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Abstract. A novel Algebraic Topology approach to Supersymmetry (SUSY) and Symme-
try Breaking in Quantum Field and Quantum Gravity theories is presented with a view
to developing a wide range of physical applications. These include: controlled nuclear
fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics
at high energy densities, dynamic Jahn-Teller effects, superfluidity, high temperature su-
perconductors, multiple scattering by molecular systems, molecular or atomic paracrystal
structures, nanomaterials, ferromagnetism in glassy materials, spin glasses, quantum phase
transitions and supergravity. This approach requires a unified conceptual framework that
utilizes extended symmetries and quantum groupoid, algebroid and functorial representa-
tions of non—Abelian higher dimensional structures pertinent to quantized spacetime topol-
ogy and state space geometry of quantum operator algebras. Fourier transforms, generalized
Fourier—Stieltjes transforms, and duality relations link, respectively, the quantum groups and
quantum groupoids with their dual algebraic structures; quantum double constructions are
also discussed in this context in relation to quasitriangular, quasiHopf algebras, bialgebroids,
Grassmann-Hopf algebras and Higher Dimensional Algebra. On the one hand, this quantum
algebraic approach is known to provide solutions to the quantum Yang-Baxter equation. On
the other hand, our novel approach to extended quantum symmetries and their associated
representations is shown to be relevant to locally covariant General Relativity theories that
are consistent with either nonlocal quantum field theories or local bosonic (spin) models
with the extended quantum symmetry of entangled, ‘string-net condensed’ (ground) states.
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1 Introduction

The theory of scattering by partially ordered, atomic or molecular, structures in terms of paracrys-
tals and lattice convolutions was formulated by Hosemann and Bagchi in [123] using basic tech-
niques of Fourier analysis and convolution products. A natural generalization of such molecular,
partial symmetries and their corresponding analytical versions involves convolution algebras - a
functional /distribution [205, 206] based theory that we will discuss in the context of a more general
and original concept of a convolution—algebroid of an extended symmetry groupoid of a paracrystal,



of any molecular or nuclear system, or indeed, any quantum system in general, including quantum
fields and local quantum net configurations that are endowed with either partially disordered or
‘completely’ ordered structures. Further specific applications of the paracrystal theory to X-ray
scattering, based on computer algorithms, programs and explicit numerical computations, were
subsequently developed by the first author [12] for one-dimensional paracrystals, partially ordered
membrane lattices [13] and other biological structures with partial structural disorder [19]. Such
biological structures, ‘quasi-crystals’, and the paracrystals, in general, provide rather interesting
physical examples of such extended symmetries (cf. [122]).

Further statistical analysis linked to structural symmetry and scattering theory considerations
shows that a real paracrystal can be defined by a three dimensional convolution polynomial with a
semi—empirically derived composition law, %, [124]. As was shown in [12, 13]-supported with com-
puted specific examples— several systems of convolution can be expressed analytically, thus allowing
the numerical computation of X-ray, or neutron, scattering by partially disordered layer lattices via
complex Fourier transforms of one-dimensional structural models using fast digital computers. The
range of paracrystal theory applications is however much wider than the one-dimensional lattices
with disorder, thus spanning very diverse non—crystalline systems, from metallic glasses and spin
glasses to superfluids, high-temperature superconductors, and extremely hot anisotropic plasmas
such as those encountered in controlled nuclear fusion (for example, JET) experiments. Other
applications— as previously suggested in [11]- may also include novel designs of ‘fuzzy’ quantum
machines and quantum computers with extended symmetries of quantum state spaces.

1.1 Convolution Product of Groupoids and the Convolution Algebra of Func-
tions

A salient, and well-fathomed concept from the mathematical perspective concerns that of a C*-
algebra of a (discrete) group (see e.g. [75]). The underlying vector space is that of complex valued
functions with finite support, and the multiplication of the algebra is the fundamental convolution
product which it is convenient for our purposes to write slightly differently from the common formula
as

(f+9)(z) =D f(@)g(y) (1.1)

TY==2

and *-operation

fr@) = flz=1). (1.2)

The more usual expression of these formulas has a sum over the elements of the group. For topo-
logical groups, where the underlying vector space consists of continuous complex valued functions,
this product requires the availability of some structure of measure and of measurable functions,
with the sum replaced by an integral. Notice also that this algebra has an identity, the distribution
function 1, which has value 1 on the identity 1 of the group, and has zero value elsewhere.

Given this convolution/distribution representation that combines crystalline (‘perfect’ or global—
group, and/or group-like symmetries) with partial symmetries of paracrystals and glassy solids
on the one hand, and also with non-commutative harmonic analysis [152] on the other hand,



we propose that several extended quantum symmetries can be represented algebraically in terms
of certain structured groupoids, their C*-convolution quantum algebroids, paragroup/ quantized
groups and/or other more general mathematical structures that will be introduced in this report.
It is already known that such extensions to groupoid and algebroid/coalgebroid symmetries require
also a generalization of non—commutative harmonic analysis [232, 233] which involves certain Haar
measures, generalized Fourier-Stieltjes transforms and certain categorical duality relationships rep-
resenting very general mathematical symmetries as well. Proceeding from the abstract structures
endowed with extended symmetries to numerical applications in quantum physics always involves
representations through specification of concrete elements, objects and transformations. Thus,
groupoid and functorial representations that generalize group representations in several, meaning-
ful ways are key to linking abstract, quantum operator algebras and symmetry properties with
actual numerical computations of quantum eigenvalues and their eigenstates, as well as a wide
variety of numerical factors involved in computing quantum dynamics. The well-known connection
between groupoid convolution representations and matrices [226] is only one of the several nu-
merical computations made possibile via groupoid representations. A very promising approach to
nonlinear (anharmonic) analysis of aperiodic quantum systems represented by rigged Hilbert space
bundles may involve the computation of representation coefficients of Fourier—Stieltjes groupoid
transforms that we will also discuss briefly in Section 7.

Currently, however, there are important aspects of quantum dynamics left out of the invariant,
simplified picture provided by group symmetries and their corresponding representations of quan-
tum operator algebras [104]. An alternative approach proposed in [116] employs differential forms
to find symmetries.

Often physicists deal with such problems in terms of either spontaneous symmetry breaking
or approximate symmetries that require underlying explanations or ad-hoc dynamic restrictions
that are semi-empirical. A well-studied example of this kind is that of the dynamic Jahn—Teller
effect and the corresponding ‘theorem’ (Ch. 21 on pp. 807-831, as well as p.735 of [1]) which in
its simplest form stipulates that a quantum state with electronic non—Kramers degeneracy may
be unstable against small distortions of the surroundings, that would lower the symmetry of the
crystal field and thus lift the degeneracy (i.e., cause observable splitting of the corresponding
energy levels); this effect occurs in certain paramagnetic ion systems via dynamic distortions of
the crystal field symmetries around paramagnetic or high-spin centers by moving ligands that are
diamagnetic. The established physical explanation is that the Jahn—Teller coupling replaces a purely
electronic degeneracy by a vibronic degeneracy (of exactly the same symmetry!). The dynamic, or
spontaneous breaking of crystal field symmetry (for example, distortions of the octahedral or cubic
symmetry) results in certain systems in the appearance of doublets of symmetry 73 or singlets
of symmetry 1 or 5. Such dynamic systems could be locally expressed in terms of symmetry
representations of a Lie algebroid, or globally in terms of a special Lie (or Lie-Weinstein) symmetry
groupoid representations that can also take into account the spin exchange interactions between
the Jahn-Teller centers exhibiting such quantum dynamic effects. Unlike the simple symmetries
expressed by group representations, the latter can accommodate a much wider range of possible
or approximate symmetries that are indeed characteristic of real, molecular systems with varying
crystal field symmetry, as for example around certain transition ions dynamically bound to ligands
in liquids where motional narrowing becomes very important. This well known example illustrates



the importance of the interplay between symmetry and dynamics in quantum processes which is
undoubtedly involved in many other instances including: quantum chromodynamics, superfluidity,
spontaneous symmetry breaking, quantum gravity and Universe dynamics (i.e., the inflationary
Universe.

Therefore, the various interactions and interplay between the symmetries of quantum operator
state space geometry and quantum dynamics at various levels leads to both algebraic and topo-
logical structures that are variable and complex, well beyond symmetry groups and well-studied
group algebras (such as Lie algebras—see for example [104]). A unified treatment of quantum phe-
nomena/dynamics and structures may thus become possible with the help of Algebraic Topology,
non-Abelian treatments; such powerful mathematical tools are capable of revealing novel, funda-
mental aspects related to extended symmetries and quantum dynamics through a detailed analysis
of the variable geometry of (quantum) operator algebra state spaces. At the center stage of non-
Abelian Algebraic Topology are groupoid and algebroid structures with their internal and external
symmetries [226] that allow one to treat physical spacetime structures and dynamics within an
unified categorical, higher dimensional algebra framework [46]. As already suggested in our previ-
ous report, the interplay between extended symmetries and dynamics generates higher dimensional
structures of quantized spacetimes that exhibit novel properties not found in lower dimensional
representations of groups, group algebras or Abelian groupoids.

It is also our intention here to explore, uncover, and then develop, new links between several
important but seemingly distinct mathematical approaches to extended quantum symmetries that
were not considered in previous reports.

2  Quantum Groups, Quantum Operator Algebras, Ocneanu Para-
groups, Quantum Groupoids and Related Symmetries

Following earlier attempts by Segal to formulate postulates [210] for quantum mechanics (and also
to identify irreducible representations of operator algebras [211]), quantum theories adopted a new
lease of life post 1955 when von Neumann beautifully re-formulated Quantum Mechanics (QM)
in the mathematically rigorous context of Hilbert spaces and operator algebras. From a current
physics perspective, von Neumann’s approach to quantum mechanics has done however much more:
it has not only paved the way to expanding the role of symmetry in physics, as for example with
the Wigner-Eckhart theorem and its applications, but also revealed the fundamental importance
in quantum physics of the state space geometry of (quantum) operator algebras.

The basic definition of von Neumann and Hopf algebras (see for example [155]), as well as
the topological groupoid definition, are recalled in the Appendix to maintain a self-contained pre-
sentation. Subsequent developments of the quantum operator algebra were aimed at identifying
more general quantum symmetries than those defined for example by symmetry groups, groups of
unitary operators and Lie groups, thus leading to the development of theories based on various
quantum groups [83]. Several, related quantum algebraic concepts were also fruitfully developed,
such as: the Ocneanu paragroups-later found to be represented by Kac—-Moody algebras, quantum
groups represented either as Hopf algebras or locally compact groups with Haar measure, ‘quan-
tum’ groupoids represented as weak Hopf algebras, and so on. The Ocneanu paragroups case is
particularly interesting as it can be considered as an extension through quantization of certain fi-



nite group symmetries to infinitely-dimensional von Neumann type I1; algebras, and are, in effect,
quantized groups that can be nicely constructed as Kac algebras; in fact, it was recently shown that
a paragroup can be constructed from a crossed product by an outer action of a Kac (-Moody) alge-
bra. This suggests a relation to categorical aspects of paragroups (rigid monoidal tensor categories
[222, 243]). The strict symmetry of the group of (quantum) unitary operators is thus naturally
extended through paragroups to the symmetry of the latter structure’s unitary representations;
furthermore, if a subfactor of the von Neumann algebra arises as a crossed product by a finite
group action, the paragroup for this subfactor contains a very similar group structure to that of
the original finite group, and also has a unitary representation theory similar to that of the original
finite group. Last-but-not least, a paragroup yields a complete invariant for irreducible inclusions
of AFD von Neumannn I/; factors with finite index and finite depth (Theorem 2.6. of [204]). This
can be considered as a kind of internal, ‘hidden’ quantum symmetry of von Neumann algebras.

On the other hand, unlike paragroups, quantum locally compact groups are not readily con-
structed as either Kac or Hopf C*-algebras. In recent years the techniques of Hopf symmetry
and those of weak Hopf C*-algebras, sometimes called quantum groupoids (cf. Béhm et al. [35]),
provide important tools—in addition to the paragroups— for studying the broader relationships of
the Wigner fusion rules algebra, 6j—symmetry [193], as well as the study of the noncommutative
symmetries of subfactors within the Jones tower constructed from finite index depth 2 inclusion of
factors, also recently considered from the viewpoint of related Galois correspondences [173].

We shall proceed at first by pursuing the relationships between these mainly algebraic concepts
and their extended quantum symmetries, also including relevant computation examples; then we
shall consider several further extensions of symmetry and algebraic topology in the context of local
quantum physics/algebraic quantum field theory [200, 119], symmetry breaking, quantum chro-
modynamics and the development of novel supersymmetry theories of quantum gravity. In this
respect one can also take spacetime ‘inhomogeneity’ as a criterion for the comparisons between
physical, partial or local, symmetries: on the one hand, the example of paracrystals reveals ther-
modynamic disorder (entropy) within its own spacetime framework, whereas in spacetime itself,
whatever the selected model, the inhomogeneity arises through (super) gravitational effects. More
specifically, in the former case one has the technique of the generalized Fourier—Stieltjes transform
(along with convolution and Haar measure), and in view of the latter, we may compare the re-
sulting ‘broken’/paracrystal-type symmetry with that of the supersymmetry predictions for weak
gravitational fields (e.g., ‘ghost’ particles) along with the broken supersymmetry in the presence of
intense gravitational fields. Another significant extension of quantum symmetries may result from
the superoperator algebra/algebroids of Prigogine’s quantum superoperators which are defined only
for irreversible, infinite-dimensional systems [186].

2.1 Solving Quantum Problems by Algebraic Methods: Applications
to Molecular Structure, Quantum Chemistry and Quantum Theories

As already discussed in the Introduction, one often deals with continuity and continuous trans-
formations in natural systems, be they physical, chemical or self-organizing. Such continuous
‘symmetries’ often have a special type of underlying continuous group, called a Lie group. Briefly,
a Lie group G is generally considered having a (smooth) C°° manifold structure, and acts upon
itself smoothly. Such a globally smooth structure is surprisingly simple in two ways: it always



admits an Abelian fundamental group, and seemingly also related to this global property, it admits
an associated, unique— as well as finite— Lie algebra that completely specifies locally the properties
of the Lie group everywhere.

2.1.1 The Finite Lie Algebra of Quantum Commutators and their Unique (continu-
ous) Lie Groups.

Lie algebras can greatly simplify quantum computations and the initial problem of defining the
form and symmetry of the quantum Hamiltonian subject to boundary and initial conditions in the
quantum system under consideration. However, unlike most regular abstract algebras, a Lie algebra
is not associative, and it is in fact a vector space [118]. It is also perhaps this feature that makes
the Lie algebras somewhat compatible, or ‘consistent’, with quantum logics that are also thought
to have non-associative, non—distributive and non—commutative lattice structures. Nevertheless,
the need for ‘quantizing’ Lie algebras in the sense of a certain non-commutative ‘deformation’
apparently remains for a quantum system, especially if one starts with a ‘classical’ Poisson algebra
[140]. This requirement remains apparently even for the generalized version of a Lie algebra, called
a Lie algebroid (see its definition and related remarks in Sections 4 and 5).

The presence of Lie groups in many classical physics problems, in view of its essential continuity
property and its Abelian fundamental group, is not surprising. However, what is surprising in
the beginning, is the appearance of Lie groups and Lie algebras in the context of commutators of
observable operators even in quantum systems with no classical analogue observables such as the
spin, as— for example— the SU(2) and its corresponding, unique su(2)— algebra.

As a result of quantization, one would expect to deal with an algebra such as the Hopf (quantum
group) which is associative. On the other hand, the application of the correspondence principle
to the simple, classical harmonic oscillator system leads to a quantized harmonic oscillator and
remarkably simple commutator algebraic expressions, which correspond precisely to the definition of
a Lie algebra. Furthermore, this (Lie) algebraic procedure of assembling the quantum Hamiltonian
from simple observable operator commutators is readily extended to coupled, quantum harmonic
oscillators, as shown in great detail by Fernandez and Castro in [96].

2.2 Some basic examples

Example 2.1. The Lie Algebra of a Quantum Harmonic Oscillator:

Here one aims to solve the time-independent Schrodinger equations of motion in order to deter-
mine the stationary states of the quantum harmonic oscillator which has a quantum Hamiltonian
of the form:

1 k
H:—~P2+7-X2, 2.1
() PP+ (21)
where X and P denote, respectively, the coordinate and conjugate momentum operators. The
terms X and P satisfy the Heisenberg commutation/uncertainty relations [X, P] = thl, where
the identity operator I is employed to simplify notation. A simpler, equivalent form of the above

Hamiltonian is obtained by defining physically dimensionless coordinate and momentum:

X = (g), p= (%) and a = % (2.2)



With these new dimensionless operators, x and p, the quantum Hamiltonian takes the form:

H= (") (0?4, (23)

which in units of A - w is simply:
1
H = (5) (0 + ). (2.4)

The commutator of x with its conjugate operator p is simply [x, p] = t.

Next one defines the superoperators Sy, = [H,x] = —¢-p, and Sy, = [H,p] = ¢-x that will lead
to new operators that act as generators of a Lie algebra for this quantum harmonic oscillator. The
eigenvectors Z of these superoperators are obtained by solving the equation Sy - Z = (Z, where (
are the eigenvalues, and Z can be written as (¢1 - © + ¢2 - p). The solutions are:

(=41 ,and co =Fe¢-cy. (2.5)
Therefore, the two eigenvectors of Sy can be written as:
al =¢; * (z —wp) and a = ¢1(x + 1p), (2.6)

respectively for ( = £1. For ¢; = /2 one obtains normalized operators H,a and af that generate
a 4—dimensional Lie algebra with commutators:

[H,a] = —a , [H,a'] =d' , and [a,a'] = 1. (2.7)

The term a is called the annihilation operator and the term af is called the creation operator. This
Lie algebra is solvable and generates after repeated application of af all of the eigenvectors of the
quantum harmonic oscillator:

(at)"
V(n!)

The corresponding, possible eigenvalues for the energy, derived then as solutions of the Schrodinger

B, = (9. @y, (2.8)

equations for the quantum harmonic oscillator are:

1
En:h-w(n+§),Wheren:0,1,...,N. (2.9)
The position and momentum eigenvector coordinates can be then also computed by iteration from
(finite) matrix representations of the (finite) Lie algebra, using perhaps a simple computer pro-
gramme to calculate linear expressions of the annihilation and creation operators. For example,
one can show analytically that:

4,24 = (55) - (2-1)- (2.10)

k
V2
One can also show by introducing a coordinate representation that the eigenvectors of the har-
monic oscillator can be expressed as Hermite polynomials in terms of the coordinates. In the



coordinate representation the quantum Hamiltonian and bosonic operators have, respectively, the
simple expressions:

2
H = (3) [ )+ (a),
- (;2)'(“;;)’ (2.11)
o = ()@= 7).

The ground state eigenfunction normalized to unity is obtained from solving the simple first—order
differential equation a®o(z) = 0, thus leading to the expression:

1 {1}‘2
Oo(z) = (m 1) -exp(—?). (2.12)
By repeated application of the creation operator written as
1 z? d z?
at = (—ﬁ) : (exp(?)) : (ﬁ) 'eXP(—?)y (2.13)

one obtains the n—th level eigenfunction:

1
D, (z) = (W

where He,, (x) is the Hermite polynomial of order n . With the special generating function of the

) : (Hen(x))v (2'14)

Hermite polynomials
B 72 2
B(t,z) = (m71) - (exp((=5) +tw = (7)), (2.15)
one obtains explicit analytical relations between the eigenfunctions of the quantum harmonic os-

cillator and the above special generating function:

F(t,z) = Z(ﬂ;%!)) - D, (z). (2.16)

Such applications of the Lie algebra, and the related algebra of the bosonic operators as defined

n=0

above are quite numerous in theoretical physics, and especially for various quantum field carriers in
QFT that are all bosons (note also additional examples of special Lie superalgebras for gravitational
and other fields in Section 6, such as gravitons and Goldstone quanta that are all bosons of different
spin values and ‘Penrose homogeneity’).

