
gle-step GTBLUP approach but any single-step GBLUP 
model will follow the same principles [15].

According to the ssGTBLUP model, assume that the 
genomic relationship matrix has the form GC = Gm + C , 
where Gm is the genomic and C the regularization matrix. 
Two common regularization matrices are: Ce = eI and 
Cw = wAgg , where e is a small number such as 0.01 and w 
is the residual polygenic proportion equal to the propor-
tion of genetic variance left unexplained by the markers 
used. Let Gm = ZcBZ

′

c , where Zc is an n by m matrix of 
centered marker genotypes, n is the number of genotyped 
animals, m is the number of SNPs, and B is an m by m 
diagonal scaling and weighting matrix. VanRaden [16] 
method 1 assumes equal weights for each marker, result-
ing in a scaling matrix B that is equal to BVR,e = I 1s for 
Ce and BVR,w = I 1−w

s  for Cw where the scaling constant is 
s = 2

∑m
i=1pi(1− pi) . Marker weights can be represented 

by a diagonal weighting matrix D , e.g., BD,w = D 1−w
s  , 

where it is assumed that tr(D) = m , i.e., the average 
weight is 1. We will assume all weights to be greater than 
zero. For simplicity, we will omit subscripts for the differ-
ent regularization matrices, i.e., e or w.

The inverse of the genomic relationship matrix in 
the MME of a single-step GTBLUP can be expressed 
using the Woodbury identity [7, 17]. When the same 
SNP weights are used for all traits, the inverse can 
be expressed as G−1

C = C−1 − C−1ZcK
−1Z

′

c , where 
K = Z

′

cC
−1Zc + B−1 , where the scaling matrix B has the 

marker weights. When the traits have different weights, 

(3)

[
X

′

R−1X X
′

R−1W

W
′

R−1X W
′

R−1W +G−1
0 ⊗H−1

][
b̂
û

]
=

[
X′R−1y

W′R−1y

]
,

the inverse genomic relationship matrix has different 
weights, also for the trait-by-trait covariances. In prac-
tice, this may lead to a large RAM storage need because 
the inverses of matrix K has to be computed with differ-
ent scaling matrices B and stored for T (T + 1)/2 cases.

Trait‑specific marker weights in single‑step SNPBLUP
The MME of the multi-trait single-step SNPBLUP model 
equivalent to Model (3) with the same marker weights for 
all traits are:

where H−1
C = A−1 +

[
0 0

0 C−1 − A−1
gg

]
 , matrix 

KC =

[
0

C−1Zc

]
 is from the estimated marker effects ĝ to 

genotypes, and K = Z
′

cC
−1Zc + B−1 . As explained in 

[14], this formulation of the single-step model allows an 
iterative solver to be programmed such that no genomic 
related matrices need to be precomputed in order to have 
an efficient solver, in contrast to using the MME (3). 
Instead, all computations can be performed on-the-fly. 
The scaling matrix BD , which includes the marker 
weights, can be used in the computations. However, in 
MME (4), the same marker weights are assumed for each 
trait. Furthermore, note that the covariance matrix for 
the k-th marker is G0BD,k where BD,k is the k-th diagonal 
element of BD . Thus, weights modify the variances of the 
marker effects.

Trait-specific marker weights require some changes to 
MME (4). Following Liu et al. [11], the covariance matrix 
for the effects of the k-th marker is:

where g0,ij is the genetic covariance between traits i and 
j in G0 and Bij,k is the weight for marker k in the posi-
tion of traits i and j . Every matrix Vg,k is required to be 
positive definite. Because the marker effects are assumed 
to be independent, the marker effect covariance matrix 
is block diagonal, with blocks of Vg,k . This requirement 
can be relaxed without changing Eq.  (7) below. Matrix 
Vg,k is a T  by T  matrix with marker (co)variances. In 
other words, the use of weights is equivalent to assuming 

(4)




X

′

R−1X X
′

R−1W 0

W
′

R−1X W
′

R−1W +G−1
0

⊗H−1
C

−G−1
0

⊗ KC

0 −G−1
0

⊗ K
′

C
G−1
0

⊗ K








�b
�u
�g



 =




X′R−1y

W′R−1y

0



,

(5)

Vg,k =





g0,11B11,k g0,12B12,k . . . g0,1TB1T ,k

g0,21B21,k g0,22B22,k . . . g0,2TB1T ,k

...
...