In the interesting case of a two-mode bosonic quantum system formed by the tensor (direct)
product of one-mode bosonic states:

| m,n >=|m>®|n>, (2.17)

one can generate a 3—dimensional Lie algebra in terms of Casimir operators. Finite—dimensional
Lie algebras are far more tractable and easier to compute than those with an infinite basis set. For
example, such a Lie algebra as the 3—dimensional one considered above for the two-mode, bosonic
states is quite useful for numerical computations of vibrational (IR, Raman, etc.) spectra of two—
mode, diatomic molecules, as well as the computation of scattering states. Other perturbative
calculations for more complex quantum systems, as well as calculations of exact solutions by means
of Lie algebras have also been developed (see e.g. [96]).
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Example 2.2. The SU(2) Quantum Group: Let us consider the structure of the ubiquitous
quantum group SU(2) [240, 70]. Here A is taken to be a C*—algebra generated by elements a and
(G subject to the relations:

ao® + 2B =1, afa+ B =1,
BB* = B8, af = ppa, af" = pfra, (2.18)
a"f=pfat, ot = R,

where p € [—1,1]\{0}. In terms of the matrix

u= [g _Zﬁ] (2.19)

the coproduct A is then given via
Auiz) = Zuzk ® ;- (2.20)
k

As will be shown in our later sections, such quantum groups and their associated algebras need
be extended to more general structures that involve supersymmetry, as for example in the case
of quantum gravity or supergravity and superfield theories. Another important example of such
quantum supergroups involves Drinfel’d ’s quantum double construction and the R-matrix (e.g., as
developed in refs. [133] and subsequent reports related to quantum quasi-algebras [5, 244, 245]).

Numerous quantum supergroup examples also emerge in the cases presented in the next subsec-
tion of either molecular groups of spins or nuclear quasi-particles coupled, respectively, by either
dipolar (magnetic) or colour-charge and dipolar interactions. In such cases, the simple Lie alge-
bras considered above in the first example need to be extended to Lie superalgebras exhibiting
supersymmetry that includes both fermionic and bosonic symmetries (as explained in Section 6.2).
Furthermore—as discussed next—local bosonic models (or spin models) were reported to lead to
quantum gravity as well as the emergence of certain near massless fermions such as the electron.

Example 2.3. Quantum Supergroups of Dipolar—Coupled Spins:

An important example for either nuclear magnetic or electron spin resonances in solids is that
of (magnetic) dipolar-coupled (molecular) groups of spins. Among such systems in which an under-
standing of the dipole-dipole interactions is essential are molecular groups of dipolar-coupled spin-
1/2 particles (fermions) with local symmetry, or symmetries, such as groups of dipolar-coupled pro-
tons or magnetically-coupled microdomains of unpaired electrons in solids ([14, 15, 16, 17, 18, 20]).
Although one might expect such systems of fermions to follow the Fermi statistics, in fact, the
dipolar-coupled groups of spin-1/2 particles behave much more like quasi-quadrupolar (quasi) par-
ticles of spin-1 for proton pairs (as for example in ice or dihydrate gypsum crystals), or as spin-3/2
quasi-particles in the case of hydrogen nuclei in methyl groups and hydronium ions in solids, or
coupled F (spin-1/2) nuclei in —CF3 molecular groups in polycrystalline solids [20]. (Interest-
ingly, quantum theories of fermions were also recently proposed that do not require the presence of
fermion fields [28].) A partially symmetric local structure was reported from such ' H NMR studies
which involved the determination of both inter- and intra- molecular van Vleck second moments
of proton dipolar interactions of water in strongly ionic LiCl x nHo0O and xnD2O electrolyte
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glasses (with 2.6 < n < 12) at low temperature. Thus, the local symmetry of the hydration
sphere for Lit cations in such glasses at low temperatures was reported to be quasi-tetrahedral
[16], and this was subsequently confirmed by independent neutron scattering and electron tun-
neling/spectroscopic studies of the same systems at low temperatures, down to 4K; on the other
hand, for n > 4 water molecules bridged between hydrated Li* clusters and a Cl~ anion, the
local symmetry approached quasi-octahedral around the anion. Similar studies were carried out for
Ca(NOs3)y x nH20, Zn(NO3)s x nHy0, Cd(NO3)2 x mH20 and La(NOs)s x kH0O electrolyte
glasses (with 3 < m < 20 and, respectively, 3 < k < 30), and the hydration local symmetries were
found, respectively, to be: quasi-octahedral for both Ca*? and Zn*? (divalent) hydrated cations,
quasi-icosahedral for the (divalent) Cd*? hydrated cation, and quasi-dodecahedral for the (triva-
lent) La™> hydrated cation. Interstitial water molecules between hydrated cation clusters exhibited
however much lower local symmetry, and it was reported to be very close to that of water monomers
and dimers in the vapor phase [16].

The NMR behaviour of such proton and *F quasi-particles in solids [20] suggests therefore the
use of an unified supersymmetry approach using Lie superalgebras [225] and quantum supergroups.

Quasi-particles were also recently reported for Anderson-localized electrons in solids with par-
tial disorder, and in the case of sufficiently strong disorder, “the Mott-Anderson transition was
characterized by a precisely defined two-fluid behaviour, in which only a fraction of the electrons
undergo a ‘site selective’ Mott localization” [3] (see also related previous articles in [167, 164, 165,
166, 215, 221, 6, 68]). Thus, in any non-crystalline system—such as a glass— the lowest states in the
conduction band are “localized”, or they act as traps, and “on the energy scale there is a continuous
range of such localized states leading from the bottom of the band up to a critical energy FE., called
the mobility edge, where states become non-localized or extended” [164]. Recently, a concept of
“quantum glassiness” was also introduced [72].

Similarly to spin-1/2 dipolar-coupled pairs, dipolar-coupled linear chains of either spin-1 or
spin-0 bosons exhibit most remarkable properties that also depend on the strength of dipole-dipole
interactions among the neighbour bosons in the chain, as well as the overall, extended quantum
symmetry (EQS) of the chain. On the other hand, local bosonic models, or spin models, may
also provide a unified origin for identical particles, gauge interactions, Fermi statistics and near
masslessness of certain fermions [144]. Gauge interactions and Fermi statistics were also suggested
to be unified under the point of view of emergence of identical particles; furthermore, a local bosonic
model was constructed from which gravitons also emerge [144], thus leading to quantum gravity.
Spin-2 boson models on a lattice are therefore being studied in such theories of quantum gravity
[113].

Examples of dipolar-coupled and colour charge—coupled spin-0 bosons may be very abundant in
nuclear physics where quark pairs provide a better model than the often used, ‘quark bag’ model.
Such spin-0 boson models of coupled quark pairs may also provide new insights into how to achieve
controlled thermonuclear fusion [129]. An example of a system of dipolar-coupled spin-1 bosons
is that of an array of deuterons (2H) in deuteriated long chain molecules such as phospholipids
or fluorinated aliphatic chains in liquid crystals (e.g., perfluorooctanoate). For such systems it
is possible to set up an explicit form of the Hamiltonian and to digitally compute all the spin
energy levels and the nuclear magnetic resonance properties (including the phase coherence and
spin correlations) for the entire chain of dipolar-coupled spin-1 bosons (see for example the simple
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“bosonization” computations in ref.[158]).

The case of dipolar-coupled and also ion-coupled (or phonon-coupled), spin-0 bosons is also most
remarkable in its long-range correlations/coherence properties, as well as the temperature depen-
dent symmetry breaking behaviour which is well-established; consider, for example, the Cooper
(electron) pairs in superconductors [141, 197] that share this behaviour with other superfluids (e.g.,
liquid ®He). Somewhat surprisingly, long-range magnetic correlations involving nonlinear magnon
dispersion also occur in ferromagnetic metallic glasses that have only short-range (or local) atomic
structures of very low, or broken symmetry, but exhibit microwave resonance absorption spectra
caused by (long-range, coupled electron) spin wave excitations as reported in ref.[18]. The cor-
responding, explicit form of the Hamiltonian for the latter systems— including magnetic dipolar
coupling, exchange and magnon interactions—has also been specified in [18], and the short-range lo-
cal structure present in such metallic glasses —noncrystalline systems with broken, local symmetry—
was reported from X-ray scattering and ferromagnetic resonance studies [17]. Such noncrystalline
systems with long-range coupling may be therefore more amenable to descriptions in terms of topo-
logical order theories as pointed out in [7, 164, 165] rather than Landau symmetry-breaking models.
Topological order theories and topological quantum computation were also recently reported to be
of interest for the design of quantum computers [172, 214, 98, 134, 81], and thus such fundamen-
tal topological order theories might, conceivably, also lead to practical applications in developing
ultra-fast quantum supercomputers.

2.3 Hopf algebras

Firstly, a unital associative algebra consists of a linear space A together with two linear maps

m:A® A— A, (multiplication)

(2.21)
n: C—A, (unity)
satisfying the conditions
m(m®1)=m(l®m) (2.22)

m(l®n) =mne1l)=id.
This first condition can be seen in terms of a commuting diagram:

A9A9A ™9 A0 A

id®ml lm (2.23)
A A s A

Next let us consider ‘reversing the arrows’, and take an algebra A equipped with a linear homor-
phisms A : A— A ® A, satistying, for a,b € A:

A(ab)
(A ®id)A

= A(a)A(D)
(2.24)
= (id® A)A.



13

We call A a comultiplication, which is said to be coassociative in so far that the following diagram

commutes
A9AR A L9 A0 4
id®AT TA (2.25)

AoA <2 4

There is also a counterpart to 7, the counity map e : A—C satisfying
(id®e)oA=(e®id) o A =id. (2.26)

A bialgebra (A,m,A,n,e) is a linear space A with maps m, A, n, ¢ satisfying the above properties.

Now to recover anything resembling a group structure, we must append such a bialgebra with
an antihomomorphism S : A— A, satisfying S(ab) = S(b)S(a), for a,b € A. This map is defined
implicitly via the property:

m(S®id)oA=m(id® S)ocA=noec. (2.27)

We call S the antipode map. A Hopf algebra is then a bialgebra (A, m,n, A, ) equipped with an
antipode map S.

Commutative and non—commutative Hopf algebras form the backbone of quantum groups [71]
and are essential to the generalizations of symmetry. Indeed, in many respects a quantum group is
closely related to a Hopf algebra. When such algebras are actually associated with proper groups of
matrices there is considerable scope for their representations on both finite and infinite dimensional
Hilbert spaces.

Example 2.4. The SL,(2) Hopf algebra:
This algebra is defined by the generators a, b, ¢, d and the following relations:

ba = qab , db = qbd, ca = qac, dc = qcd ,bc = cb, (2.28)
together with

adda = (¢! — q)be, adq™be =1, (2.29)

ab_ab a b ab_lO ab_d—qb
Al s [ A aw

2.4 Quasi—Hopf algebra

and

A

A quasi-Hopf algebra is an extension of a Hopf algebra. Thus, a quasi-Hopf algebra is a quasi-
bialgebra By = (H,A, e, ®) for which there exist a, 3 € H and a bijective antihomomorphism S
(the ‘antipode’) of H such that Y. S(b;)ac; = e(a)a, >, 0:;85(ci) = €(a)p for all a € H, with
A(a) =), b; ® ¢;, and the relationships

ZXﬁS NaZ; =1, Zs )aQ;BS(R;) = (2.31)
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where the expansions for the quantities ® and ®~! are given by
(I):ZXz‘@Yz‘Q@Zi, ‘P_lzzpj@Qj@Rj. (2.32)
( J
As in the general case of a quasi-bialgebra, the property of being quasi-Hopf is unchanged by
“twisting”. Thus, twisting the comultiplication of a coalgebra
C=(C,A,e) (2.33)

over a field k produces another coalgebra C°P; because the latter is considered as a vector space
over the field k, the new comultiplication of C®P (obtained by “twisting”) is defined by

A“P(c) =) " e2) ® ¢, (2.34)
with ¢ € C and
Ale) =) ) ® ). (2.35)

Note also that the linear dual C* of C is an algebra with unit € and the multiplication being defined
by

(" c) = Y (" cld’, ), (2.36)

for ¢*,d* € C* and ¢ € C (see [136]).

Quasi-Hopf algebras emerged from studies of Drinfel’d twists and also from F-matrices associated
with finite-dimensional irreducible representations of a quantum affine algebra. Thus, F—matrices
were employed to factorize the corresponding R-matrix. In turn, this leads to several important
applications in Statistical Quantum Mechanics, in the form of quantum affine algebras; their rep-
resentations give rise to solutions of the quantum Yang-Baxter equation. This provides solvability
conditions for various quantum statistics models, allowing characteristics of such models to be de-
rived from their corresponding quantum affine algebras. The study of F—matrices has been applied
to models such as the so-called Heisenberg ‘XXZ model’, in the framework of the algebraic Bethe
ansatz. Thus F—matrices and quantum groups together with quantum affine algebras provide an
effective framework for solving two-dimensional integrable models by using the Quantum Inverse
Scattering method as suggested by Drinfel’d and other authors.

2.5 Quasi—triangular Hopf algebra

We begin by defining the quasi—triangular Hopf algebra, and then discuss its usefulness for com-
puting the R-matrix of a quantum system.

Definition 2.1. A Hopf algebra, H, is called quasi—triangular if there is an invertible element R,
of H® H such that:

(1) R A(x) = (T'o A)(z) R for all z € H, where A is the coproduct on H, and the linear map
T:H®H — H®H is given by

Trzey) =y, (2.37)
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(2) (A®1)(R) = Ri3 Ras,

(3) (1 ® A)(R) = Ry3 Ri2, where Ria = ¢12(R),

(4) Riz = ¢13(R), and Ra3 = ¢23(R), where ¢p1o: H® H — H® H® H,

(5) ¢13: HOH - HRH®H, and ¢93 : HQ H — H® H® H, are algebra morphisms determined
by

dr2(a®b)=axbx®1,
$13(a®b) =a®1®Db, (2.38)
¢23(a®b):1®a®b.

R is called the R-matriz.

An important part of the above algebra can be summarized in the following commutative dia-
grams involving the algebra morphisms, the coproduct on H and the identity map id:

13

HoHoH 2% pgeon
id®id®AT TA (2.39)
HoHoH &9 geop
and
HoHoH 22 geon
id®AT TA (2.40)
A

H®H +—— H

Because of this property of quasi—triangularity, the R-matrix, R, becomes a solution of the
Yang-Bazter equation. Thus, a module M of H can be used to determine quasi—invariants of links,
braids, knots and higher dimensional structures with similar quantum symmetries. Furthermore,
as a consequence of the property of quasi—triangularity, one obtains:

(e@1)R=(1®e)R=1€ H. (2.41)
Finally, one also has:
R'=(S®1)(R), R=(1®S)(R!) and (S® S)(R) = R. (2.42)

One can also prove that the antipode S is a linear isomorphism, and therefore S? is an automor-
phism: S2 is obtained by conjugating by an invertible element, S(x) = uru~!, with

=m(S ®1)R?. (2.43)

By employing Drinfel’d’s quantum double construction one can assemble a quasi-triangular Hopf
algebra from a Hopf algebra and its dual.
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2.5.1 Twisting a quasi-triangular Hopf algebra

The property of being a quasi-triangular Hopf algebra is invariant under twisting via an invertible
element F = Y, f'® fi € A® A such that (¢ ® id)F = (id ® €)F = 1, and also such that the
following cocycle condition is satisfied:

(F®1)o(A®id)F =(1®F)o (id® A)F. (2.44)

Moreover, u = >_. fS(fi) is invertible and the twisted antipode is given by S’(a) = uS(a)u™?,
with the twisted comultiplication, R—matrix and co-unit change according to those defined for the
quasi—triangular Quasi—-Hopf algebra. Such a twist is known as an admissible, or Drinfel’d, twist.

2.6 Quasi—triangular Quasi—-Hopf algebra (QTQH)

A quasi-triangular quasi-Hopf algebra as defined by Drinfel’d in ref. [86] is an extended form of a
quasi—Hopf algebra, and also of a quasi—triangular Hopf algebra. Thus, a quasi—triangular quasi-
Hopf algebra is defined as a quintuple By, = (H, R, A, e, ®) where the latter is a quasi-Hopf algebra,
and R € H ® H referred to as the R-matrix (as defined above), which is an invertible element such
that:
RA(a) =00 A(a)R,a € H
ccHOH—-HH , (2.45)
TRy — Yy,

so that o is the switch map and
(A ®id)R = 391 R13P 55 RosP123
(ld X A)R = @5311R13‘1>213R12q)f21:)’
where @ = 4 ® 2 ® x, and

Pios=P=2 Qo023 € HIH X H.

(2.46)

The quasi—Hopf algebra becomes triangular if in addition one has Ry R12 = 1.

The twisting of By by F € H ® H is the same as for a quasi-Hopf algebra, with the additional
definition of the twisted R-matrix. A quasi-triangular, quasi—-Hopf algebra with ® = 1 is a quasi—
triangular Hopf algebra because the last two conditions in the definition above reduce to the quasi—
triangularity condition for a Hopf algebra. Therefore, just as in the case of the twisting of a
quasi—Hopf algebra, the property of being quasi—triangular of a quasi—Hopf algebra is preserved by
twisting.

2.7 Yang-Baxter equations

2.7.1 Parameter-dependent Yang—Baxter equation

Consider A to be an unital associative algebra. Then, the parameter—dependent Yang—Baxter equa-
tion is an equation for R(u), the parameter—dependent invertible element of the tensor product
A ® A (here, u is the parameter, which usually ranges over all real numbers in the case of an
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additive parameter, or over all positive real numbers in the case of a multiplicative parameter).
(For the dynamic Yang-Baxter equation see also ref. [91]). The Yang—Baxter equation is usually
stated (e.g., [212, 213]) as:

Ria(u) Ri3(u+v) Ros3(v) = Raz(v) Riz(u +v) Ria(u), (2.47)
for all values of u and v, in the case of an additive parameter, and
R12(’LL) ng(uv) Rgg(v) = Rgg(’u) ng(’LL’U) RIQ(U), (2.48)

for all values of v and v, in the case of a multiplicative parameter, where
Riza(w) = ¢r12(R(w))
Ris(w) = ér3(R(w)) (2.49)
Raz(w) = ¢a3(R(w))

for all values of the parameter w, and
$p2: HOH - H®H®H
p13: HOH —-H®H®H (2.50)
¢$po3: HOH - H®H®H

are algebra morphisms determined by the following (strict) conditions:
p12(a®b)=a0b®1
$13(a®@b)=a®@1®b (2.51)
P(a®@b)=10a®b

2.7.2 The Parameter—independent Yang—Baxter equation

Let A be a unital associative algebra. The parameter—independent Yang—Baxter equation is an
equation for R, an invertible element of the tensor product A ® A. The Yang—Baxter equation is:

Riz Ri3 Rogz = Rog Ri3 Ri2, where Ri2 = ¢12(R)
Riz = ¢13(R), and Roz = ¢o3(R).