. . .
...

g0,T1BT1,k g0,T2BT2,k . . . g0,TTBTT ,k



,
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marker-specific genetic (co)variance matrices. In the 
original notation of the marker effect vector g , the marker 
(co)variance matrix for all markers can be written as:

This formulation allows for different marker weight 
matrices within each trait as well as between traits, 
which are in the diagonal matrices Bij = Dij

1
s  for trait 

i and j with marker weight matrix Dij . Note that the 
average weight in Dij is 1. When the same weights are 

(6)Vg =





g0,11B11 g0,12B12 . . . g0,1TB1T

g0,21B21 g0,22B22 . . . g0,2TB1T

...
...

. . .
...

g0,T1BT1 g0,T2BT2 . . . g0,TTBTT



.

used for all traits, Eq.  (6) can be simply expressed as 
G0 ⊗ B.

The marker weight matrix Dij may be unknown for 
some combinations of traits i and j . When no marker 
weights are used, D is an identity matrix. However, 
when the marker weights are known only for the traits, 
i.e., Dii for all i is known, the “covariance” weight matrix 
can be set to have a “correlation” of one between traits. 
Thus, Dij =

(
DiiDjj

)0.5 . This will lead to a covariance 
structure that is equal to Vg,k = D0.5

(k)G0
D0.5

(k) , where the 
diagonal matrix D(k) has the weights for all traits of 
marker k.

In single-step multi-trait SNPBLUP, the covariance 
matrix for the breeding values and the SNP effects is:

(7)
Var




un
ug
g



 =




(IT ⊗ T)Ggg

�
IT ⊗ T′

�
+G0 ⊗ (Ann)−1 (IT ⊗ T)Ggg (IT ⊗ TZc)Vg

Ggg

�
IT ⊗ T′

�
Ggg (IT ⊗ Zc)Vg

Vg

�
IT ⊗ (TZc)

′

�
Vg

�
IT ⊗ Z

′

c

�
Vg



,

where the genetic variance for the breeding values of the 
genotyped animals is Var(ug

)
= Ggg = (IT ⊗ Zc)Vg

(
IT ⊗ Z

′

c

)
+G0 ⊗ C , 

where Vg is the marker covariance matrix, Ann is the sub-
matrix for the non-genotyped individuals in the A−1 
matrix, and T = AngA

−1
gg  with Ang representing the rela-

tionship matrix between the non-genotyped and the geno-
typed individuals. Note that Eq.  (7) is a generalization of 
equation A15 in [11]. In particular, when all traits and 
markers have the same weights, i.e. Vg = G0 ⊗ B ,  
the upper left corner of Eq.  (7) can be written 
G0 ⊗

(
Ann + AngA

−1
gg

(
GC − Agg

)
A−1
gg Agn

)
 , which is a 

multi-trait form of the single-step SNPBLUP model vari-
ance of un in [14].

The genetic covariance matrix G0 is included in the 
covariance matrix Vg (7). Thus, it is no longer possible to 
separate the relationship matrix and the genetic covari-
ance matrix. In the usual notation as in [11], we denote 
variance matrix (7) as the Hg matrix. It can be shown 
that its inverse needed in the MME can be expressed 
in such a way that it can be used in solving the MME 
with only small modifications in the standard solving 
approach. When Cw = wAgg , the inverse of Hg is:

H−1
g =




G−1
0 ⊗

�
A11 A12

A21 A22 +

�
1
w − 1

�
A−1
gg

�
−G−1

0 ⊗

�
0

1
wA

−1
gg Zc

�

−G−1
0 ⊗

�
0 1

wZ
′

cA
−1

gg

�
G−1
0 ⊗

�
1
wZ

′

cA
−1
gg Zc

�
+ V−1

g



.

This inverse is similar to the matrix with equal marker 
weights. The only difference is the need for V−1

g  instead 
of G−1

0 ⊗ B−1 in the model with equal marker weights for 
all traits. Note that this inverse can be derived similarly 
for regularization matrix Ce = eI.

Mixed model equations with trait‑specific marker weights
The breeding value of a genotyped animal is expressed as 
ug = (IL ⊗ Zc)g + ag, where ag is the term due to the reg-
ularization [14]. In the previous models corresponding to 
MME (3) and (4), Var

(
ug
)
= G0 ⊗

(
ZcBZ

′

c + C
)
 . This 

allows the use of the same genomic relationship matrix in 
the MME for all traits. In order to use trait-specific 
marker weights, MME (3) would require a separate 
genomic relationship matrix for every trait and for every 
trait-by-trait covariance. In the MME of the single-step 
SNPBLUP (4), this only requires the lower right-hand 
matrix of the coefficient matrix to be changed by using 
the Vg matrix. The MME of trait-specific single-step 
SNPBLUP then are:
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Matrix V−1
g  can be easily computed because it is very 

sparse. According to Eqs. (5) and (6) of the Vg matrix, 
every marker has a matrix of size equal to the num-
ber of traits, where the marker weights for each trait 
(and their covariances) are multiplied by an appro-
priate genetic (co)variance. Liu et  al. [11] expressed 
this submatrix between traits for a marker using the 
genetic standard deviations and genetic correlations, 
with a weight equal to one for the markers. Note that 
they expressed the submatrix for marker i in Vg by 
Bii . Thus, when there are six traits and 50,000 mark-
ers, inverses of 6 by 6 matrices need to be computed 
50,000 times. The added computation due to making 
V−1
g  is relatively small in comparison to a model with-

out marker weights when the number of genotyped 
individuals is large.

Data and models
Simulation
The single-step genomic models with and without 
trait-specific marker weights were tested using simu-
lated data. AlphaSimR [18] was used to simulate 10 
generations after creating the base population. In gen-
eral, the simulation of a single population was like in 
[19] for a single population with production and adap-
tation traits selected with equal weight, except for 
some differences due to the use of different simulation 
software.

The cattle species history was used for generating 
the founder population haplotypes, as programmed in 
AlphaSimR, with an effective population size of 280. 
After the historical simulation, a base population of 
2800 males and 2800 females was generated. The base 
population individuals were mated randomly, each 
mating producing one offspring. After the base popula-
tion, a selection index was used to select the best 200 
males and 2800 females to form the breeding popula-
tion. The selection index used own phenotypes for each 
trait, weighing them equally. Each mating in the breed-
ing population produced one offspring, either male or 
female, at equal numbers. In every subsequent genera-
tion, the best 200 males and 2800 females were selected 
among the group consisting of the current breeding 
population and the offspring produced by the random 
mating of the breeding animals. After 10 generations of 

(8)




X

′

R−1X X
′

R−1W 0

W
′

R−1X W
′

R−1W +G−1
0 ⊗H−1

C −G−1
0 ⊗ KC

0 −G−1
0 ⊗ K

′

C G−1
0 ⊗ Z

′

cC
−1Zc + V−1

g








�b
�u
�g



 =




X′R−1y

W′R−1y
0



.

selection and breeding, the final pedigree consisted of 
16,940 females and 16,940 males.

Every simulated individual had phenotypes for corre-
lated production and adaptation traits, with heritabili-
ties of 0.3 and 0.1, respectively, a genetic correlation of 
− 0.3, and a residual correlation of zero. The genome 
consisted of 30 chromosomes. The two traits were 
pleiotropic and determined by 900 QTL, i.e., 30 QTL 
per chromosome, which were randomly sampled from 
the simulated segregating sites, utilizing cattle demo-
graphic history to ensure consistent spacing across 
both individual chromosomes and the entire genome. 
The QTL effects for the two traits were simulated from 
a Gamma density with shape 0.4 and scale 1.0. The sim-
ulation was replicated ten times.

Data for single‑step evaluations
Data used for the single-step genomic evaluations was 
extracted from the simulated data. Only phenotypes 
from the females were kept, excluding those from the 
last generation. The pedigree included 33,880 animals, 
of which 15,540 had phenotypes. Genotypes on 54,000 
SNPs were used from the sires of females and from all 
animals in the last three generations. There were about 
11,726 animals with genotypes, of which 2800 were val-
idation animals in the last generation, 5600 were from 
the two generations before the last generation, and 
the rest were sires of females before these generations. 
The basic genomic data consisted of 54,000 SNPs. Two 
additional genomic datasets were formed that describe 
a situation where genome-wide association studies 
have located QTL. In these cases, genotypes of the larg-
est QTL that, together, explained either 5 or 20% of 
the total genetic variance were included, resulting in, 
respectively, 54,010 and 54,048 markers included in the 
analyses.