Let V be a module over A. Let T': V®V — V&V be the linear map satisfying T(x®y) = y®z
for all ,y € V. Then a representation of the braid group B,, can be constructed on V" by
0 =191 R®1®" 1 fori=1,...,n—1, where R=T o R on V ® V. This representation
may thus be used to determine quasi-invariants of braids, knots and links.

(2.52)

2.7.3 Generalization of the Quantum Yang—Baxter Equation

The quantum Yang-Baxter equation was generalized in [136] to:

R= qb(zneu‘ ® 62'2') + b(z e @ 6]']') + C(Z € ® ejj) + (qb - qilc)(z €ij ® eﬂ), (2.53)
i=1 i>7 1<j i>7
for b,c # 0. A solution of the quantum Yang—Baxter equation has the foom R: M @ M — M ®@ M,
with M being a finite dimensional vector space over a field k. Most of the solutions are stated for
a given ground field but in many cases a commutative ring with unity may instead be sufficient.
(See also the classic paper by Yang and Mills [242]).
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2.8 SU(3),SU(5),SU(10) and E¢ Representations in Quantum Chromodynamics
and Unified Theories involving Spontaneous Symmetry Breaking

There have been several attempts to take into consideration extended quantum symmetries that
would include, or embed, the SU(2) and SU(3) symmetries in larger symmetry groups such as
SU(5),SU(10) and the exceptional Lie group Eg, but so far with only limited success as their repre-
sentations make several predictions that are so far unsupported by high energy physics experiments
[104]. To remove unobserved particles from such predictions, one has invariably to resort to ad—hoc
spontaneous symmetry breaking assumptions that would require still further explanations, and so
on. So far the only thing that is certain is the fact that the U(1) x SU(2) x SU(3) symmetry is
broken in nature, presumably in a ‘spontaneous’ manner. Due to the nonlocal character of quan-
tum theories combined with the restrictions imposed by relativity on the ‘simultaneity’ of events
in different reference systems, a global or universal, spontaneous symmetry breaking mechanism
appears contrived, with the remaining possibility that it does however occur locally, thus resulting
in quantum theories that use local approximations for broken symmetries, and thus they are not
unified, as it was intended. Early approaches to space-time were made in non-relativistic quan-
tum mechanics [97], and were subsequently followed by relativistic and axiomatic approaches to
quantum field theory [235, 237, 236].

On the one hand, in GR all interactions are local, and therefore spontaneous, local symmetry
breaking may appear not to be a problem for GR, except for the major obstacle that it does
severely limit the usefulness of the Lorentz group of transformations which would have to be
modified accordingly to take into account the local SU(2) x SU(3) spontaneous symmetry breaking.
This seems to cause problems with the GR’s equivalence principle for all reference systems; the
latter would give rise to an equivalence class, or possibly a set, of reference systems. On the other
hand, local, spontaneous symmetry breaking generates a groupoid of equivalence classes of reference
systems, and further, through quantization, to a category of groupoids of such reference systems,
Grpdg, and their transformations defined as groupoid homomorphisms. Functor representations
of Grpdy, into the category BHilb of rigged Hilbert spaces H, would then allow the computation
of local quantum operator eigenvalues and their eigenstates, in a manner invariant to the local,
broken symmetry transformations. One might call such a theory, a locally covariant— quantized
GR (lcq—GR), as it would be locally, but not necessarily, globally quantized. Obviously, such
a locally covariant GR theory is consistent with AQFT and its operator nets of local quantum
observables. Such an extension of the GR theory to a locally covariant GR in a quantized form
may not require the ‘universal’ or global existence of Higgs bosons as a compelling property of
the expanding Universe; thus, any lcq—GR theory can allow for the existence of inhomogeneities in
spacetime caused by distinct local symmetries in the presence of very intense gravitational fields,
dark matter, or other condensed quantum systems such as neutron stars and black holes (with or
without ‘hair’—cf. J. Wheeler). The GR principle of equivalence is then replaced in lcq—GR by the
representations of the quantum fundamental groupoid functor that will be introduced in Section 9.

In view of the existing problems and limitations encountered with group quantum symmetries
and their group (or group algebra) representations, current research into the geometry of state
spaces of quantum operator algebras [4] leads to extended symmetries expressed as topological
groupoid representations [187] that were shown to link back to certain C*—algebra representations
[82, 199] and the dual spaces of C*-algebras [95]. Such extended symmetries will be discussed in
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the next sections in terms of quantum groupoid representations involving the notion of measure
Haar systems associated with locally compact quantum groupoids.

3 Quantum Groupoids and the Groupoid C*—Algebra

Quantum groupoid (e.g., weak Hopf algebras) and algebroid symmetries figure prominently both in
the theory of dynamical deformations of quantum groups [85] (e.g., Hopf algebras) and the quantum
Yang-Baxter equations [89, 90]. On the other hand, one can also consider the natural extension
of locally compact (quantum) groups to locally compact (proper) groupoids equipped with a Haar
measure and a corresponding groupoid representation theory [55] as a major, potentially interesting
source for locally compact (but generally non-Abelian) quantum groupoids. The corresponding
quantum groupoid representations on bundles of Hilbert spaces extend quantum symmetries well
beyond those of quantum groups/Hopf algebras and simpler operator algebra representations, and
are also consistent with the locally compact quantum group representations that were recently
studied in some detail by Kustermans and Vaes (see [135] and references cited therein). The latter
quantum groups are neither Hopf algebras, nor are they equivalent to Hopf algebras or their dual
coalgebras. As pointed out in the previous section, quantum groupoid representations are, however,
the next important step towards unifying quantum field theories with General Relativity in a locally
covariant and quantized form. Such representations need not however be restricted to weak Hopf
algebra representations, as the latter have no known connection to any type of GR theory and also
appear to be inconsistent with GR.

We are also motivated here by the quantum physics examples mentioned in the previous sec-
tions to introduce through several steps of generality, a framework for quantum symmetry breaking
in terms of either locally compact quantum groupoid or related algebroid representations, such
as those of weak Hopf C*-algebroids with convolution that are realized in the context of rigged
Hilbert spaces [36]. A novel extension of the latter approach is also now possible via generaliza-
tions of Grassman—Hopf algebras (Gp), gebras [217, 94] and co-algebra representations to those of
graded Grassman—Hopf algebroids. Grassman—Hopf algebras and gebras not only are bi-connected
in a manner somewhat similar to Feynman diagrams but also possess a unique left /right integral
w (p. 288 of [94]), whereas such integrals in general do not exist in Clifford-Hopf algebras [93].
This unique integral property of Grassman—Hopf algebras makes them very interesting candidates,
for example, in physical applications that require either generalized convolution and measure con-
cepts, or generalizations of quantum groups/algebras to structures that are more amenable than
weak Hopf C*-algebras. Another important point made by Fauser [94] is that —unlike Hopf and
weak Hopf algebras that have no direct physical visualization either in quantum dynamics or in
the Feynman interaction representation of Quantum Electrodynamics— the duals, or tangles, of
Grassman—Hopf algebras, such as respectively G-H co-algebras and Grassman—Hopf ‘gebras’ [94]
provide direct visual representations of physical interactions and quantum dynamics in Feynman-
like diagrams that utilize directly the dual/tangled, or ‘co-algebraic’, structure elements. Such
visual representations can greatly facilitate exact computations in quantum chromodynamics for
the difficult case of strong, nuclear interactions where approximate perturbation methods usually
fail. The mathematical definitions and grading of Grassman—Hopf algebroids, (tangled /mirror) ge-
broids and co—algebroids then follow naturally for supersymmetry, symmetry breaking, and other
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physical theories. Furthermore, with regard to a unified and global framework for symmetry break-
ing, as well as higher order quantum symmetries, we look towards the double groupoid structures
of Brown and Spencer [53], and introduce the concepts of quantum and graded Lie bi-algebroids
which are expected to carry a distinctive C*—algebroid convolution structure. The extension to
supersymmetry leads then naturally to superalgebra, superfield symmetries and their involvement
in supergravity or Quantum Gravity (QG) theories for intense gravitational fields in fluctuating,
quantized spacetimes. Our self-contained approach, leads to several novel concepts which exem-
plify a certain non—reductionist viewpoint and theories of the nature of physical spacetime structure
[46, 24].

A natural extension in Higher Dimensional Algebra (HDA) of quantum symmetries may involve
both quantum double groupoids defined as locally compact double groupoids equipped with Haar
measures via convolution, and an extension to double algebroids, (that are naturally more general
than the Lie double algebroids defined in [151]).

We shall now proceed to formally define several quantum algebraic topology concepts that
are needed to express the extended quantum symmetries in terms of proper quantum groupoid
and quantum algebroid representations. Hidden, higher dimensional quantum symmetries will
then also emerge either via generalized quantization procedures from higher dimensional algebra
representations or will be determined as global or local invariants obtainable— at least in principle—
through non-Abelian Algebraic Topology (NAAT) methods [45] (see also the earlier classic paper
by Frohlich [99]).

3.1 The Weak Hopf Algebra

In this, and the following subsections, we proceed through several stages of generality by relaxing
the axioms for a Hopf algebra as defined above. The motivation begins with the more restrictive
notion of a quantum group in relation to a Hopf algebra where the former is often realized as an
automorphism group for a quantum space, that is, an object in a suitable category of generally
noncommutative algebras. One of the most common guises of a quantum ‘group’ is as the dual
of a noncommutative, nonassociative Hopf algebra. The Hopf algebras (cf. [70, 155]), and their
generalizations [130], are some of the fundamental building blocks of quantum operator algebra,
even though they cannot be generally ‘integrated’ to groups like the ‘integration’ of Lie algebras
to Lie groups, or the Fourier transformation of certain commutative Hopf algebras to their dual,
finite commutative groups. However, Hopf algebras are linked and limited only to certain quantum
symmetries that are represented by finite compact quantum groups (CQGs) (see for example [198]).

In order to define a weak Hopf algebra, one can relax certain axioms of a Hopf algebra as follows :

(1) The comultiplication is not necessarily unit—preserving.
(2) The counit € is not necessarily a homomorphism of algebras.

(3) The axioms for the antipode map S : A— A with respect to the counit are as follows. For

all h € H,
m(id ® S)A(h) = (e ® id)(A(1)(h ® 1))
m(S ®id)A(h) = (id ® £)((1 ® h)A(1)) (3.1)

S(h)

S(hy)h)S(he)) -
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These axioms may be appended by the following commutative diagrams

AA 29 494 AgA 995 494

S o2

A uoe A UuoE

along with the counit axiom:

A® A A (3.3)
sl ida A
A 1®e A ® A

Several mathematicians substitute the term quantum groupoid for a weak Hopf algebra, although
this algebra in itself is not a proper groupoid, but it may have a component group algebra as in
the example of the quantum double discussed next; nevertheless, weak Hopf algebras generalize
Hopf algebras —that with additional properties— were previously introduced as‘ quantum group’ by
mathematical physicists. (The latter are defined in the Appendix and, as already discussed, are not
mathematical groups but algebras). As it will be shown in the next subsection, quasi-triangular
quasi-Hopf algebras are directly related to quantum symmetries in conformal (quantum) field
theories. Furthermore, weak C*~Hopf quantum algebras lead to weak C*~Hopf algebroids that are
linked to quasi—group quantum symmetries, and also to certain Lie algebroids (and their associated
Lie-Weinstein groupoids) used to define Hamiltonian (quantum) algebroids over the phase space
of (quantum) Wy—gravity.

3.1.1 Examples of Weak Hopf Algebras

(1) We refer here to [27]. Let G be a non-Abelian group and H C G a discrete subgroup. Let
F(H) denote the space of functions on H and CH the group algebra (which consists of the

linear span of group elements with the group structure). The quantum double D(H) [85] is
defined by

D(H)=F(H) ® CH, (3.4)
where, for x € H, the ‘twisted tensor product’ is specified by

@ (fi ®h)(f2 ® ha)(x) = fi(2) f2(hizh ) @ hiho. (3.5)

The physical interpretation is often to take H as the ‘electric gauge group’ and F(H) as the
‘magnetic symmetry’ generated by {f ® e} . In terms of the counit ¢, the double D(H) has
a trivial representation given by e(f ® h) = f(e) . We next look at certain features of this
construction.

For the purpose of braiding relations there is an R matrix, R € D(H)® D(H), leading to the
operator

R=o- (I} @) (R), (3.6)
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’y b
operator. The operator R? is sometimes called the monodromy or Aharanov-Bohm phase

in terms of the Clebsch-Gordan series 114 ® I15 = fog ¢, and where o denotes a flip

factor. In the case of a condensate in a state |v) in the carrier space of some representation
T2 one considers the maximal Hopf subalgebra T' of a Hopf algebra A for which |v) is
T—invariant; specifically :

IIA(P) |v) = (P)|v), VP e T. (3.7)

For the second example, consider A = F(H) . The algebra of functions on H can be broken
to the algebra of functions on H/K, that is, to F(H/K), where K is normal in H, that is,
HKH™' = K . Next, consider A = D(H) . On breaking a purely electric condensate |v),
the magnetic symmetry remains unbroken, but the electric symmetry CH is broken to CN,,
with N, C H, the stabilizer of |v) . From this we obtain T = F(H)®CN,,.

In [173] quantum groupoids (considered as weak C*~Hopf algebras, see below) were studied
in relationship to the noncommutative symmetries of depth 2 von Neumann subfactors. If

AcCcBcBiCcByC... (3.8)

is the Jones extension induced by a finite index depth 2 inclusion A C B of I factors, then
Q = A’ N By admits a quantum groupoid structure and acts on Bj, so that B = B? and
By = B1 x(@Q . Similarly, in [193] ‘paragroups’ (derived from weak C*~Hopf algebras) comprise
(quantum) groupoids of equivalence classes such as those associated with 6j—symmetry groups
(relative to a fusion rules algebra). They correspond to type I von Neumann algebras in
quantum mechanics, and arise as symmetries where the local subfactors (in the sense of
containment of observables within fields) have depth 2 in the Jones extension. A related
question is how a von Neumann algebra N, such as of finite index depth 2, sits inside a weak
Hopf algebra formed as the crossed product N x A [35].

Using a more general notion of the Drinfel’d construction, Mack and Schomerus developed in
[149] the notion of a quasitriangular quasi-Hopf algebra (QTQHA) with the aim of studying
a range of essential symmetries with special properties, such as the quantum group algebra
Ug(slp) with |g] = 1 . If ¢» = 1, then it is shown that a QTQHA is canonically associated
with Ugy(slz). Such QTQHAs are claimed as the true symmetries of minimal conformal field
theories.

3.1.2 The Weak Hopf C*—Algebra in Relation to Quantum Symmetry Breaking

In our setting, a weak C*-Hopf algebra is a weak *~Hopf algebra which admits a faithful *-

representation on a Hilbert space. The weak C*-Hopf algebra is therefore much more likely to

be closely related to a quantum groupoid representation than any weak Hopf algebra. However,

one can argue that locally compact groupoids equipped with a Haar measure (after quantization)

come even closer to defining quantum groupoids. There are already several, significant examples

that motivate the consideration of weak C*-Hopf algebras which also deserve mentioning in the

context of ‘standard’ quantum theories. Furthermore, notions such as (proper) weak C*-algebroids
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can provide the main framework for symmetry breaking and quantum gravity that we are consid-
ering here. Thus, one may consider the quasi-group symmetries constructed by means of special
transformations of the coordinate space M. These transformations along with the coordinate space
M define certain Lie groupoids, and also their infinitesimal version - the Lie algebroids A, when
the former are Weinstein groupoids. If one then lifts the algebroid action from M to the principal
homogeneous space R over the cotangent bundle T*M — M, one obtains a physically significant
algebroid structure. The latter was called the Hamiltonian algebroid, A, related to the Lie alge-
broid, A. The Hamiltonian algebroid is an analog of the Lie algebra of symplectic vector fields with
respect to the canonical symplectic structure on R or T*M. In this recent example, the Hamilto-
nian algebroid, A¥ over R, was defined over the phase space of Wy —gravity, with the anchor map
to Hamiltonians of canonical transformations [142]. Hamiltonian algebroids thus generalize Lie
algebras of canonical transformations; canonical transformations of the Poisson sigma model phase
space define a Hamiltonian algebroid with the Lie brackets related to such a Poisson structure on
the target space. The Hamiltonian algebroid approach was utilized to analyze the symmetries of
generalized deformations of complex structures on Riemann surfaces g.n Of genus g with n marked
points. One recalls that the Ricci flow equation introduced by Richard Hamilton is the dynamic
evolution equation for a Riemannian metric g;;(t). It was then shown that Ricci flows “cannot
quickly turn an almost Euclidean region into a very curved one, no matter what happens far away”
[?], whereas a Ricci flow may be interpreted as an entropy for a canonical ensemble. However, the

*—algebras and/or

implicit algebraic connections of the Hamiltonian algebroids to von Neumann
weak C*-algebroid representations have not yet been investigated. This example suggests that
algebroid (quantum) symmetries are implicated in the foundation of relativistic quantum gravity

theories and supergravity that we shall consider in further detail in Sections 6 to 9.

3.2 Compact Quantum Groupoids

Compact quantum groupoids were introduced in [138] as a simultaneous generalization of a compact
groupoid and a quantum group. Since this construction is relevant to the definition of locally
compact quantum groupoids and their representations investigated here, its exposition is required
before we can step up to the next level of generality. Firstly, let 2 and 28 denote C*-algebras

*

equipped with a *~homomorphism 7, : B—%2, and a *—antihomomorphism 7; : B—2l whose

images in 2 commute. A non—commutative Haar measure is defined as a completely positive map
P : A—B which satisfies P(Ans(B)) = P(A)B . Alternatively, the composition & = ns o P :
2A—ns(B) C A is a faithful conditional expectation.

Next consider G to be a (topological) groupoid as defined in the Appendix. We denote by C¢(G)
the space of smooth complex—valued functions with compact support on G . In particular, for all
fyg € C.(G), the function defined via convolution

(f * 9)(7) = / Fn)g(12), (3.9)

Y1072="

is again an element of C,(G), where the convolution product defines the composition law on C.(G) .
We can turn C.(G) into a *—algebra once we have defined the involution x, and this is done by

specifying f*(y) = f(y~!) . This x-algebra whose multiplication is the convolution becomes a
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groupoid C*—convolution algebra, or groupoid C*-algebra, Goa, when G is a measured groupoid
and the x-algebra has a smallest C*-norm which makes its representations continuous [194].

We recall that following [139] a representation of a groupoid G, consists of a family (or field)
of Hilbert spaces {H;}zex indexed by X = Ob G, along with a collection of maps {U(7)}~eg,
satisfying:

L. U(7) : Hyyy—Hy(y), is unitary.
2. U(y1y2) = U(71)U(72), whenever (y1,72) € G (the set of arrows).
3. Uy ) =U(y)*, forally € G.

Suppose now Gy, is a Lie groupoid. Then the isotropy group G, is a Lie group, and for a (left or
right) Haar measure y, on G, we can consider the Hilbert spaces H, = L?(G, i) as exemplifying
the above sense of a representation. Putting aside some technical details which can be found in
[75, 139], the overall idea is to define an operator of Hilbert spaces

ﬂ-l“(f) : L2(GXa Mx)—>L2(Gxa Mx)a (3.10)
given by
(ma()E)(7) = / FOn)EGT ) dte, (3.11)

for all v € G, and £ € H,. For each x € X = Ob G, 7, defines an involutive representation
7z : Co(G)—Hy. We can define a norm on C.(G) given by

11l = sup [|mz ()], (3.12)
zeX

whereby the completion of C.(G) in this norm, defines the reduced C*-algebra C}(G) of Gi.. It
is perhaps the most commonly used C*-algebra for Lie groupoids (groups) in noncommutative
geometry [223, 74, 75].