Single‑step models and comparison statistics
Breeding values were estimated using single-step 
genomic models, in which the markers had either no 
weights (i.e. equal weights across SNPs and traits), com-
mon weights across the traits, or trait-specific weights. 
For the marker-weighted models, the weights were com-
puted using single-trait BayesA, as posterior means of 
the marker-specific scaling values [20].
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For each replicate, we conducted six separate 
BayesA analyses, one for each trait and genomic data 
combination, resulting in 60 BayesA analyses. The 
phenotypes of the BayesA analyses were deregressed 
breeding values, which were derived from the pedi-
gree-based multi-trait animal model EBV. The der-
egression computations used values of only those 
individuals who had either own or progeny pheno-
types. Weights used in the deregression calculations 
were computed from the animal model by the reverse 
reliability estimation approach described in [21]. The 
deregressed values and their weights were used in the 
BayesA analyses to compute the weights to be used 
for the marker-weighted single-step models. These 
marker weights from BayesA were standardized to 
have a mean of 1.

Three models with the common marker weights were 
used. In two models, either the production or the adap-
tation trait weights were used. In the third case, the 
average of the standardized production and adaptation 
weights was used. The trait-specific marker-weighted 
model used the production and adaptation weights for 
the respective traits. In all trait-specific marker-weighted 
models, the correlation of weights between the traits was 
equal to 1.

In all analyses that used genotype data, the genotype 
matrix was centered and scaled using base population 
allele frequencies estimated using the Bpop software 
[22] and a scaling constant s = 2

∑m
i=1pi(1− pi) that was 

also based on the estimated base population allele fre-
quencies. The residual polygenic proportion was set to 
5%. The ssSNPBLUP models used the full pedigree and 
the true variance components used for simulation. The 
GEBV obtained from the single-step models were used to 
compute following validation statistics for the genotyped 
individuals in the last generation: the correlation between 
the true BV and GEBV and linear regression of the true 
BV on GEBV.

Solving the single‑step models
All single-step models were solved with the software 
MiX99 [23, 24], which uses the preconditioned conjugate 
gradient (PCG) and iteration on data methods. A block 
diagonal preconditioner was used, where the blocks were 
of the size equal to the number of traits, the blocks were 
within each level of an effect, and their element values 
were as in the coefficient matrix of the MME. However, 
for marker effect k, the block was G−1

0 ck + V−1
g,k where 

ck = 1
wZ

′

c,kDA
Z
c,k

 , Zc,k is k-th column in the Zc matrix 

and DA is the diagonal of matrix A−1
gg  . The convergence 

criterion for the PCG iteration was the relative difference 
between the left- and right-hand sides of the MME:

where CMME is the coefficient matrix of MME, s[k] is the 
vector of solutions at round k , and rMME is the right-hand 
side vector. For all evaluations, convergence was assumed 
to be reached when Cr <  10–7. We report the average com-
puting time per iteration and the average number of PCG 
iterations across the 10 replicates, as well as the average 
of the standard deviation of the estimated marker weights 
across the replicates which measures the deviation in the 
MME with equal or different marker weights.

Results
The three marker datasets required about the same num-
ber of iterations to converge and about the same computing 
time per iteration when no weights were used in the single-
step model (Table 1). Likewise, the regression and predic-
tion accuracy values were very similar for the three marker 
data sets, even when QTL were included among the SNP 
markers. In other words, there was no increase in the pre-
diction accuracy even when the marker set contained QTL 
that together explained 20% of the genetic variation.

Cr =

√(
CMMEs[k] − rMME

)′(
CMMEs[k] − rMME

)

rMME
′rMME

,

Table 1 Regression of the true breeding value on the estimated breeding value (b) for production and adaptation, and their 
correlation (r) in the last generation (standard error in the parenthesis), for the single-step models without marker weights using SNP 
data containing QTL that together explained 0, 5, or 20% of the genetic variance

p QTL = QTL that explained p% of the genetic variance included in the model as SNPs in addition to the 54,000 SNPs

N = Average number of iterations until convergence

Time = Average PCG computing time per iteration in seconds

p QTL N Time Production Adaptation

b r b r

0 421 0.46 1.01 (0.010) 0.68 (0.006) 0.97 (0.021) 0.52 (0.010)

5 426 0.46 1.01 (0.010) 0.68 (0.006) 0.97 (0.021) 0.53 (0.010)

20 437 0.46 1.02 (0.010) 0.68 (0.006) 0.98 (0.021) 0.53 (0.010)
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The use of common marker weights for both traits 
increased the number of iterations until convergence 
considerably (Table  2), often about 3 to 4 times that of 
the model without marker weights. The increase tended 
to be larger the more the marker weights deviated from 1, 
which was indicated by a larger average standard devia-
tion of the weights. The standard deviation of the marker 
weights computed for production tended to be higher 
than those for adaptation, and this difference was rep-
resented in a greater number of PCG iterations. Includ-
ing marker weights did not affect computing times per 
iteration.