The next step requires a little familiarity with the theory of Hilbert modules (see e.g. [137]). We
define a left B—action A and a right B-action p on A by A\(B)A = An(B) and p(B)A = Ans(B) .
For the sake of localization of the intended Hilbert module, we implant a $8—valued inner product
on 2 given by (A,C)s = P(A*C) . Let us recall that P is defined as a completely positive map.
Since P is faithful, we fit a new norm on A given by ||A|? = || P(A*A)||s . The completion of 2 in
this new norm is denoted by A~ leading then to a Hilbert module over 5 .

The tensor product 2~ ®u A~ can be shown to be a Hilbert bimodule over 98B, which for ¢ = 1,2,
leads to *~homorphisms ¢° : A——Lx (A~ @A) . Next is to define the (unital) C*-algebra 2A @ A
as the C*-algebra contained in Ly(2A~ ® A7) that is generated by ¢!(A) and ©?(A) . The last
stage of the recipe for defining a compact quantum groupoid entails considering a certain coproduct
operation A : A—2 ®gp A, together with a coinverse ) : A—%2 that it is both an algebra and
bimodule antihomomorphism. Finally, the following axiomatic relationships are observed:

(id®p A)o A= (ARpid)o A
(d®g P)oA=P (3.13)
To(ARpQ)oA=AoQ
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where 7 is a flip map : 7(a ® b) = (b® a).

There is a natural extension of the above definition of a quantum compact groupoid to a locally
compact quantum groupoid by taking G;. to be a locally compact groupoid (instead of a compact
groupoid), and then following the steps in the above construction with the topological groupoid G
being replaced by G;.. Additional integrability and Haar measure system conditions need however
be also satisfied as in the general case of locally compact groupoid representations (for further
details, see for example the monograph [55], the Appendix, and also our subsequent sections on
groupoid and categorical/functor representations). In the last three sections we shall tacitly con-
sider quantum groupoids to be, in general, locally compact quantum groupoids that are endowed
with a Haar measure system (as described in [55] and references cited therein), and also generated
through the construction method recalled in this subsection following Landsman [138].

4 Algebroids and their Symmetries

By an algebroid structure A we shall specifically mean also a ring, or more generally an algebra, but
with several objects (instead of a single object), in the sense of Mitchell [159]. Thus, an algebroid
has been defined by Mosa in [163] and by Brown and Mosa [52] as follows.

An R-algebroid A on a set of ‘objects’ Ag is a directed graph over Ag such that for each
x,y € Ap, A(z,y) has an R-module structure and there is an R-bilinear function

o: Ax,y) x Ay, z)—A(z, z), (4.1)

where (a,b) — aob is the composition, that satisfies the associativity condition, and the existence
of identities. A pre—algebroid has the same structure as an algebroid and the same axioms except
for the fact that the existence of identities 1, € A(x,z) is not assumed. For example, if Ay has
exactly one object, then an R-algebroid A over Ay is just an R—algebra. An ideal in A is then an
example of a pre—algebroid. Let now R be a commutative ring.

An R-category A is a category equipped with an R-module structure on each Hom set such
that the composition is R-bilinear. More precisely, let us assume for instance that we are given
a commutative ring R with identity. Then a small R-category— or equivalently an R-algebroid—
will be defined as a category enriched in the monoidal category of R-modules, with respect to
the monoidal structure of tensor product. This means simply that for all objects b,c of A, the
set A(b, c) is given the structure of an R-module, and composition A(b, c) x A(c,d)—A(b,d) is
R-bilinear, or is a morphism of R-modules A(b, ¢) @ A(c,d)—A(b, d).

If G is a groupoid (or, more generally, a category) then we can construct an R—algebroid RG as
follows. The object set of RG is the same as that of G and RG (b, ¢) is the free R-module on the set
G(b, c), with composition given by the usual bilinear rule, extending the composition of G.

Alternatively, we can define RG(b, ¢) to be the set of functions G(b, c)— R with finite support,
and then we define the convolution product as follows:

(f*9)(2) =D {(fz)(gy) | z==zoy}. (4.2)

As is well known, it is the second construction which is natural for the topological case, when
we need to replace ‘function’ by ‘continuous function with compact support’ (or locally compact
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support for the QFT extended symmetry sectors), and in this case R = C . The point we are making
here is that to make the usual construction and end up with an algebra rather than an algebroid,
is a procedure analogous to replacing a groupoid G by a semigroup G’ = G U {0} in which the
compositions not defined in G are defined to be 0 in G’. We argue that this construction removes
the main advantage of groupoids, namely the spatial component given by the set of objects.

At present, however, the question of how one can use categorical duality in order to find the
analogue of the diagonal of a Hopf algebra remains open. Such questions require further work and
also future development of the theoretical framework proposed here for extended symmetries and the
related fundamental aspects of quantum field theories. Nevertheless, for Fourier—Stieltjes groupoid
representations, there has already been substantial progress made [181] with the specification of
their dual Banach algebras (but not algebroids), in a manner similar to the case of locally compact
groups and their associated Fourier algebras. Such progress will be further discussed in Section 7.

A related problem that we are addressing next is how the much studied theory of C*—algebras
and their representations would be naturally extended to carefully selected C* — algebroids so that
novel applications in quantum physics become possible. This is indeed a moot point because the
classification problem for C*—algebra representations is more complex and appears much more dif-
ficult to solve in the general case than it is in the case of von Neumann algebra representations. On
the other hand, the extended symmetry links that we shall also discuss next, between locally com-
pact groupoid unitary representations and their induced C*—algebra representations, also warrant
further careful consideration.

4.1 The Weak C*-~Hopf Algebroid and Its Symmetries

Progressing to the next level of generality, let A denote an algebra with local identities in a com-
mutative subalgebra R C A . We adopt the definition of a Hopf algebroid structure on A over R
following [169]. Relative to a ground field F (typically F = C or R), the definition commences by
taking three F-linear maps, the comultiplication A : A— A ®pr A, the counit ¢ : A— R, and the
antipode S : A— A, such that:

(i) A and € are homomorphisms of left R—modules satisfying (id ® ) o A =id
and (e ®id) o A = id.

(ii) e|r =id, A|g is the canonical embedding R = R®r R C A®pr A, and the two right R-actions
on A ®gr A coincide on AA.

(iii) A(ab) = A(a)A(d) for any a,b € A.
(iv) S|g =id and S o S =id.

(v) S(ab) = S(a)S(b) for any a,b € A.

(vi) po(S®id)o A =e0S, where u: A ®r A— A denotes the multiplication.

If R is a commutative subalgebra with local identities, then a Hopf algebroid over R is a quadruple
(A,A,e,S) where A is an algebra which has R for a subalgebra and has local identities in R, and
where (A, e, 5) is a Hopf algebroid structure on A over R. Our interest lies in the fact that a Hopf—
algebroid comprises a (universal) enveloping algebra for a quantum groupoid, thus hinting either
at an adjointness situation or duality between the Hopf-algebroid and such a quantum groupoid.
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Definition 4.1. Let (A, A, e, S) be a Hopf algebroid as above. We say that (A, A,¢,5) is a weak
C*-Hopf algebroid when the following axioms are satisfied:

(w1) A is a unital C*-algebra. We set F = C.

(w2) The comultiplication A : A— A ® A is a coassociative *—homomorphism. The counit is a
positive linear map € : A— R satisfying the above compatibility condition. The antipode S is
a complex—linear anti-homomorphism and anti—cohomorphism S : A— A (that is, it reverses
the order of the multiplication and comultiplication), and is inverted under the *—structure:

S~1(a) = S(a*)* .
(w3)
A(1) = 1(3) ® 1(9) = projection

e(ap) = e(al(y)) -e(12)p) (4.3)
S(ay)ap) ®a@) = (1@ a) - A(1).

Here a(;) ® a(z) is shorthand notation for the expansion of A(a).

(w4) The dual A is defined by the linear maps & : A—C. The structure of A is canonically
dualized via the pairing and A is endowed with a dual *—structure via (a*,a)4 = (a, S(a)*)4 .
Further, (A, A,£€,5) with x and € = 1, is a weak C*~Hopf algebroid.

5 Comparing Groupoid and Algebroid Quantum Symmetries:
Weak Hopf C*—Algebroid vs. Locally Compact Quantum Groupoid
Symmetry

At this stage, we make a comparison between the Lie group ‘classical’ symmetries discussed in
Section 2 and a schematic representation for the extended groupoid and algebroid symmetries
considered in Sections 3 and 4, as follows:

Standard Classical and Quantum Group/Algebra Symmetries:

Lie Groups = Lie Algebras = Universal Enveloping Algebra = Quantization —
Quantum Group Symmetry (or Noncommutative (quantum) Geometry).

Eztended Quantum, Groupoid and Algebroid, Symmetries:

Quantum Groupoid/Algebroid < Weak Hopf Algebras <= Representations « Quantum
Groups

Our intention here is to view the latter scheme in terms of weak Hopf C*-algebroid— and/or
other— extended symmetries, which we propose to do, for example, by incorporating the concepts
of rigged Hilbert spaces and sectional functions for a small category. We note, however, that an
alternative approach to quantum groupoids has already been reported in [156] (perhaps also related
to non—commutative geometry); this was later expressed in terms of deformation-quantization: the
Hopf algebroid deformation of the universal enveloping algebras of Lie algebroids [241] as the
classical limit of a quantum ‘groupoid’; this also parallels the introduction of quantum ‘groups’ as
the deformation-quantization of Lie bialgebras. Furthermore, such a Hopf algebroid approach [147]
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leads to categories of Hopf algebroid modules [241] which are monoidal, whereas the links between
Hopf algebroids and monoidal bicategories were investigated in [78].

As defined in Section 7 and the Appendix, let (G, 7) be a locally compact groupoid endowed
with a (left) Haar system, and let A = C*(G;.,7) be the convolution C*-algebra (we append A
with 1 if necessary, so that A is unital). Then consider such a groupoid representation

A (GZC)T)—){HI7UI}$€X) (5.1)
that respects a compatible measure o, on H, [55]. On taking a state p on A, we assume a
parametrization

(H:raaac) = (Hpaa):veX- (5.2)

Furthermore, each H, is considered as a rigged Hilbert space [36], that is, one also has the
following nested inclusions:

q)iv - (Hmvaﬂf) C (I); ) (53)

in the usual manner, where ®, is a dense subspace of H, with the appropriate locally convex
topology, and @ is the space of continuous antilinear functionals of ® . For each x € X, we
require @, to be invariant under A and Im A|®, is a continuous representation of G;.on @, . With
these conditions, representations of (proper) quantum groupoids that are derived for weak C*—
Hopf algebras (or algebroids) modeled on rigged Hilbert spaces could be suitable generalizations in
the framework of a Hamiltonian generated semigroup of time evolution of a quantum system via
integration of Schrodinger’s equation Lﬁ%{) = Hy as studied in the case of Lie groups [234]. The
adoption of the rigged Hilbert spaces is also based on how the latter are recognized as reconciling
the Dirac and von Neumann approaches to quantum theories [36].

Next let G, be a locally compact Hausdorff groupoid and X a locally compact Hausdorff space.
In order to achieve a small C*—category we follow a suggestion of A. Seda (private communication)
by using a general principle in the context of Banach bundles [207, 208]. Let

q=(q1,¢2) : Ge—X x X, (5.4)

be a continuous, open and surjective map. For each z = (z,y) € X x X, consider the fibre G, =
Gie(z,y) = ¢ 1(2), and set A, = Cy(G;) = Cy(G;.) equipped with a uniform norm || ||, . Then we set
A=J, A, . We form a Banach bundle p : A—X x X as follows. Firstly, the projection is defined
via the typical fibre p~1(2) = A, = A(zy) - Let Cc(Gye) denote the continuous complex valued
functions on G;. with compact support. We obtain a sectional function @Z : X x X— A defined via
restriction as 1;(2) = 9| G; = ¥|Gj.. Commencing from the vector space v = {J s € Ce(Ge) b,
the set {1)(z) : ¢ € v} is dense in A, . For each ¢ € ~, the function ||¢)(2)]|. is continuous on X,

and each 1 is a continuous section of p : A—X x X . These facts follow from [208](Theorem 1).

Furthermore, under the convolution product f * g, the space C.(G;.) forms an associative algebra
over C (cf [208] (Theorem 3)).

Definition 5.1. The data proposed for a weak C*~Hopf symmetry consists of:

(1) A weak C*~Hopf algebroid (A, A,e,S), where as above, A = C*(G, ) is constructed via
sectional functions over a small category.
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(2) A family of GNS representations
(mp)z : A—(Hp)z == Hy , (5.5)

where for each, x € X, H, is a rigged Hilbert space.

5.1 Grassmann—Hopf Algebra and the Grassmann—Hopf Algebroid
Let V be a (complex) vector space (dimc V = n) and let {eq, €1, ..., } with identity eg = 1, be the
generators of a Grassmann (exterior) algebra

ANV =AVaA VeV .. (5.6)

subject to the relation e;e; + eje; = 0. Following [234, 94] we append this algebra with a Hopf
structure to obtain a ‘co—gebra’ based on the interchange (or tangled duality):

(objects/points, morphisms) — (morphisms, objects/points)
This leads to a tangled duality between

(i) the binary product A ® A-—">A, and
(ii) the coproduct C-50®C.

where the Sweedler notation [217], with respect to an arbitrary basis is adopted:

Az) = ZGT ® b, = Zx(l) ® T(2) = T(1) @ T(2),
)

R (5.7)
A') =) A= al, @b =20). @ 2(3)
i ™)

Here the Agk are called ‘section coefficients’. We have then a generalization of associativity to
coassociativity

c 2., cecC

lA lid@A (5.8)
coc 2% cgcec
inducing a tangled duality between an associative (unital algebra A = (A, m), and an associative
(unital) ‘co-gebra’ C = (C,A) . The idea is to take this structure and combine the Grassmann
algebra (A*V,A) with the ‘co-gebra’ (A*V,A,) (the ‘tangled dual’) along with the Hopf algebra
compatibility rules: 1) the product and the unit are ‘co-gebra’ morphisms, and 2) the coproduct
and counit are algebra morphisms.
Next we consider the following ingredients:

(1) the graded switch 7(A® B) = (—1)?498B ® A.

(2) the counit e (an algebra morphism) satisfying (¢ ® id)A =id = (id ® €) A.
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(3) the antipode S.

The Grassmann—Hopf algebra H thus consists of the septet H= (A*V A id, e, 7, S) .

Its generalization to a Grassmann—Hopf algebroid H” is straightforward by defining the H"—
algebroid over Hasa quadruple (ﬁ ,A g, S), with H” subject to the Hopf algebroid defining axioms,
and with H = (A*V, A,id, e, 7, S) subject to the standard Grassmann—Hopf algebra axioms stated
when ﬁw
is selected as a unital C*-algebra, and axioms (w2) to (w4) of the weak C*~Hopf algebroid are
also satisfied by H/). We thus set F = C. Note however that the tangled-duals of Grassman-Hopf
algebroids retain the intuitive interactions/dynamic diagram advantages of their physical, extended

above. We may also define (ﬁw, A, e, 8) as a weak C*~Grassmann—Hopf algebroid, H/)

w?

symmetry representations exhibited by the Grassman-Hopf algebras, gebras and co-gebras over
those of either weak C*-~Hopf algebroids or weak Hopf C*-algebras.

Alternatively, if G is a groupoid (or, more generally, a category) then we can construct a
Grassmann—Hopf algebroid H” as a special case of an R—algebroid H"G. The object set of H"G
is the same as that of G and H"G(b, c) is the free H"-module on the set G(b,c), with composition
given by the usual bilinear rule, extending the composition of G. Furthermore, can define also
define as above HG(b, c) to be the set of functions G (b, c)— H" with finite support, and then we
define the convolution product as in eq. (4.2).

(f*9)(2)=> {(fz)(gy) | z =z oy} (5.9)

As already pointed out, this second, convolution construction is natural for the topological G
case, when we need to replace ‘function’ by ‘continuous function with compact support’ —or with
locally compact support in the case of QFT extended symmetry sectors— and in this case one also has
that H" = C, or the definition of a convolution Grassmann—Hopf algebroid H. . By also making
H) subject to axioms (wl) to (w4) one obtains a weak C*-convolution Grassmann—Hopf alge-
broid. Tts duals are the corresponding co-algebroid, H* and also the tangled weak C*-convolution
Grassmann—Hopf gebroid, H 2 with distinct mathematical properties and physical significance.

6 Non—Abelian Algebroid Representations of Quantum State Space
Geometry in Quantum Supergravity Fields

Supergravity, in essence, is an extended supersymmetric theory of both matter and gravitation
[225]. A first approach to supersymmetry relies on a curved ‘superspace’ [231], and is analogous to
supersymmetric gauge theories (see, for example, Sections 27.1 to 27.3 of [225]). Unfortunately, a
complete non—linear supergravity theory might be forbiddingly complicated and furthermore, the
constraints that need be made on the graviton superfield appear somewhat subjective, according
to [225]. On the other hand, the second approach to supergravity is much more transparent than
the first, albeit theoretically less elegant. The physical components of the gravitational superfield
can be identified in this approach based on flat-space superfield methods (Chs. 26 and 27 of
[225]). By implementing the weak-field approximation one obtains several of the most important
consequences of supergravity theory, including masses for the hypothetical gravitino and gaugino
‘particles’ whose existence may be expected from supergravity theories. Furthermore, by adding
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on the higher order terms in the gravitational constant to the supersymmetric transformation, the
general coordinate transformations form a closed algebra and the Lagrangian that describes the
interactions of the physical fields is invariant under such transformations. Quantization of such a
flat-space superfield would obviously involve its ‘deformation’ as discussed in Section 2 above, and
as a result its corresponding supersymmetry algebra would become non—commutative.

6.1 The Metric Superfields

Because in supergravity both spinor and tensor fields are being considered, the gravitational fields
are represented in terms of tetrads, ef(r), rather than in terms of the general relativistic metric
guv (). The connections between these two distinct representations are as follows:

(@) = ey, €, ()€l (2), (6.1)

with the general coordinates being indexed by p, v, etc., whereas local coordinates that are being
defined in a locally inertial coordinate system are labeled with superscripts a, b, etc.; 745 is the
diagonal matrix with elements +1, +1, 41 and -1. The tetrads are invariant to two distinct types
of symmetry transformations—the local Lorentz transformations:

e () — A (z)e),(x), (6.2)

(where A is an arbitrary real matrix), and the general coordinate transformations:

ot —s (2")"(x). (6.3)
In a weak gravitational field the tetrad may be represented as:

en(w) = 0, () + 2k®) (z), (6.4)

where @ (z) is small compared with 45 (x) for all z values, and x = /87G, where G is Newton’s
gravitational constant. As it will be discussed next, the supersymmetry algebra (SA) implies that
the graviton has a fermionic superpartner, the hypothetical gravitino, with helicities + 3/2. Such
a self-charge-conjugate massless particle as the gravitiono with helicities + 3/2 can only have low-
energy interactions if it is represented by a Majorana field 1, () which is invariant under the gauge
transformations:

Yu(@) — Pu(@) + 6,9 (2), (6.5)

with ¢(x) being an arbitrary Majorana field as defined in [107]. The tetrad field ®,,(x) and the
graviton field v, (x) are then incorporated into a term H,(x,0) defined as the metric superfield.
The relationships between ®,, (z) and 1, (z), on the one hand, and the components of the metric
superfield H,(x,0), on the other hand, can be derived from the transformations of the whole metric
superfield:

H,(z,0) — H,(x,0) + A,(z,0), (6.6)

by making the simplifying— and physically realistic— assumption of a weak gravitational field (further
details can be found, for example, in Ch.31 of vol.3. of [225]). The interactions of the entire
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superfield H,(x) with matter would be then described by considering how a weak gravitational
field, h,, interacts with an energy-momentum tensor T*” represented as a linear combination of
components of a real vector superfield ©®*. Such interaction terms would, therefore, have the form:

Iy =2k / dz*[H,0"]p, (6.7)

(M denotes ‘matter’) integrated over a four-dimensional (Minkowski) spacetime with the metric
defined by the superfield H,(x,6). The term ©#, as defined above, is physically a supercurrent and
satisfies the conservation conditions:

DO, = D, (6.8)

where D is the four-component super-derivative and X denotes a real chiral scalar superfield. This
leads immediately to the calculation of the interactions of matter with a weak gravitational field
as:

Iv=r / d*x T (2)hy,(2), (6.9)

It is interesting to note that the gravitational actions for the superfield that are invariant under the
generalized gauge transformations H,, — H, + A, lead to solutions of the Einstein field equations
for a homogeneous, non-zero vacuum energy density py that correspond to either a de Sitter space
for py > 0, or an anti-de Sitter space [239] for py < 0. Such spaces can be represented in terms of
the hypersurface equation

x? £, 2t = R (6.10)
in a quasi-Euclidean five-dimensional space with the metric specified as:
ds? =y ota” £ drd, (6.11)

with '+ for de Sitter space and ’-’ for anti-de Sitter space, respectively.

The spacetime symmetry groups, or groupoids —as the case may be— are different from the
‘classical’ Poincaré symmetry group of translations and Lorentz transformations. Such spacetime
symmetry groups, in the simplest case, are therefore the O(4, 1) group for the de Sitter space and the
0O(3,2) group for the anti—de Sitter space. A detailed calculation indicates that the transition from
ordinary flat space to a bubble of anti-de Sitter space is not favored energetically and, therefore, the
ordinary (de Sitter) flat space is stable (cf. [73]), even though quantum fluctuations might occur
to an anti-de Sitter bubble within the limits permitted by the Heisenberg uncertainty principle.

6.2 Supersymmetry Algebras and Lie (Z,—Graded) Superalgebras

It is well known that continuous symmetry transformations can be represented in terms of a Lie
algebra of linearly independent symmetry generators t; that satisfy the commutation relations:

(), tk] = «ZiCjty, (6.12)
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Supersymmetry is similarly expressed in terms of the symmetry generators t; of a graded (‘Lie’)
algebra— which is in fact defined as a superalgebra— by satisfying relations of the general form:

tity — (—1)"tt; = S50 . (6.13)

The generators for which n; = 1 are fermionic whereas those for which n; = 0 are bosonic. The
coefficients C'Jlk are structure constants satisfying the following conditions:

Cip = —(=1)1™Cy. (6.14)

If the generators t; are quantum Hermitian operators, then the structure constants satisfy the
reality conditions C;-‘k = —Cjj;. Clearly, such a graded algebraic structure is a superalgebra and not
a proper Lie algebra; thus graded Lie algebras are often called Lie superalgebras [127].

The standard computational approach in QM utilizes the S-matrix approach, and therefore, one
needs to consider the general, graded ‘Lie algebra’ of supersymmetry generators that commute with
the S-matrix. If one denotes the fermionic generators by @, then U~1(A)QU(A) will also be of the
same type when U(A) is the quantum operator corresponding to arbitrary, homogeneous Lorentz
transformations A*”. Such a group of generators provide therefore a representation of the homo-
geneous Lorentz group of transformations L. The irreducible representation of the homogeneous
Lorentz group of transformations provides therefore a classification of such individual generators.

6.2.1 Graded ‘Lie’ Algebras and Superalgebras

A set of quantum operators kaB form an A, B representation of the group L defined above which
satisfy the commutation relations:

[A, Q4P = —[x}J5, Qa7 (6.15)
and
B, Q47] = —[S5 Jitw Q] (6.16)

with the generators A and B defined by A = (1/2)(J £iK) and B = (1/2)(J — iK), with J and
K being the Hermitian generators of rotations and ‘boosts’, respectively.

In the case of the two-component Weyl-spinors @, [184] the Haag-Lopuszanski-Sohnius (HLS)
theorem applies, and thus the fermions form a supersymmetry algebra defined by the anti-commutation

relations:
[er, Qrs) = 257’30%13“ )
[eru ka] = eijT87

where P, is the 4-momentum operator, Z,; = —Z, are the bosonic symmetry generators, and o,

(6.17)

and e are the usual 2 x 2 Pauli matrices. Furthermore, the fermionic generators commute with
both energy and momentum operators:

[Py, Qjr] = [Py, @j,] = 0. (6.18)
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The bosonic symmetry generators Zjs and Zj, represent the set of central charges of the super-
symmetric algebra:

(Zrs, Zi) = (275, Qi) = [ 275, Q5] = 1275, Z1] = 0. (6.19)

From another direction, the Poincaré symmetry mechanism of special relativity can be extended
to new algebraic systems [218]. In [168] in view of such extensions, are considered invariant-free
Lagrangians and bosonic multiplets constituting a symmetry that interplays with (Abelian) U(1)—
gauge symmetry that may possibly be described in categorical terms, in particular, within the
notion of a cubical site [106].

We shall proceed to introduce in the next section generalizations of the concepts of Lie al-
gebras and graded Lie algebras to the corresponding Lie algebroids that may also be regarded
as C*—convolution representations of quantum gravity groupoids and superfield (or supergravity)
supersymmetries. This is therefore a novel approach to the proper representation of the non-
commutative geometry of quantum spacetimes—that are curved (or ‘deformed’) by the presence of
intense gravitational fields—in the framework of non-Abelian, graded Lie algebroids. Their cor-
respondingly deformed quantum gravity groupoids (QGG) should, therefore, adequately represent
supersymmetries modified by the presence of such intense gravitational fields on the Planck scale.
Quantum fluctuations that give rise to quantum ‘foams’ at the Planck scale may be then repre-
sented by quantum homomorphisms of such QGGs. If the corresponding graded Lie algebroids are
also integrable, then one can reasonably expect to recover in the limit of A — 0 the Riemannian
geometry of General Relativity and the globally hyperbolic spacetime of Einstein’s classical gravita-
tion theory (GR), as a result of such an integration to the quantum gravity fundamental groupoid
(QGFG). The following subsection will define the precise mathematical concepts underlying our
novel quantum supergravity and extended supersymmetry notions.

6.3 Extending Supersymmetry in Relativistic Quantum Supergravity: Lie Bial-
gebroids and a Novel Graded Lie Algebroid Concept

Whereas not all Lie algebroids are integrable to Lie groupoids, there is a subclass of the latter called
sometimes ‘Weinstein groupoids’ that are in a one-to-one correspondence with their Lie algebroids.

6.3.1 Lie Algebroids and Lie Bialgebroids

One can think of a Lie algebroid as generalizing the idea of a tangent bundle where the tangent
space at a point is effectively the equivalence class of curves meeting at that point (thus suggesting
a groupoid approach), as well as serving as a site on which to study infinitesimal geometry (see e.g.
[151]). Specifically, let M be a manifold and let X(M) denote the set of vector fields on M. Recall
that a Lie algebroid over M consists of a vector bundle E— M, equipped with a Lie bracket |, |
on the space of sections (F), and a bundle map Y : E—T M, usually called the anchor. Further,
there is an induced map Y : y(E)—X(M), which is required to be a map of Lie algebras, such that
given sections «, 3 € y(F) and a differentiable function f, the following Leibniz rule is satisfied:

o J8) = flov, 8] + (T (a))B. (6.20)

A typical example of a Lie algebroid is when M is a Poisson manifold and E = T*M (the cotangent
bundle of M).
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Now suppose we have a Lie groupoid G:

T

r,s 1 G——= GO =M. (6.21)

There is an associated Lie algebroid A = A(G), which in the guise of a vector bundle, is in fact
the restriction to M of the bundle of tangent vectors along the fibers of s (ie. the s—vertical vector
fields). Also, the space of sections v(.A) can be identified with the space of s—vertical, right—invariant
vector fields X3, (G) which can be seen to be closed under [, ], and the latter induces a bracket
operation on 7(A) thus turning A into a Lie algebroid. Subsequently, a Lie algebroid A is integrable
if there exists a Lie groupoid G inducing A.

6.3.2 Graded Lie Bialgebroids and Symmetry Breaking

A Lie bialgebroid is a Lie algebroid E such that E*——M also has a Lie algebroid structure. Lie
bialgebroids are often thought of as the infinitesimal variations of Poisson groupoids. Specifically,
with regards to a Poisson structure A, if (G —= M, A) is a Poisson groupoid and if EG denotes
the Lie algebroid of G, then (EG, E*G) is a Lie bialgebroid. Conversely, a Lie bialgebroid structure
on the Lie algebroid of a Lie groupoid can be integrated to a Poisson groupoid structure. Examples
are Lie bialgebras which correspond bijectively with simply connected Poisson Lie groups.

6.4 Graded Lie Algebroids and Bialgebroids

A grading on a Lie algebroid follows by endowing a graded Jacobi bracket on the smooth functions
C>(M) (see [105]). A Graded Jacobi bracket of degree k on a Z-graded associative commutative
algebra A = @, A consists of a graded bilinear map

{, J:AXA—A, (6.22)
of degree k (that is, |{a,b}| = |a| + |b| + k) satisfying :
1. {a,b} = —(—1)@tkb+k) [} 4} (graded anticommutativity)
2. {a,bc} = {a,b}c+ (=1){H*b) pla, ¢} — {a, 1}bc (graded generalized Leibniz rule)
3. {{a,b}, ¢} = {a,{b,c}} — (—1){atkbth [} L4 c}} (graded Jacobi identity)

where ( -,-) denotes the usual pairing in Z" . Item 2. says that { , } corresponds to a first—order
bidifferential operator on A, and an odd Jacobi structure corresponds to a generalized graded Lie
bialgebroid.

Having considered and also introduced several extended quantum symmetries, we are summa-
rizing in the following diagram the key links between such quantum symmetry related concepts;
included here also are the groupoid/algebroid representations of quantum symmetry and QG su-
persymmetry breaking. Such interconnections between quantum symmetries and supersymmetry
are depicted in the following diagram in a manner suggestive of novel physical applications that
will be reported in further detail in a subsequent paper [26].
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BROKEN SYMMETRY
(e.g., paracrystals, superfluids,
spin waves in glasses):
Quantum Groupoids, Weak C*~Hopf algebras,
and Quantum Algebroids

Symmetry
‘ Extensions

SYMMETRY
Quantum Groups, Hopf algebras ‘

Goldstone and Higgs
bosons

SUPERSYMMETRY \
Graded Lic algebras ‘ GRADED LIE ALGEBROIDS
Double Convolution
SUPERGRAVITY. GROUPOID, ALGEBROID and
S“peralgﬂjgi/lj}rgg(ebIOIds GEBROID REPRESENTATIONS

(6.23)

The extended quantum symmetries formalized in the next section are defined as representations
of the groupoid, algebroid and categorical structures considered in the above sections.

7 Extended Quantum Symmetries as Algebroid and Groupoid
Representations

7.1 Algebroid Representations

A definition of a vector bundle representation (VBR), (p, V), of a Lie algebroid A over a manifold
M was given in [142] as a vector bundle V— M and a bundle map p from A to the bundle of order
< 1 differential operators D : I'(V)—T'(V') on sections of V' compatible with the anchor map and
commutator such that:

(i) for any €;, €2 € v the symbol Symb(p(e)) is a scalar equal to the anchor of e:
Symb(p(e)) = dldy, (7.1)
(i) for any e1,¢> € y(A) and f € C(M) we have [p(e1), p(e2)] = p(fex, es]).

In (ii) C°°(M) is the algebra of R-valued functions on M.
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7.2 Hopf and Weak Hopf C*— Algebroid Representations

We shall begin in this section with a consideration of the Hopf algebra representations that are
known to have additional structure to that of a Hopf algebra. If H is a Hopf algebra and A is an
algebra with the product operation y: A® A — A, then a linear map p: H ® A — A is an
algebra representation of H if in addition to being a (vector space) representation of H, u is also
an H—intertwiner. If A happens to be unital, it will also be required that there is an H-intertwiner
from ey to A such that the unity of ey maps to the unit of A.

On the other hand, the Hopf-algebroid H4 over C2°(M), with M a smooth manifold, is some-
times considered as a quantum groupoid because one can construct its spectral étale Lie groupoid
Gs — p(H,) representation beginning with the groupoid algebra C.(G) of smooth functions with
compact support on Gy.; this is an étale Lie groupoid for M’s that are not necessarily Hausdorff (cf
[169, 170]). Recently, Konno [132] reported a systematic construction of both finite and infinite—
dimensional dynamical representations of a H-Hopf algebroid (introduced in [89]), and their parallel
structures to the quantum affine algebra Uq(sAlg). Such generally non—Abelian structures are con-
structed in terms of the Drinfel’d generators of the quantum affine algebra Uq(glg) and a Heisenberg
algebra. The structure of the tensor product of two evaluation representations was also provided
by Konno [132], and an elliptic analogue of the Clebsch-Gordan coefficients was expressed by using
certain balanced elliptic hypergeometric series 12V71.

7.3 Groupoid Representations

Whereas group representations of quantum unitary operators are extensively employed in standard
quantum mechanics, the applications of groupoid representations are still under development. For
example, a description of stochastic quantum mechanics in curved spacetime [84] involving a Hilbert
bundle is possible in terms of groupoid representations which can indeed be defined on such a
Hilbert bundle (X * H,x), but cannot be expressed as the simpler group representations on a
Hilbert space H. On the other hand, as in the case of group representations, unitary groupoid
representations induce associated C*-algebra representations. In the next subsection we recall some
of the basic results concerning groupoid representations and their associated groupoid *—algebra
representations. For further details and recent results in the mathematical theory of groupoid
representations one has also available the succint monograph [55] and references cited therein
(www.utgjiu.ro/math/mbuneci/preprint.html; [56, 57, 58, 59, 60, 61, 62, 63, 64]).

7.4 Equivalent Groupoid and Algebroid Representations:
The Correspondence between Groupoid Unitary Representations
and the Associated C*—Algebra Representations

We shall briefly consider here a main result due to Hahn [114] that relates groupoid and associated
groupoid algebra representations [115]:

Theorem 7.1. (Theorem 3.4 on p. 50 in [114]) Any representation of a groupoid Gi. with Haar
measure (v, ) in a separable Hilbert space H induces a *-algebra representation f +— Xy of the
associated groupoid algebra I1(Gye, v) in L2(UGZC, w, H) with the following properties:

(1) For any l,m € H , one has that |(X¢(u — 1), (w—m))| < | fill |1l [|m], and
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(2) My (a)Xf = X faor, where M, : L®(Ug, u, H) — L(L*(Ug, u, H)), with M,(a)j = - j.

Conversely, any *—algebra representation with the above two properties induces a groupoid repre-

sentation, X, as follows:

(X5, 0, k) = /f(ﬂf)[X(x)j(d(w)),k(?‘(ﬂf))dv{ﬂf)]a (7.2)

Furthermore, according to Seda ([209], on p.116) the continuity of a Haar system is equivalent
to the continuity of the convolution product f * g for any pair f,g of continuous functions with
compact support. One may thus conjecture that similar results could be obtained for functions with
locally compact support in dealing with convolution products of either locally compact groupoids
or quantum groupoids. Seda’ s result also implies that the convolution algebra C.(G) of a groupoid
G is closed with respect to convolution if and only if the fixed Haar system associated with the
measured groupoid G is continuous [55].

In the case of groupoid algebras of transitive groupoids, [55] and in related refs.([55, 57, 58, 59,
60, 61, 62, 63, 64]) showed that representations of a measured groupoid (G, [[ v*d\(u)] = [\]) on
a separable Hilbert space H induce non-degenerate *-representations f — Xy of the associated
groupoid algebra II(G, v, ) with properties formally similar to (1) and (2) above ([65]). More-
over, as in the case of groups, there is a correspondence between the unitary representations of a
groupoid and its associated C*~convolution algebra representations (p.182 of [55]), the latter involv-
ing however fiber bundles of Hilbert spaces instead of single Hilbert spaces. Therefore, groupoid
representations appear as the natural construct for Algebraic Quantum Field theories in which nets
of local observable operators in Hilbert space fiber bundles were introduced by Rovelli in [203].

7.5 Generalized Fourier—Stieltjes Transforms of Groupoids: Fourier—Stieltjes
Algebras of Locally Compact Groupoids and Quantum Groupoids; Left
Regular Groupoid Representations and the Fourier Algebra of a Measured
Groupoid

We shall recall first that the Fourier—Stieltjes algebra B(G).) of a locally compact group Gy is
defined by the space of coefficients (£, 7n) of Hilbert space representations of Gj.. In the special case
of left regular representations and a measured groupoid, G, the Fourier—Stieltjes algebra B(G, v*, )
—defined as an involutive subalgebra of L°(G)— becomes the Fourier algebra A(G) defined by
Renault [196]; such algebras are thus defined as a set of representation coefficients (u,Ug * H, L),
which are effectively realized as a function (£,7) : G — C, defined by

(& m)(@) = (£0r(@), L)) (73)

(see pp.196-197 of [55]).

The Fourier—Stieltjes (FS) and Fourier (FR) algebras, respectively, B(Gj.), A(G).), were first
studied by P. Eymard for a general locally compact group Gj. in ref. [92], and have since played
ever increasing roles in harmonic analysis and in the study of the operator algebras generated by
Gie.

Recently, there is also a considerable interest in developing extensions of these two types of alge-
bras for locally compact groupoids because, as in the group case, such algebras play a useful role both
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in the study of the theory of quantum operator algebras and that of groupoid operator algebras.
Furthermore, as discussed in the Introduction, there are new links between (physical) scattering the-
ories for paracrystals, or other systems with local/partial ordering such as glasses/ ‘non-crystalline’
solids, and the generalizations of Fourier transforms that realize the well-established duality be-
tween the physical space, S, and the ‘diffraction’, or reciprocal, space, R = S. On the other hand,
the duality between the real time of quantum dynamics/resonant processes, 7', and the ‘spectral
space’, F = T, of resonance frequencies (and the corresponding quanta of energies, hv) for elec-
trons, nucleons and other particles in bound configurations is just as well-established by comparison
with that occurring between the ‘real’ and reciprocal spaces in the case of electrons, neutron or
emf/X-ray diffraction and scattering by periodic and aperiodic solids. The deep quantum con-
nection between these two fundamental dualities, or symmetries, that seem to be ubiquitous in
nature, can possibly lead to an unified quantum theory of dispersion in solids, liquids, superfluids
and plasmas.