Including common weights for the two traits improved 
the prediction accuracy of the trait whose weights were 
used, but not necessarily the other trait. Prediction 
accuracy increased only slightly when more QTLs were 
included in the marker set. When the marker weights 

were based on the average estimated weights across 
the two traits, prediction accuracy increased for both 
traits but did not always reach the prediction accu-
racy achieved when using the weights estimated for the 
matching trait, but the difference was quite small. As pre-
diction accuracy increased, the regression coefficients 
reduced further below one, in particular for production, 
suggesting an increase in bias.

The use of marker-specific weights in the single-step 
SNPBLUP model (Table 3) took more iterations to con-
verge than the models without weights but a similar 
number as models with equal weights for both traits. The 
average number of iterations required was not as high 
as in models that used the marker weights estimated for 
production, but not as low as those required for mod-
els that used weights estimated for adaptation. As with 
the model with equal marker weights for both traits, 

Table 2 Regression of the true breeding value on the estimated breeding value (b) for production and adaptation, and their 
correlation (r) in the last generation (standard error in the parenthesis), for the single-step models with common marker weights using 
SNP data containing QTL that together explained 0, 5, or 20% of the genetic variance

The used marker weights had been computed for production (P) and adaptation (A), or was their average (AP)

p QTL = QTL that explained p% of the genetic variance included in the model as SNPs in addition to the 54,000 SNPs

N = Average number of iterations until convergence

Time = Average PCG computing time per iteration in seconds

SD = Average standard deviation of marker weights

Weights p QTL N Time SD Production Adaptation

b r b r

P 0 1760 0.45 6.80 0.95 (0.011) 0.74 (0.008) 0.97 (0.022) 0.53 (0.009)

A 0 1459 0.45 2.37 1.01 (0.010) 0.68 (0.006) 0.93 (0.018) 0.56 (0.010)

AP 0 1706 0.45 5.24 0.95 (0.011) 0.73 (0.008) 0.96 (0.020) 0.55 (0.010)

P 5 1741 0.46 8.74 0.94 (0.011) 0.75 (0.009) 0.99 (0.021) 0.53 (0.009)

A 5 1589 0.46 3.36 1.02 (0.010) 0.68 (0.006) 0.93 (0.018) 0.58 (0.011)

AP 5 1743 0.46 6.73 0.94 (0.012) 0.75 (0.009) 0.98 (0.018) 0.57 (0.010)

P 20 1836 0.46 8.82 0.93 (0.009) 0.78 (0.008) 0.99 (0.023) 0.54 (0.009)

A 20 1610 0.46 3.72 1.02 (0.010) 0.68 (0.006) 0.93 (0.017) 0.59 (0.010)

AP 20 1808 0.46 6.83 0.94 (0.010) 0.78 (0.008) 0.98 (0.018) 0.58 (0.010)

Table 3 Regression of the true breeding value on the estimated breeding value (b) for production and adaptation, and their 
correlation (r) in the last generation (standard error in parenthesis) for single-step models with trait-specific marker weights using SNP 
data containing QTL that together explained 0, 5, or 20% of the genetic variance

p QTL = QTL that explained p% of the genetic variance included in the model as SNPs in addition to the 54,000 SNPs

N = Average number of iterations until convergence

Time = Average PCG computing time per iteration in seconds

p QTL N Time Production Adaptation

b r b r

0 1557 0.45 0.95 (0.011) 0.74 (0.008) 0.93 (0.018) 0.56 (0.010)

5 1651 0.46 0.94 (0.011) 0.75 (0.009) 0.93 (0.017) 0.57 (0.011)

20 1735 0.46 0.93 (0.009) 0.78 (0.008) 0.93 (0.017) 0.59 (0.010)
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the larger the average standard deviation of the marker 
weights the greater the number of iterations until conver-
gence. The standard deviations for the traits are shown in 
Table 2. For example, the average standard deviations for 
the first model in Table 3 are 6.80 and 2.37 for production 
and adaptation, respectively, from the first two models 
in Table 2. As more QTL were included among the SNP 
markers, the average standard deviations increased, thus 
increasing the number of iterations until convergence 
(Table 3). Computing times per iteration were about the 
same.