Let X be a locally compact Hausdorff space and C(X) the algebra of bounded, continuous,
complex-valued functions on X. Then denote the space of continuous functions in C'(X) that
vanish at infinity by Co(X), while C.(X) is the space of functions in C'(X) with compact support.
The space of complex, bounded, regular Borel measures on X is then denoted by M(X). The
Banach spaces B(G;.), A(G;.) (where Gj. denotes a locally compact groupoid) as considered here
occur naturally in the group case in both non-commutative harmonic analysis and duality theory.
Thus, in the case when G is a locally compact group, B(G;.) and A(G.) are just the well known
Fourier—Stieltjes and Fourier algebras discussed above. The need to have available generalizations
of these Banach algebras for the case of a locally compact groupoid stems from the fact that many
of the operator algebras of current interest— as for example in non-commutative geometry and
quantum operator algebras—originate from groupoid, rather than group, representations, so that
one needs to develop the notions of B(G;.), A(G;.) in the groupoid case for groupoid operator
algebras (or indeed for algebroids) that are much more general than B(Gj.), A(Gj.). One notes
also that in the operator space context, A(Gj.) is regarded as the convolution algebra of the dual
quantum group [181].

However, for groupoids and more general structures (e.g., categories and toposes of LM —algebras),
such an extension of Banach space duality still needs further investigation. Thus, one can also con-
ceive the notion of a measure theory based on Lukasiewicz-Moisil (LM) N-valued logic algebras
(see [101] and references cited therein), and a corresponding LM —topos generalization of harmonic
(or anharmonic) analysis by defining extended Haar-LM measures, LM~ topos representations and
Fs—r—n transforms. This raises the natural question of duality for the catgeory of LM-algebras
that was introduced by Georgescu and Vraciu [103]. An appropriate framework for such logic
L M-algebras is provided by algebraic categories [102].

Let us consider first the algebra involved in the simple example of the Fourier transform and
then note that its extension to the Fourier-Stieltjes transform involves a convolution, just as it did
in the case of the paracrystal scattering theory.

Thus, consider as in [181] the Fourier algebra in the locally compact group case and further
assume that Gj. is a locally compact abelian group with character space Gie; then an element
of Gy is a continuous homomorphism ¢ : Gj. — T , with Gie being a locally compact abelian
group with pointwise product and the topology of uniform convergence on compacta. Then, the
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Fourier transform f — f takes f € L' (Gy.) into C’O(Cflc) with f = [ f() t(x)dz, where dz is
defined as a left Haar measure on GGj.. On the other hand, its inverse Fourler transform p— i
reverses the process by taking M (Cflc) back into C'(Gj.), with i being defined by the (inverse Fourier
transform) integral: ji(xz) = [ #(t)du(t). For example when Gj. = R, one also has that Gj. = R so
that t € Glc is associated with the character x — e** Therefore one obtains in this case the usual
Fourier transform f =[f(z e~ dy and its inverse (or dual) ji =/ e du(t). By considering

M (Gy.) as a convolution Banach algebra (which contains L! (Glc) as a closed ideal) one can define
the Fourier-Stieltjes algebra B(Gy.) by M(G).) ", whereas the simpler Fourier algebra, A(Gy.), is
defined as L'(G).) "

Remark 7.1. In the case of a discrete Fourier transform, the integral is replaced by summation
of the terms of a Fourier series. The discrete Fourier (transform) summation has by far the widest
and most numerous applications in digital computations in both science and engineering. Thus,
one represents a continuous function by an infinite Fourier series of ‘harmonic’ components that
can be either real or complex, depending on the symmetry properties of the represented function;
the latter is then approximated to any level of desired precision by truncating the Fourier series to
a finite number of terms and then neglecting the remainder. To avoid spurious ‘truncation errors’
one then applies a ‘smoothing’ function, such as a negative exponential, that is digitized at closely
spaced sample points so that the Nyquist’s theorem criterion is met in order to both obtain the
highest possible resolution and to drastically reduce the noise in the final, computed fast Fourier
transform (FFT). Thus, for example, in the simpler case of a centrosymmetric electron density of
a unit cell in a crystalline lattice, the diffracted X-ray, electron or neutron intensity can be shown
to be proportional to the modulus squared of the real Fourier transform of the (centrosymmetric)
electron density of the lattice. In a (digital) FF'T computation, the approximate electron density
reconstruction of the lattice structure is obtained through truncation to the highest order(s) of
diffraction observed, and thus the spatial resolution obtained is limited to a corresponding value in
real 3-D space.

Remark 7.2. : Laplace vs 1-D and 2-D Fourier transforms. On the other hand, although
Laplace transforms are being used in some engineering applications to calculate transfer functions,
they are much less utilized in the experimental sciences than the Fourier transforms even though
the former may have advantages over FFT for obtaining both improved resolution and increased
signal-to-noise. It seems that the major reason for this strong preference for FFT is the much
shorter computation time on digital computers, and perhaps also FFT’s relative simplicity when
compared with Laplace transforms; the latter may also be one of the main reasons for the presence
of very few digital applications in experimental science of the Fourier—Stieltjes transforms which
generalize Fourier transforms. Somewhat surprising, however, is the use of FFT also in algebraic
quantum field computations on a lattice where both FS or Laplace transforms could provide superior
results, albeit at the expense of increased digital computation time and substantially more complex
programming. On the other hand, one also notes the increasing use of ‘two—dimensional’ FFT in
comparison with one-dimensional FFT in both experimental science and medicine (for example,
in 2D-NMR, 2D-—chemical (IR/NIR) imaging and MRI cross-section computations, respectively),
even though the former require both significantly longer computation times and more complex
programming.
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7.5.1 Fourier-Stieltjes Transforms as Generalizations of the Classical Fourier Trans-
forms in Harmonic Analysis to Extended Anharmonic Analysis
in Quantum Theories

Not surprisingly, there are several versions of the near-‘harmonic’ F-S algebras for the locally
compact groupoid case that appear at least in three related theories:

1. The measured groupoid theory of J. Renault [194, 195, 196],

2. A Borel theory of A. Ramsay and M. Walter [189], including the topology of measured
groupoids [188], and

3. A continuity-based theory of A. Paterson [181, 182].

Ramsay and Walter [189] made a first step towards extending the theory of Fourier—Stieltjes
algebras from groups to groupoids, thus paving the way to the extension of F' — .S applications to
generalized anharmonic analysis in Quantum theories via quantum algebra and quantum groupoid
representations. Thus, if G, is a locally compact (second countable) groupoid, Ramsay and Walter
showed that B(G;.), which was defined as the linear span of the Borel positive definite functions
on Gy, is a Banach algebra when represented as an algebra of completely bounded maps on a
C*-algebra associated with the Gj. that involves equivalent elements of B(G;.); positive definite
functions will be defined in the next paragraph using the notation of [181]. Corresponding to the
universal C*-algebra, C*(G), in the group case is the universal C;(G) in the measured groupoid
G case. The latter is the completion of C.(G;.) under the largest C*-norm coming from some
measurable Gic—Hilbert bundle (u, R, L). In the group case, it is known that B(G) is isometric to
the Banach space dual of C*(G). On the other hand, for groupoids, one can consider a representation
of B(Gy.) as a Banach space of completely bounded maps from a C*—algebra associated with G;. to
a C*—algebra associated with the equivalence relation induced by G;.. Obviously, any Hilbert space
H can also be regarded as an operator space by identifying it with a subspace of B(C,H): each
& € H is identified with the map a—a€ for a € C; thus, H* is an operator space as a subspace of
B(H,C). Renault showed for measured groupoids that the operator space C};(G;) is a completely
contractive left L>°(G),) module. If E is a right, and F is a left, A—operator module, with A being
a C*—algebra, then a Haagerup tensor norm is determined on the algebraic tensor product £ ® 4 F
by setting || u| = >, |les|| || fil| over all representations u= ", e; ®4 fi.

According to [181], the completion E ® 4 F of E is called the module Haagerup tensor product
of E and F over A. With this definition, the module Haagerup tensor product is:

X(Gie) = L*(G}.)" @ C;(Gie) ® L*(GY), (7.4)
taken over LOO(G?C). Then, with this tensor product construction, Renault was able to prove that
X(Ge)* = Bu(Gye). (7.5)

Thus, each ¢ = (£, n) can be expressed by the linear functional a* ® f @ b— [ao7(¢f)bos dv
with f € C.(Gye).

We shall also briefly discuss here Paterson’s generalization to the groupoid case in the form of
a Fourier—Stieltjes algebra of a groupoid, B,,(G;.), which was defined (e.g., in [181]) as the space of
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coefficients ¢ = (&, n), where &, n are L>—sections for some measurable G-Hilbert bundle (u, R, L)).
Thus, for z € Gy,

¢(x) = (L(2)&(s(x)), n(r(z)))- (7.6)
Therefore, ¢ belongs to L>®(G;.) = L*(Gye, v).

Both in the groupoid and group case, the set P,(G.) of positive definite functions in L*(G;.)
plays the central role. Thus, a function ¢ € L*°(Gy,) is called positive definite if and only if for all
u € (G),

)
/ / oy~ 1) £ () F@)dA () AN () > 0 . (7.7)

Now, one can define the notion of a Fourier—Stieltjes Transform as follows:

Definition 7.5.1: The Fourier—Stieltjes Transform. Given a positive definite, measurable
function f(x) on the interval (—oo,00) there exists a monotone increasing, real-valued bounded
function «(t) such that:

fla) = / et | (7.8)

—0o0
for all x except a small set. When f(x) is defined as above and if a(t) is nondecreasing and bounded
then the measurable function defined by the above integral is called the Fourier-Stieltjes transform
of a(t), and it is continuous in addition to being positive definite in the sense defined above.
In [181] is also defined the continuous Fourier—Stieltjes algebra B(G) as follows. Let us consider
a continuous G-Hilbert bundle Hg, and the Banach space A of continuous, bounded sections of
Hsy. For £, € Ay, the coefficient (£,71) € C(G) is defined by:

(& m)(u) = (La&(s(x)),n(r(x))) , (7.9)

where x—L,, is the G-action on Hsy [219]. Then, the continuous Fourier—Stieltjes algebra B(G) is
defined to be the set of all such coefficients, coming from all possible continuous G—Hilbert bundles.
Thus, B(G) is an algebra over C and the norm of ¢ € B(G) is defined to be inf ||£]| ||n]|, with the
infimum inf being taken over all G representations ¢ = (§,7). Then B(G) C C(G), and |||, = ||]|-

Paterson in [181] showed that B(G) thus defined—just as in the group case— is a commutative
Banach algebra. He also defined for a general group G the left regular representation m of G on
L*(G) by: ma(z)f(t) = f(x~'t). One also has the universal representation 73 univ of G which is
defined on a Hilbert space Hynin. Moreover, every unitary representation of G determines by inte-
gration a non-degenerate mo-representation of C.(G). The norm closure of 7o(C.(G)) then defines
the reduced C*-algebra C*

red

the universal C*-algebra of G (loc.cit.). The algebra C*

red

(G) of G, whereas the norm closure of 73 yniy(Ce(G)) was defined as
(G) C B(L*(G)) generates a von Neu-
mann algebra denoted by Vi (G). Thus, CF ,(G) representations generate Vi (G) representations
that have a much simpler classification through their Vi factors than the representations of general
C*-algebras; consequently, the classification of C_,(G) representations is closer linked to that of
Vn factors than in the general case of C*—-algebras. One would expect that a similar simplification
may not be available when group G symmetries (and, respectively, their associated C,,(G) repre-
sentations) are extended to the more general groupoid symmetries (and their associated groupoid
Cx—convolution algebra representations relative to Hilbert bundles).
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Recently, however, Bos in refs. [38, 41] reported that one can extend—with appropriate modifica-
tions and conditions added— the Schur’s Lemma and Peter-Weyl theorems from group representa-
tions to corresponding theorems for (continuous) internally irreducible representations of continuous
groupoids in the case of Schur’s Lemma, and restriction maps in the case of two Peter-Weyl the-
orems, (one of the latter theorems being applicable only to compact, proper groupoids and their
isomorphism classes of irreducible unitary (or internally irreducible) representations (IrRep(G) and
IrRep'(G), respectively)). It is well established that using Schur’s Lemma for groups one can prove
that if a matrix commutes with every element in an irreducible representation of a group that
matrix must be a multiple of the identity. A continuous groupoid representation (7, H, A) of a con-
tinuous groupoid GZ M was called internally irreducible by Ros if the restriction of 7 to each of the
isotropy groups is an irreducible representation. Thus, in the case of continuous groupoids G M
(endowed with a Haar system), irreducible representations are also internally irreducible but the
converse does not hold in general (see also the preprints of R.D. Bos at: http://www.math.ru.nl/ rd-
bos/ContinReps.pdf). Bos also introduced in [38, 41] the universal enveloping C*-category of a
Banach *—category, and then used this to define the C*-category, C*(G, G), of a groupoid. Then,
he found that there exists a bijection between the continuous representations of C*(G,G) and the
continuous representations of G M.

7.6 Categorical Representations of Categorical Groups in Monoidal Bicate-
gories

Barrett pointed out in [29] that monoidal categories play an important role in the construction of
invariants of three-manifolds (as well as knots, links and graphs in three-manifolds). The approach
is based on constructions inspired by strict categorical groups which lead to monoidal categories
[30]. A categorical group was thus considered in this recent report as a group—object in the category
of groupoids, and it can also be shown that categorical groups are equivalent to crossed modules
of groups. (A crossed module is a homomorphism of groups 0 : E — G, together with an action
> of G on E by automorphisms, such that (X >e) = X(9)X !, and (9(e) > €’ = ec’e™!, where E
denotes the principal group and G is the base group) [220].

Specifically, a categorical group was defined in [30] as a groupoid G, with a set of objects G° C G,
together with functors which implement the group product, o : G x G—@G, and the inverse (! :
G — G, together with an identity object 1 € G°; these satisfy the usual group laws:

ao(boc)=(aob)oc, aol=1loa=a, aoa '=a'loa=1, (7.10)
for all a,b,c € G. Furthermore, a functorial homomorphism between two such categorical groups
was defined as a strict monoidal functor.

In particular, G is a strict monoidal category (or tensor category, that is, a category C equipped
with a bifunctor ® : C x C — C which is associative and an object which is both left and right
identity for the bifunctor ®, up to a natural isomorphism; see also Section 8 for further details on
tensor products and tensor categories).

One of many physical representations of such monoidal categories is the topological order in
condensed matter theory, quantum field theory [238] and string models [113, 143, 144, 229, 230].
One of the first theoretical reports of topological order in metallic glasses with ferromagnetic prop-
erties was made by P.W. Anderson in 1977 [7]. In the recent quantum theory of condensed matter,
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topological order is a pattern of long-range entanglement of quantum states (such as the “string-net
condensed” states [145]) defined by a new set of quantum numbers such as quasi-particle fractional
statistics, edge states, ground state degeneracy, topological entropy [144], and so on; therefore,
topological order also introduces new extended quantum symmetries [190] that are beyond the
Landau symmetry—breaking model. Such string-net condensed models can have excitations that
behave like gluons, quarks and the other particles already present in the Standard Model (SUSY).

On the other hand, braided monoidal categories are being applied to both quantum field theory
and string models. A braided monoidal category is defined as a monoidal category equipped with a
braiding, that is , a natural isomorphism v4 g : A® B — B ® A such that the braiding morphisms
7:A® (B®C) - B® (C ® A) commute with the associativity isomorphism in two hexagonal
diagrams containing all associative permutations of objects A, B and C. An alternative definition
of a braided monoidal category is as a tricategory, or 3-category, with a single one-cell and also a
single 2-cell [8, 9]; thus, it may be thought of as a ‘three-dimensional’ categorical structure.

As an example of bicategory associated with categorical group representations, consider the
closure of G, denoted by G, to be the 2-category with one object denoted by e, such that G(e, e) = G.
The horizontal composition is then defined by the monoidal structure in G.

In the current literature, the notion of categorical group is used in the sense of a strict monoidal
category in which multiplication by an object on either side is an equivalence of categories, and the
definition of a categorical group was seemingly first published by Brown and Spencer in 1976 [54]).

From a quantum physics perspective, the monoidal categories determined by quantum groups
seen as Hopf algebras, generalize the notion that the representations of a group form a monoidal
category. One particular example of a monoidal category was reported to provide a state-sum model
for quantum gravity in three-dimensional spacetime [222, 29]. The motivation for such applications
was the search for more realistic categorical models of four-dimensional, relativistic spacetimes.
Thus, it was proposed to construct the monoidal 2-category of representations for the case of the
categorical Lie group determined by the group of Lorentz transformations and its action on the
translation group of Minkowski space.

In higher dimensions than three, the complexity of such algebraic representations increases
dramatically. In the case of four—manifolds there are several examples of applications of categorical
algebra [153] to four—-dimensional topology; these include: Hopf categories [76], categorical groups
[243] or monoidal 2-categories [69, 10], and the representation theory of quasi-triangular Hopf
algebras. Invariants of four-manifolds were derived by Crane and Kauffman, as well as Roberts
[201, 202], who give information on the homotopy type of the four-manifold [77, 202, 192, 150].
Recently, Martin and Porter [157] presented results concerning the Yetter invariants [243], and
an extension of the Dijkgraaf-Witten invariant to categorical groups. Other types of categorical
invariants and extended symmetries are also expected to emerge in higher dimensions as illustrated
here in Section 9. Barrett [29] also introduced a definition of categorical representations and the
functors between them [30]. Such definitions are analogues of Neuchl!’s definitions for Hopf categories
[175]. Consider first the specific example of a categorical group G and its closure G as defined
above. One can check that a representation of G is precisely a functor R : G — Vect, and that an
intertwiner is precisely a natural transformation between two such functors (or representations).
This motivates the categorical representation of categorical groups in the monoidal bicategory 2-
Vect of 2-vector spaces. If G is an arbitrary categorical group and G its closure, the categorical
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representation of G is a strictly unitary homomorphism (R, R) : G — 2—Vect.

The non-negative integer R(e) € 2—Vecty was called the dimension of the categorical repre-
sentation. The categorical group representation can be equivalently described as a homomorphism
between the corresponding crossed modules. The possibility of generalizing such categorical repre-
sentations to monoidal categories other than 2—Vect was also considered.

A theorem proven by Verdier states that the category of categorical groups and functorial homo-
morphisms Cg and the category CM of crossed modules of groups and homomorphisms between
them are equivalent. Based on this theorem, Barrett in [29] showed that each categorical group
determines a monoidal bicategory of representations. Typically, such bicategories were shown to
contain representations that are indecomposable but not irreducible.

In the following sections we shall consider even wider classes of representations for groupoids,
arbitrary categories and functors.

7.7 General Definition of Extended Symmetries as Representations

We aim here to define extended quantum symmetries as general representations of mathematical
structures that have as many as possible physical realizations, i.e. via unified quantum theories. In
order to be able to extend this approach to very large ensembles of composite or complex quantum
systems one requires general procedures for quantum ‘coupling’ of component quantum systems;
we propose to approach this important ‘composition’, or scale up/assembly problem in a formal
manner as described in the next section.

Because a group G can be viewed as a category with a single object, whose morphisms are just the
elements of G, a general representation of G in an arbitrary category C is a functor Rg from G to
C that selects an object X in C and a group homomorphism from 7 to Aut(X), the automorphism
group of X. Let us also define an adjoint representation by the functor R, : C—G. If C is chosen
as the category Top of topological spaces and homeomorphisms then representations of G in Top
are homomorphisms from G to the homeomorphism group of a topological space X. Similarly, a
general representation of a groupoid G (considered as a category of invertible morphisms) in an
arbitrary category C is a functor Rg from G to C, defined as above simply by substituting G for G.
In the special case of a Hilbert space, this categorical definition is consistent with the representation
of the groupoid on a bundle of Hilbert spaces.