Prediction accuracies for the trait-specific marker 
weight models were approximately the same as those of 
models with common weights when the weights were 
based on their own trait. However, the regression coef-
ficients were slightly further below 1, suggesting an 
increase in bias. In addition, the regression coefficients 
of the trait-specific marker weight models were always 
lower than those without weights in Table 1, suggesting 
an increase in bias in exchange for an increase in the pre-
diction accuracy.

Discussion
The use of weights in single-step SNPBLUP increased 
prediction accuracies but also extended computing time 
due to the need for more iterations until convergence. 
The increase in prediction accuracy was substantial for 
the production trait (an increase up to 0.10) but smaller 
for the adaptation trait (an increase up to 0.06). Analyz-
ing large real data is likely to yield significantly smaller 
improvements compared to the gains observed with this 
small simulated dataset.

The simple single-trait approach to compute the 
weights (BayesA) and the assumption of one for the cor-
relation between the trait weights may have limited the 
accuracy increase for adaptation. Accurate estimation of 
the weights requires more investigation and larger geno-
type data set. Alternatively, a multi-trait Bayesian analysis 
can be used to estimate marker-specific variance–covari-
ance matrices [13]. A multi-trait model can enhance the 
prediction accuracy by more correctly accounting for the 
correlations between traits for genome regions that affect 
one trait more than the other. For example, in our study, 
all correlations between traits within markers were nega-
tive, driven by the overall genetic covariance matrix G0 . 
Thus, although the use of marker weights can increase 
prediction accuracy, a better approach than used here 
may be available for a multi-trait single-step model. 
Because the estimation of marker weights by a multi-
trait Bayesian model can be time consuming, the same 
weights for the traits can be used in successive single-
step SNPBLUP evaluations as data accumulates, but with 
a possible decrease in prediction accuracy.

We assumed that all weights were non-zero to make the 
marker covariance matrix Vg invertible. Some markers 
may have a zero weight when the weights have been esti-
mated with a multi-trait model [13] or a variable selec-
tion model like BayesB [20]. We avoided this problem 
by using single-trait BayesA and setting the correlation 
between traits in the marker weight matrix equal to one. 
Marker weights estimated by another approach can be 
used after scaling them to be one on average. However, 
any zero weights must be replaced by a small positive 
value, e.g.  10–6. Because the Vg matrix has to be positive 
definite, simply replacing zero weights by a small positive 
value may not be enough.

We presented a single-step SNPBLUP model with 
trait-specific marker weights that required only a small 
change in the MME of a regular single-step SNPBLUP. 
The change involved computation of the marker variance 
matrix Vg and its inverse, which is feasible even for large 
numbers of genotyped individuals because the values in 
the Vg matrix are not affected by the genotype data and 
the Vg matrix has a block-diagonal structure, allowing for 
easy computation and low RAM use. However, this did 
lead to poor convergence and a several-fold increase in 
the solving time. In practice, we have observed that the 
convergence is poorer when the weights deviate more 
from one, i.e., from the standard single-step model with-
out weights. The commonly used single-step GBLUP and 
GTBLUP approaches tend to have better convergence 
properties [14] but have different kinds of computational 
challenges when including trait-specific marker weights 
because of the need to compute and store matrices for 
every trait and for every trait-by-trait combination of 
marker weights.

The regular single-step GBLUP approach with trait-
specific marker weights will be computationally demand-
ing. Consider a two-trait model. When the markers have 
different weights by trait, the genetic covariance matrix 
of the genotyped individuals can be expressed as:

where the diagonal matrix Bij has marker weights for 
traits i and j , and Vg is the covariance between the mark-
ers. This is no longer in the form of G0 ⊗

(
ZcBZ

′

c + C
)
 , 

where the Kronecker product allows separate inversion 
of the genetic covariance and the genomic relationship 
matrices. Consequently, for T  traits, T (T + 1)/2 genomic 
relationship matrices must be built and matrix Gu of size 

Gu = Var

�
u1,g

u2,g

�
=




g0,11

�
ZcB11Z

′

c + C

�
g0,12

�
ZcB12Z

′

c + C

�

g0,21

�
ZcB21Z

′

c + C

�
g0,22

�
ZcB22Z

′

c + C

�





= (I2 ⊗ Zc)

�
g0,11B11 g0,12B12

g0,21B21 g0,22B22

��
I2 ⊗ Z

′

c

�
+G0 ⊗ C

= (I2 ⊗ Zc)Vg

�
I2 ⊗ Z

′

c

�
+G0 ⊗ C,
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Tn must be inverted for its use in MME, where n is the 
number of genotyped individuals. Thus, when the num-
ber of genotyped individuals is large, the regular single-
step GBLUP will become infeasible due to long 
computing time and memory needs.

The component-wise ssGTBLUP approach is more 
efficient than the regular ssGBLUP when no weights are 
used [7]. However, the use of component-wise ssGTB-
LUP can become infeasible in practice as well when 
trait-specific marker weights are used. The Woodbury 
matrix identity for a model with trait-specific marker 
weights can be used in the computations to invert Gu : 

G
−1
u =

(
G
−1
0 ⊗ C

−1
)
−

(
G
−1
0 ⊗ C

−1
)
(I2 ⊗ Zc)

((
I2 ⊗ Z

′

cC
−1

Zc

)
+ V

−1
g

)−1(
I2 ⊗ Z

′

c

)(
G
−1
0 ⊗ C

−1
)
 . In Van-

denplas et  al. [14], precomputing the components for 
the regular component-wise ssGTBLUP with 2.61 mil-
lion genotyped individuals with m = 47,006 SNPs took 
22.3  h. The major computational task is due to 
Z

′

cC
−1Zc . In the model with trait-specific marker 

weights, making the Kronecker product I2 ⊗ Z
′

cC
−1Zc 

and adding V−1
g  to this is computationally not very 

demanding. However, increasing the number of traits 
will require a matrix of size Tm to be inverted instead of 
an m size matrix. When there are 10 traits and 50,000 
markers in the model, this matrix would have a size of 
500,000 and would take about 1  TB memory when 
stored as double precision floating point numbers. 
Thus, while computational challenges with ssGTBLUP 
do not change as dramatically with an increase in the 
number of traits compared to ssGBLUP by the use of 
marker weights, the memory required with the compo-
nent-wise ssGTBLUP, as in ssGBLUP, can become a 
bottleneck in a multi-trait model with trait-specific 
marker weights.

The single-step SNPBLUP approach presented here 
assumes that the weights have been estimated using 
a model similar to the single-step SNPBLUP model 
using the marker weights. In other words, it requires 
a weight for every marker-trait combination that is 
included in the model. This is typical in most genetic 
evaluations, even if they include metafounders [25] or 
J factors [26]. However, some models are quite com-
plex, such as the reduced rank random regression 
test-day model for milk production used in the joint 
Nordic evaluation [27]. For such a model, different 
weights can be assigned to different random regres-
sion covariables, which can differ by trait. Perhaps, the 
same weights as estimated using 305-day observations 
for a trait can be used for the covariables within a trait 
in a random regression model. However, in a reduced 
rank model, weights must be assigned to functions of 

trait covariables that are used over traits. Further work 
is needed to investigate the use of weights estimated 
using a model other than the marker weighted single-
step SNPBLUP model used, and to find computation-
ally efficient methods for estimating marker weights.

Conclusions
A multi-trait single-step model with individual marker 
weighting is simple when the weights are the same across 
traits. Trait-specific marker weights in a multi-trait 
model can be included in a single-step SNPBLUP model 
when the weights have been precomputed. This required 
only small modifications to software for a model without 
weights. Alternative approaches to single-step SNPB-
LUP exist but can be computationally more challeng-
ing. Weighting increased computational requirements of 
the iterative solver only slightly. The two-step approach 
of first estimating the marker weights by trait and then 
using these in single-step SNPBLUP may provide a 
computationally feasible strategy to increase prediction 
accuracy even for large genomic single-step evaluations. 
However, the number of iterations until convergence 
increased considerably, suggesting the weights used were 
not optimal. Convergence became poorer as the esti-
mated marker weights deviated from equal weights. Fur-
thermore, the presence of QTL among the markers used 
in the genetic evaluation increased prediction accuracy 
marginally. Thus, further investigation is needed to find 
a better approach for estimating trait-specific marker 
weights for a single-step model.
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