Remark 7.3. Unless one is operating in super—categories, such as 2-categories and higher dimen-
sional categories, one needs to distinguish between the representations of an (algebraic) object— as
defined above— and the representation of a functor S (from C to the category of sets, Set) by an
object in an arbitrary category C as defined next. Thus, in the latter case, a functor representation
will be defined by a certain natural equivalence between functors. Furthermore, one needs consider
also the following sequence of functors:

Rg : G—C,
R¢ : C—G, (7.11)
S : G—>Set,

where Rg and R are adjoint representations as defined above, and § is the forgetful functor
which forgets the group structure; the latter also has a right adjoint §*. With these notations one
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obtains the following commutative diagram of adjoint representations and adjoint functors that
can be expanded to a square diagram to include either Top—the category of topological spaces
and homeomorphisms, or TGrpd, and/or Cg = CM (respectively, the category of topological
groupoids, and/or the category of categorical groups and homomorphisms) in a manner analogous
to the two diagrams in (9.4) that will be discussed in Section 9 (with the additional, unique
adjunction situations to be added in accordingly).

S
Set == G (7.12)

S*
Re | Re
F:“\Gl ¢

C

7.8 Representable Functors and their Representations

The key notion of representable functor was first reported by Grothendieck (also with Dieudonné)
during 1960-1962, [109, 110, 111]; (see also the earlier publication by Grothendieck [108]). This is
a functor § : C—Set, from an arbitrary category C to the category of sets, Set, if it admits a
(functor) representation defined as follows. A functor representation of S is a pair, (R, ¢), which
consists of an object R of C and a family ¢ of equivalences ¢(C) : Hom¢ (R, C) = S(C), which is
natural in C. When the functor & has such a representation, it is also said to be represented by the
object R of C. For each object R of C one writes hg : C——Set for the covariant Hom—functor
hr(C) = Homc(R,C). A representation (R, ¢) of S is therefore a natural equivalence of functors

¢:hpS. (7.13)

The equivalence classes of such functor representations (defined as natural equivalences) obviously
determine an algebraic groupoid structure. As a simple example of an algebraic functor represen-
tation, let us also consider (cf. [153]) the functor N : Gr—Set which assigns to each group G
its underlying set and to each group homomorphism f the same morphism but regarded just as a
function on the underlying sets; such a functor N is called a forgetful functor because it “forgets”
the group structure. NN is a representable functor as it is represented by the additive group Z of
integers and one has the well-known bijection Hom¢,(Z,G) = S(G) which assigns to each homo-
morphism f : Z—G the image f(1) of the generator 1 of Z. In the case of groupoids there is also
a natural forgetful functor F' : Grpd—Directed Graphs whose left adjoint is the free groupoid
on a directed graph, i.e. the groupoid of all paths in the graph.

Is F representable, and if so, what is the object that represents F' ¢

One can also describe (viz. [153]) representable functors in terms of certain universal elements
called universal points. Thus, consider § : C — Set and let Cj,, be the category whose objects are
those pairs (A, z) for which z € S(A) and with morphisms f : (A, z)—(DB,y) specified as those
morphisms f : A — B of C such that S(f)z = y; this category Cs, will be called the category
of S—pointed objects of C. Then one defines a universal point for a functor S : C—Set to be
an initial object (R,u) in the category Cg.. At this point, a general connection between repre-
sentable functors/functor representations and universal properties is established by the following,
fundamental functor representation theorem [153].

Theorem 7.2. (Theorem 7.1 of MacLane [153]) For each functor & : C—Set, the formulas
u = (¢R)1g, and (¢pc)h = (Sh)u, (with the latter holding for any morphism h : R—C'), establish
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a one—to—one correspondence between the functor representations (R,$) of S and the universal

points (R,u) for S.

8 Algebraic Categories and their Representations in the Category
of Hilbert Spaces. Generalization of Tensor Products

Quantum theories of quasi-particle, or multi-particle, systems are well known to require not just
products of Hilbert spaces but instead their tensor products. On the other hand, symmetries
are usually built through representations of products of groups such as U(1) x SU(2) x SU(3) in
the current ‘Standard Model’; the corresponding Lie algebras are of course u(1),su(2) and su(3) .
To represent the more complex symmetries involving quantum groups that have underlying Hopf
algebras, or in general Grassman—Hopf algebras, associated with many-particle or quasi-particle
systems, one is therefore in need of considering new notions of generalized tensor products. We have
discussed in Sections 6 and 7 alternative approaches to extended quantum symmetries involving
graded Lie agebroids (in quantum gravity), quantum algebroids, convolution products and quantum
algebroid representations. The latter approaches can be naturally combined with ‘tensor products
of quantum algebroids’ if a suitable canonical extension of the tensor product notion is selected
from several possible alternatives that will be discussed next.

8.1 Introducing Tensor Products of Algebroids and Categories

Firstly, we note that tensor products of cubical w—groupoids have been constructed by Brown and
Higgins [47], thus giving rise to a tensor product of crossed complexes, which has been used by
Baues and Conduché to define the ‘tensor algebra’ of a non-Abelian group [31]. Subsequently,
Day and Street in [78] have also considered Hopf algebras with many objects in tensor categories
[79]. Further work is however needed to explore possible links of these ideas with the functional
analysis and operator algebras considered earlier. Thus, in attempting to generalize the notion of
Hopf algebra to the many object case, one also needs to consider what could be the notion of tensor
product of two R—algebroids C' and D. If this can be properly defined one can then expect to see the
composition in C' as some partial functor m : C @ C—C and a diagonal as some partial functor
A : C—C ® C. The definition of C ® D is readily obtained for categories C, D by modifying
slightly the definition of the tensor product of groupoids, regarded as crossed complexes in Brown
and Higgins (1987). So we define C'® D as the pushout of categories

CO X DO — Cl X D(] (81)

| |

Cox Dy ——=C®D
This category may be seen also as generated by the symbols
{c@y|lceCi}U{z®d|de D}, (8.2)

for all x € Cy and y € Dg subject to the relations given by the compositions in C7 and on Dj.
The category G # H is generated by all elements (1., h), (9,1,) where g € G,h € H,x € Gy, y €
Hy. We will sometimes write g for (g, 1,) and h for (1, h). This may seem to be willful ambiguity,
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but when composites are specified in G # H, the ambiguity is resolved; for example, if gh is defined
in G# H, then g must refer to (g,1,), where y = sh, and h must refer to (1,,h), where z = tg.
This convention simplifies the notation and there is an easily stated solution to the word problem
for G # H. Every element of G # H is uniquely expressible in one of the following forms:

(i) an identity element (1;,1,);

(ii) a generating element (g,1,) or (1;,h), where z € Go,y € Ho,g € G,h € H and g, h are not
identities;

(iii) a composite k1ka-- - k,(n > 2) of non-identity elements of G or H in which the k; lie alter-
nately in G and H, and the odd and even products kiksks--- and koksks--- are defined in
G or H.

For example, if g1 : x—y, 92 : y—2, in G, go is invertible, and hy : u—v, hy : v—w in H,
then the word glhlgghgggl represents an element of G# H from (z,u) to (y,w). Note that the
two occurrences of go refer to different elements of G # H, namely (g2, 1,) and (g2, 1,). This can
be represented as a path in a 2-dimensional grid as follows

(:Elu) (x,v) (z,w) (8.3)
() = (0)  (yw)

g2 g;l
(z,u) (z,v) _he (z,w)

The similarity with the free product of monoids is obvious and the normal form can be verified
in the same way; for example, one can use ‘van der Waerden’s trick’. In the case when C' and D
are R-algebroids one may consider the pushout in the category of R—-algebroids.

Now if C is a category, we can consider the possibility of a diagonal morphism

A: C—C#C. (8.4)
We may also include the possibility of a morphism
u: C#C—C . (8.5)

This seems possible in the algebroid case, namely the sum of the odd and even products. Or at
least, p could be defined on C #C((z,x), (y,y))

It can be argued that a most significant effect of the use of categories as algebraic structures is to
allow for algebraic structures with operations that are partially defined. These were early considered
by Higgins in ‘Algebras with a scheme of operators’ [120, 121]. In general, ‘Higher Dimensional
Algebra’ (HDA) may be defined as the study of algebraic structures with operations whose domains
of definitions are defined by geometric considerations. This allows for a splendid interplay of algebra
and geometry, which early appeared in category theory with the use of complex commutative
diagrams (see for example [112, 159, 185, 154]). What is needed next is a corresponding interplay
with analysis and functional analysis (see for example [179]) that would extend also to quantum
operator algebras, their representations and symmetries.
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8.2 Construction of Weak Hopf Algebras via Tensor Category Classification
(according to Ostrik [178])

If k denotes an algebraically closed field, let C be a tensor category over k. The classification of
all semisimple module categories over C would then allow in principle the construction of all weak
Hopf algebras H so that the category of comodules over H is tensor equivalent to C, that is, as
realizations of C. There are at least three published cases where such a classification is possible:

(1) when C is a group theoretical fusion category (as an example when C, is the category of
representations of a finite group «, or a Drinfel’d quantum double of a finite group), (see
[178]);

(2) when k is a fusion category attached to quantum SL(2) (see [178, 88, 34, 131, 176, 177, 117]);

(3) when k = Cj is the category of representations of quantum SL,(2) Hopf algebras and ¢ is not
a root of unity (see [88]).

This approach was further developed recently for module categories over quantum SL(2) rep-
resentations in the non-simple case (see also Example 2.4 regarding the quantum SL,(2) Hopf
algebras for further details), thus establishing a link between weak Hopf algebras and module
categories over quantum SL(2) representations (viz. [178]).

Remark 8.1. One notes the condition imposed here of an algebraically closed field which is essential
for remaining within the bounds of algebraic structures, as fields— in general— are not algebraic.

8.3 Construction of Weak Hopf Algebras from a Matched Pair (V, H) of Finite
Groupoids (following Aguiar and Andruskiewitsch in [2])

As shown in [2], the matched pair of groupoids (V, H) can be represented by the factorisation of
its elements in the following diagram:

P—E——>Q

;mgl lg (8.6)
R $<19 S

where ¢ is a morphism or arrow of the vertical groupoid V and x is a morphism of the matched
horizontal groupoid H, can be employed to construct a weak Hopf algebra, or quantum groupoid
k(V,H). In the above diagram, P is the common base set of objects for both V and H, and > and
< are respectively the mutual actions of V and H on each other satisfying certain simple axioms
(Definition 1.1 in loc. cit). Furthermore, a matched pair of rotations (n,§) for (V,H) gives rise to
a quasi—triangular weak Hopf structure @ for k(V,H). One can also write explicitly this structure
as a tensor product:

Q=) (&(fag 9@ Mlg) ). (8.7)

Remark 8.2. The representation of matched pairs of groupoids introduced in loc. cit. is spe-
cialized to yield a monoidal structure on the category Rep(V,H) and a monoidal functor between
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such restrictive ‘monoidal’ representations, and is thus not consistent with the generalized notions
of groupoid and functor representations considered, respectively, in Sections 7.3, 7.4, and 7.6 to 7.8.
Nevertheless, the constructions of both weak Hopf algebras and quasi-triangular Hopf by means
of matched pairs of groupoids is important for extended symmetry considerations as it suggests
the possibility of double groupoid construction of weak Hopf algebroids (and also bialgebroids and
double algebroids).

The representations of such higher dimensional algebraic structures will be further discussed in
the following Section 9.

9 Double Algebroids and Double Groupoids

There is a body of recent non-Abelian algebraic topology results giving a form of “higher dimen-
sional group (HDG) theory” which is based on intuitive ideas of composing squares or n-cubes
rather than just paths as in the case of groups [45].

Such an HDG theory yielded important results in homotopy theory and the homology of discrete
groups, and seems also to be connected to a generalized categorical Galois theory introduced by
Janelidze and Brown [48]. The HDG approach has also suggested other new constructions in group
theory, for example a non-Abelian tensor product of groups. One of the aims of our paper is to
proceed towards a corresponding theory for associative algebras and algebroids rather than groups.
Then, one also finds that there are many more results and methods in HDG theories that are
analogous to those in the lower dimensional group theory, but with a corresponding increase in
technical sophistication for the former. Such complications occur mainly at the step of increasing
dimension from one to dimension two; thus, we shall deal in this section only with the latter case.
The general, n-dimensional case of such results presents significant technical difficulties but is of
great potential, and will be considered in subsequent publications.

Thus, in developing a corresponding theory for algebras we expect that in order to obtain a
non-trivial theory we shall have to replace, for example, R-algebras by R-algebroids, by which is
meant just an R-category for a commutative ring R ; in the case when R is the ring of integers, an
R-algebroid is just a ‘ring with many objects’ in the sense of Mitchell [160, 161]. (for further details
see for example Section 4 and other references cited therein). The necessary algebroid concepts
were already presented in Section 4. In the following subsections we shall briefly introduce other key
concepts needed for such HGD developments. Thus, we begin by considering the simpler structure
of double algebras and then proceed to their natural extension to double algebroids.

9.1 Double Algebras

Here we approach convolution and the various Hopf structures that we have already discussed from
the point of view of ‘double structures’. With this purpose in mind, let A be taken to denote one of
the following structures: a Hopf, a weak Hopf algebra or a Hopf algebroid (whose base rings need
not be commutative). Starting with a Frobenius homomorphism i : A— A*, we consider as in [216]
the horizontal (H) and vertical (V) components of the algebra along with a convolution product
(*). Specifically, we take unital algebra structures V' = (4,0,¢e) and H = (A, x,i) as leading to a
double algebra structure with axioms as given in [216]. Thus the basic framework starts with a
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quadruple (V, H, %,4). With respect to k-linear maps ¢ : A— A, we consider sublagebras L, R C V
and B,T C H in accordance with the Frobenius homorphisms (for a € A):

or(a) :=axe, prla):=ex*xa

9.1
vp(a):==aoi, or(a):=ioca (9.1)

Comultiplication of the ‘quantum groupoid’ arises from the dual bases of pp and @1 with a Dy—

symmetry:
T . (9.2)
L A R
B

9.2 Double Algebroids and Crossed Modules

In ref. [52] Brown and Mosa introduced the notion of double algebroid, and its relationship to
crossed modules of algebroids was investigated. Here we summarize the main results reported so
far, but without providing the proofs that can be found in [163] and [52].

9.2.1 Crossed Modules

Let A be an R-algebroid over Ay and let M be a pre-algebroid over Ag. Actions of A on M are
defined as follows:

Definition 9.1. A left action of A on M assigns to each m € M (x,y) and a € A(w, z) an element
m € M(w,y), satisfying the axioms:

i) ¢(®m) = Dm, Im =m,
i) *(mn) = “mn,
iii) “(m +m1) =*m+ “my,

a b

“H’(m) =% +"m,

iv)
v) “(rm) =r(*m) =""(m),

for all m,m; € M(z,y),n € M(y,z),a,b € A(w,x),c € A(u,w) and r € R.

Definition 9.2. A right action of A on M assigns to each m € M(z,y),a € A(y,z) an element

m® € M (z, z) satisfying the axioms:

i) (m*)°=ml®) m! =m,

ii) (mn)® = mn?,

iii) (m+mq)* =m*+mf,
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iv) m(@tt) = ma 4 mP,

a ra

v) (rm)* =rm®*=m

for all m,m; € M(z,y),n € M(y,z),a,b € A(y,u),c € A(u,v) and r € R.

Left and right actions of A on M commute if (*m)® = *(m?), for allm € M(z,y),a € A(w,z),b €
Ay, u).

A crossed module of algebroids consists of an R-algebroid A, a pre—algebroid M, both over the
same set of objects, and commuting left and right actions of A on M, together with a pre—algebroid
morphism p : M — A over the identity on Ag. These must also satisfy the following axioms:

i) p(“m) = a(um), p(m®) = (um)b

i) mn = m#n) = (m)p,

and for all m € M (z,y) , n € M(y,2) , a € A(w,z) , b € Ay, u).

A morphism (o, 3) : (A, M, u)—(A', M', i) of crossed modules all over the same set of objects
is an algebroid morphism a : A—A’ and a pre-algebroid morphism 3 : M——M’ such that
ap = /B and B(“m) = *(Bm), B(mb) = (Bm)*® for all a,b € A,m € M. Thus one constructs a
category CM of crossed modules of algebroids.

Two basic examples of crossed modules are as follows.

(1) Let A be an R-algebroid over Ay and suppose I is a two-sided ideal in A. Let i : [—A be
the inclusion morphism and let A operate on I by a® = ac, ’a = ba for all a € I and b,c € A
such that these products ac, ba are defined. Then i : I — A is a crossed module.

(2) A two-sided module over the algebroid A is defined to be a crossed module p : M — A in
which pm = 0y for all m € M(z,y),z,y € Ap.

Similar to the case of categorical groups discussed above, a key feature of double groupoids is
their relation to crossed modules “of groupoids” [53]. One can thus establish relations between
double algebroids with thin structure and crossed modules “of algebroids” analogous to those
already found for double groupoids, and also for categorical groups. Thus, it was recently reported
that the category of double algebroids with connections is equivalent to the category of crossed
modules over algebroids [52].

9.2.2 Double Algebroids

n this subsection we recall the definition of a double algebroid introduced by Brown and Mosa in
[52]. Two functors are then constructed, one from the category of double algebroids to the category
of crossed modules of algebroids, whereas the other is its unique adjoint functor.

A double R—algebroid consists of a double category D such that each category structure has
the additional structure of an R-algebroid. More precisely, a double R-algebroid D involves four
related R—algebroids:

(D7D1)8?78117517+17017 '1)7 (D7D2)8378217527+27027 '2)

9.3)
(Dla D07 5?7 6%767 +,0, ')7 (D27D07 5(2)7 5%767 +,0, )
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that satisfy the following rules:
i) 650 = 6701 for i,j € {0,1}
ii)
Oyl +18) = O + 053, i(a+2 ) = dja+0i8
Oy(a 01 f) = ha0 8,  Oi(aoy f) = djacdif
for i =0,1,a,0 € D and both sides are defined.

(9.4)

iii)
ri(a+2 B) = (raa) +2 (raf),  rela+if) = (rea) +1 (r20)
ri(aog f) = (raa) oz (raf),  ra(aor f) = (raa)or (r2f) (9.5)
7.1(5.20) = 5.2(113)
for all a, 8 € D, r,s € R and both sides are defined.
iv)
(a+18)+2 (v +1A) = (a+27) +1 (B+2 1),
(awor B) oz (yo1 A) = (aoz7) 01 (Boz ) (9.6)
(a+iB)oj (v +iA) = (ao;v) +i (Boj A)

for i # j, whenever both sides are defined.

A morphism f: D — & of double algebroids is then defined as a morphism of truncated cubical
sets which commutes with all the algebroid structures. Thus, one can construct a category DA of
double algebroids and their morphisms. The main construction in this subsection is that of two
functors n,n’ from this category DA to the category CM of crossed modules of algebroids.

Let D be a double algebroid. One can associate to D a crossed module o : M—D;. Here
M (x,y) will consist of elements m of D with boundary of the form: 0 1

a
om = |1, 1. ], (9.7)
Ony

that is M(x,y) = {m € D : 0{m = 04y, 09m = 1,,04m = 1,}.

The pre-algebroid structure on M is then induced by the second algebroid structure on D. We
abbreviate og on M and oy on D; to juxtaposition. The morphism g is defined as the restriction
of &Y.

Actions of D1 on M are defined by

“m = (e1a)m, m® = m(e1b) . (9.8)
The only non trivial verification of the axioms is that mn = m*" = #™n. For this, let m,n

a b
have boundaries (1 1> , (1 1>. Reading in two ways the following diagram (in which
0 0

unmarked edges are 1’s) yields mn = %n:
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(9.9)
g1a n
iaiioa
m
0 0

Similarly one obtains that mn = m®. This shows that p : M —Dj is indeed a crossed module. The
construction also defines 1 which readily extends to a functor from the category of double algebroids
DA to CM. The second crossed module v : N— D5 has Dy as above, but N consists of elements

1
for M and one constructs a crossed module in the manner suggested above. Therefore, an object

with boundary of the form (a 0 |. The actions are defined in a similar manner to that above

in the category of algebroids yields also an associated crossed module. In general, the two crossed
modules constructed above are not isomorphic. However, if the double algebroid has a connection
pair (I',T), then its two associated crossed modules are isomorphic (cf. [52]). Furthermore, there
is also an associated thin structure 6 : D; — D which is a morphism of double categories because
D1 also has an associated double algebroid structure derived from that of D1.

Next one can construct a functor ¢ from CM to double algebroids. Thus, let u : M—A be a
crossed module. The double algebroid D = ((p : M— A) will coincide with A in dimensions 0 and

as

1. The set D consists of pairs (m,a) such that m € M, a = | a; a4 | and azaq — ajag = pm.
a2

One defines two algebroid structures on D which will turn D into a double algebroid. Its additions

and scalar multiplications are defined by:

(m,a)+; (n,b) = (m+mn,a+;b),r; (m,a) = (m,r.;a) . (9.10)

The two compositions are defined by:

bi 4 a2 i b) ifi=1,
(m,a>oi<n,b>—{<m o) (9.11)

(m” +%n ao;b) ifi=2.

Furthermore, there exists a connection pair for the underlying double category of D given by
I'a=(0,A),I"a = (0,A’), where

A:<a Cll 1), A’:(l ! a> (9.12)

Proposition 9.1. The above construction defines a functor ¢ from the category CM of crossed
modules to the category of double algebroids with connection pair Ta = (0, A), IVa = (0, A") on the
underlying double category, where the connection pair satisfies the following additional properties.
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Suppose u,v,w € D have boundaries

(oo (s ) (e

respectively , and r € R. Then, the following equations must hold:
i) T(a+e)og (u+1v) oo TV(d+ f) = (IMa oy uog T'd) +2 (IVe 0g v 09 T'f)
ii) T'(c+g) o1 (u+gw) o1 I(d+ f) = (I" og w0y I'b) +1 (I"g 09 w 09 T'h)
iii) T'(ra) og (r.qu) o T'(rd) = r.9(I"a o9 u 0y I'd)
iv) T'(rc) o1 (r.ou) oy T'(rd) = r.o(I'c oy u oy T'd)

Remark 9.1. Edge symmetric double algebroids were also defined in [52], and it was shown
that there exist two functors which respectively associate to a double algebroid its corresponding
horizontal and vertical crossed modules.

Then, one obtains the result that the categories of crossed modules “of algebroids” and of edge
symmetric double algebroids with connection are equivalent. As a corollary, one can also show that
the two algebroids structures in dimension 2 of a special type of double algebroids are isomorphic, as
are their associated crossed modules [52]. This result will be precisely shown in the next subsection.

9.3 The Equivalence between the Category of Crossed Modules of Algebroids
and the Category of Algebroids with a Connection Pair. Quantum Alge-
broid Symmetries

In order to obtain an equivalence of categories one needs to add in the extra structure of a connection
pair to a double algebroid.

Let D be a double algebroid. A connection pair for D is a pair of functions (I',T”) : D; — D
which is a connection pair for the underlying double category of D as in [52, 163]. Thus one has
the following properties:

i) If a : z—>y in Dy, then (I'a,I"a) have boundaries given respectively by

“ 1 b 9.13
(o) )

INaosTa=cia, Naoy a = esa . (9.14)

and

ii) If z € Dy, then T'l, =I"1, = 2z.

ii) The transport laws: if @ o b is defined in D; then

I &b Ia esa
I'(aob) = [EQb Flb] IV(aob) = Lla Ijb] (9.15)
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One then defines ‘folding’ operations on elements of D for a double algebroid with connection.

c
Let w € D have boundary (a ; d>. One first sets

Yu =T"aoguoyI'd (9.16)
as in [52, 163].
Proposition 9.2. (i) Let u,v,w be such that uwoj v,u o9 w are defined. Then
Y(u oy v) = (1hu oy £104v) 01 (105U 03 Phv),

Y(uogw) = (518?u o9 YPw) o1 (Yu o9 sla?w).

ii) If a € Dy then va = ¢'a = e1a.
i) Yu = u if and only if Ou, Osu are identities.
i) Let u,v,w be such that u +1 v,u +2 w are defined. Then

Y(u+1v) = Pu+2 Yo, Y(ut2 w) = Yu+2 Yu.
v) If r € R and uw € Dy then ¢¥(r.;u) = r.;Yu fori=1,2.
One defines an operation ¢ : D — D by

du = Yu —o 61011wu.

a
Let M be the set of elements u € D such that the boundary du is of the form <1 0 1). We
write 0 for an element of M of the form €,0,, where 0, is the algebroid zero of Di(z,y).

Proposition 9.3. The operation ¢ has the following properties:

c cd — ab
i) If Ou = (a , d) then Opu = (1 1>
0

ii) du = u if and only if u € M; in particular ¢ — o
iii) If a € Dy then dva = dv'a = deia = 0

i) $(u+iv) = du+a dv

v) ¢(riu) = ro(du)

vi)

$(u o1 v) = (pu)?1¥ +5 (o)
vii)

$(u 03 w) = (¢pu)?1 +5 X ($w)
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With the above constructions one can then prove the following, major result of [52].

Theorem 9.1. The categories of crossed modules of algebroids and of double algebroids with a
connection pair are equivalent. Let DA denote the category of double algebroids with connection.
One has the functors defined above :

n: DA—CM , and ¢: CM—DA . (9.17)

The functors n€ and &n are then each naturally equivalent to the corresponding identity functor for
categories DA and CM, respectively.

Remark 9.2. A word of caution is here in order about the equivalence of categories in general: the
equivalence relation may have more than one meaning, that is however always a global property;
thus, categories that are equivalent may still exhibit substantially different and significant local
properties, as for example in the case of equivalent categories of semantically distinct, n—valued
logic algebras [101].

Remark 9.3. The above theorem also has a significant impact on physical applications of double
algebroid representations with a connection pair to extend quantum symmetries in the presence of
intense gravitational fields because it allows one to work out such higher dimensional representations
in terms of those of crossed modules of (lower-dimension) algebroids, as for example in the cases of:
Lie, weak Hopf, Grassman—Hopf algebroids or ‘Lie’ superalgebroids relevant to Quantum Gravity
symmetries of intense gravitational fields and ‘singularities’ that were introduced and discussed in
previous sections.

The main result of Brown and Mosa [52] is now stated as follows.

Theorem 9.2. (Brown and Mosa [52]) The category of crossed modules of R—algebroids is equiva-
lent to the category of double R—algebroids with thin structure.

Let p: M——A be a crossed module. Applying n¢ to this yields a crossed module v : N — B
m
say. Then B = A and N consists of pairs (m,a) where a = | 1 : 1) for all m € M. Clearly
0

these two crossed modules are naturally isomorphic.

One can now use the category equivalences in the two theorems above to also prove that in
a double algebroid with connection the two algebroid structures in dimension two are isomorphic.
This is accomplished by defining a reflection which is analogous to the rotation employed in [53]
for double groupoids and to the reflection utilized for those double categories that arise from 2-
categories with invertible 2-cells.

Let D be a double algebroid with a connection pair. One defines p : D—D by the formula in

c
which assuming du = (a ; d)

a cd
pu =106 (1 b b) o1 (e1(cd) —2 pu) 01 0 (c p 1) . (9.18)

a
Thus, one has that: dpu = <c ) d), and also the following result of Brown and Mosa [52]:
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Theorem 9.3. The reflection p satisfies:

i) pla) =a, p('a) = 'a, p(e1a) = e1a, p(e2a) = e2a for all a € D;.

ii) p(u—+1v) = pu-+2pv, p(w+2x) = pw+1 pr whenever u 41 v, w +2 = are defined.
iit) p(u oy v) = puog pv, p(wog ) = pw oy pr u oy v,w oy x are defined.

i) p(rau) = repu, p(r.ou) =r.opu where r € R.

Remark 9.4. The reflection concept presented above represents the key internal symmetries of
double algebroids with connection pair, and there are also similar concepts for other higher di-
mensional structures such as double groupoids, double categories, and so on. Therefore, one can
reasonably expect that such reflection notions may also be applicable to all ‘quantum doubles’, in-
cluding quantum double groupoids and higher dimensional quantum symmetries that are expected,
or predicted, to occur in quantum chromodynamics, and via ‘Lie’ superalgebroids, also in quantum
gravity based on lc-GR theories as proposed in subsequent sections.

9.4 Double Groupoids

We can take further advantage of the above procedures by reconsidering the earlier, double groupoid
case [53] in relationship to a C*—convolution algebroid that links both ‘horizontal’ and ‘vertical’
structures in an internally consistent manner. The geometry of squares and their compositions
leads to a common representation of a double groupoid in the following form:

st

-
-
_ -

n

H
11
D= s to s ] t (919)

<

M

t

where M is a set of ‘points’, H,V are ‘horizontal’ and ‘vertical’ groupoids, and S is a set
of ‘squares’ with two compositions. The laws for a double groupoid make it also describable
as a groupoid internal to the category of groupoids. Furthermore, because in a groupoid, any
composition of commutative squares is also commutative, several groupoid square diagrams of the
type shown above can be composed to yield larger square diagrams that are naturally commutative.

Given two groupoids H,V over a set M, there is a double groupoid O(H,V) with H,V as
horizontal and vertical edge groupoids, and squares given by quadruples

h
(v v’) (9.20)
h/

for which we assume always that h,h’ € H, v,v’" € V and that the initial and final points of these
edges match in M as suggested by the notation, that is for example sh = sv,th = sv/, ..., etc. The
compositions are to be inherited from those of H, V', that is:
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h h' h h k hk
v v o1 | w w | = | vw vw' ], v v oo | v v = (v A
hl h// h// h/ k,/ hlk,/
(9.21)

This construction is defined by the right adjoint R to the forgetful functor L which takes the
double groupoid as above, to the pair of groupoids (H, V') over M. Furthermore, this right adjoint
functor can be utilized to relate double groupoid representations to the corresponding pairs of
groupoid representations induced by L. Thus, one can obtain a functorial construction of certain
double groupoid representations from those of the groupoid pairs (H,V') over M. Further uses of
adjointness to classifying groupoid representations related to extended quantum symmetries can
also be made through the generalized Galois theory presented in the next subsection; therefore,
Galois groupoids constructed with a pair of adjoint functors and their representations may play a
central role in such future developments of the mathematical theory of groupoid representations
and their applications in quantum physics.

h
Given a general double groupoid as above, one can define S (v . v ) to be the set of squares
h

with these as horizontal and vertical edges.

AD = s || &2 s||] ¢ (9.22)

for which:

AS " 9.23
(v "y U) (9.23)

is the free A-module on the set of squares with the given boundary. The two compositions are
then bilinear in the obvious sense.

Alternatively, one can use the convolution construction AD induced by the convolution C*-
algebra over H and V. This allows us to construct for at least a commutative C*-algebra A a
double algebroid (i.e., a set with two algebroid structures), as discussed in the previous subsection.
These novel ideas need further development in the light of the algebra of crossed modules of alge-
broids, developed in [163] and [52], crossed cubes of (C*)-algebras following [87], as well as crossed
complexes of groupoids [44].

The next, natural extension of this quantum algebroid approach to QFT generalized symmetries
can now be formulated in terms of graded Lie algebroids, or supersymmetry algebroids, for the
supersymmetry-based theories of Quantum Gravity/ Supergravity that were discussed in Section 6.

We shall discuss first in the next subsection an interesting categorical construction of a homotopy
double groupoid.
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9.5 The Generalized Galois Theory Construction of a Homotopy Double Groupoid
[48] and Galois Groupoid Representations

In two related papers Janelidze [126, 125] outlined a categorical approach to the Galois theory.
In a more recent paper in 2004, Brown and Janelidze [48] reported a homotopy double groupoid
construction of a surjective fibration of Kan simplicial sets based on a generalized, categorical
Galois (GCG) theory which under certain, well-defined conditions gives a Galois groupoid from
a pair of adjoint functors. As an example, the standard fundamental group arises in GCG from
an adjoint pair between topological spaces and sets. Such a homotopy double groupoid (HDG,
explicitly given in Diagram 1 of [48]) was also shown to contain the 2—groupoid associated to a map
defined by Kamps and Porter [128]; this HDG includes therefore the 2—groupoid of a pair defined
by Moerdijk and Svenson [162], the cat!-group of a fibration defined by Loday [146], and also the
classical fundamental crossed module of a pair of pointed spaces introduced by J.H.C. Whitehead.
Related aspects concerning homotopical excision, Hurewicz theorems for n—cubes of spaces and van
Kampen theorems [224] for diagrams of spaces were subsequently developed in [50, 51].

Two major advantages of this generalized Galois theory construction of HDG that were already
pointed out are:

e (i) The construction includes information on the map ¢ : M — B of topological spaces, and

e (ii) one obtains different results if the topology of M is varied to a finer topology.

Another advantage of such a categorical construction is the possibility of investigating the global
relationships among the category of simplicial sets, Cg = Set®™, the category of topological
spaces, Top, and the category of groupoids, Grpd. Let I be the fundamental groupoid functor
I'=m : Cg — X from the category Cg to the category X = Grpd of (small) groupoids. Consider
next Diagram 11 on p. 67 of Brown and Janelidze [48]:

R I
Top % Set2” —= Grpd , new — —— > (9.1) — —— > old (9.24)
H
\ Ty/
A
where:

e Top is the category of topological spaces, S is the singular complex functor and R is its
left-adjoint, called the geometric realisation functor;

e I + H is the adjoint pair introduced in Borceux and Janelidze [37], with I being the funda-
mental groupoid functor, and H being its unique right-adjoint nerve functor;

e y is the Yoneda embedding, with r and ¢ being, respectively, the restrictions of R and [
respectively along y; thus, r is the singular simplex functor and ¢ carries finite ordinals to
codiscrete groupoids on the same sets of objects.

The adjoint functors in the top row of the above diagram are uniquely determined by r and i— up
to isomorphisms— as a result of the universal property of y, the Yoneda embedding construction.
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Furthermore, one notes that there is a natural completion to a square, commutative diagram of
the double triangle diagram (9.1) reproduced above by three adjoint functors of the corresponding
forgetful functors related to the Yoneda embedding. This natural diagram completion, that may
appear trivial at first, leads however to the following Lemma and related Propositions.

Lemma 9.1. The following diagram (9.2) is commutative and there exist canonical natural equiva-
lences between the compositions of the adjoint functor pairs and their corresponding identity functors
of the four categories presented in diagram (9.2):

R
Top ~— SetA” new — —— > (9.2) — —— > old (9.25)

ngHGHW

Set ~ Grpd

The forgetful functors f : Top—Set, F : Grpd—Set and ® : Set®” —Set complete
this commutative diagram of adjoint functor pairs. The right adjoint of ® is denoted by ®x, and
the adjunction pair [®,®*] has a mirror-like pair of adjoint functors between Top and Grpd
when the latter is restricted to its subcategory TGrpd of topological groupoids, and also when ¢ :
TGrpd—Top is a functor that forgets the algebraic structure—but not the underlying topological
structure of topological groupoids, which is fully and faithfully carried over to Top by ¢.

Remark 9.5. Diagram (9.2) of adjoint functor pairs can be further expanded by adding to it the
category of groups, Gr, and by defining a ‘forgetful’ functor ¢ : Grpd— Gr that assigns to each
groupoid the product of its ‘component’ groups, thus ignoring the connecting, internal groupoid
morphisms. The categorical generalization of the Galois theory for groups can be then related to
the adjoint functor % and its pair. As a simple example of the groupoid forgetful functor consider
the mapping of an extended symmetry groupoid, Gg, onto the group product U(1) x SU(2) x SU(3)
that ‘forgets’ the global symmetry of Gg and retains only the U(1),SU(2) and SU(3) symmetries
of the ‘Standard Model” in Physics; here both the groups and Gg are considered, respectively as
special, small categories with one or many objects, and isomorphisms.

Proposition 9.4. If T : C—Grpd is any groupoid valued functor then T is naturally equivalent
to a functor © : C—Grpd which is univalent with respect to objects.

The proof is immediate by taking first into account the Lemma 9.1 and Diagram (9.2), and then
by following the logical proof sequence for the corresponding group category Proposition 10.4 of
Mitchell [159]. Note that ‘univalent’ is also here employed in the sense of Mitchell [159].

This new proposition for groupoid valued functors can be thus considered as a natural extension
of the corresponding theorem for group valued functors.

Remark 9.6. The class of natural equivalences of the type T' — © satisfying the conditions
in Proposition 9.4 is itself a (large) 2—groupoid whose objects are groupoid valued functors. In
particular, when C = Top and T is the composite functor I o S : Top—Set®” —Grpd, then
one obtains the interesting result (a) that the class of functors naturally equivalent with 7" becomes
the (large) 2—groupoid of classical (geometric) fundamental groupoid functors m [48]. Moreover,
according also to Proposition 2.1 of [48], one has that:
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(a) For every topological space X, S(X) is a Kan complex, and

(b) The S-image of a morphism p in Top is a Kan fibration if and only if p itself is a Serre
fibration.

(For further details the reader is referred to [48]).

9.6 Functor Representations of Topological Groupoids

A representable functor S : C——Set as defined in Section 7.8 is also determined by the equivalent
condition that there exists an object X in C so that S is isomorphic to the Hom—functor h*X. In the
dual, categorical representation, the Homfunctor A% is simply replaced by hx. As an immediate
consequence of the Yoneda-Grothendieck Lemma the set of natural equivalences between S and hX
(or alternatively hx)— which has in fact a groupoid structure— is isomorphic with the object S(X).
Thus, one may say that if S is a representable functor then S(X) is its (isomorphic) representation
object, which is also unique up to an isomorphism (p.99 of [159]). As an especially relevant example
we consider here the topological groupoid representation as a functor v : TGrpd—=Set, and related
to it, the more restrictive definition of v : TGrpd—BHilb, where BHilb can be selected either
as the category of Hilbert bundles or as the category of rigged Hilbert spaces generated through
the GNS construction as specified in Definition 5.1 and related equations (5.1) and (5.2).

Top % BHilb # TGrpd new — ——> (9.3) — —— > old (9.26)
Set

Considering the forgetful functors f and F' as defined above, one has their respective adjoint
functors defined by g and n in diagram (9.3); this construction also leads to a diagram of adjoint
functor pairs similar to the ones shown in diagram (9.2). The functor and natural equivalence
properties stated in Lemma (9.5.1) also apply to diagram (9.3) with the exception of those related
to the adjoint pair [®, x| that are replaced by an adjoint pair [V, Ux], with ¥ : BHilb—Set
being the forgetful functor and U its left adjoint functor. With this construction one obtains the
following proposition as a specific realization of Proposition (9.4) adapted to topological groupoids

and rigged Hilbert spaces:

Proposition 9.5. If R, : BHilb— TGrpd is any topological groupoid valued functor then R, is
naturally equivalent to a functor p : BHilb— TGrpd which is univalent with respect to objects.

Remark 9.7. R, and p can be considered, respectively, as adjoint Hilbert—functor representations
to groupoid, and respectively, topological groupoid functor representations R} and p* in the
category BHilb of rigged Hilbert spaces.

Remark 9.8. The connections of the latter result for groupoid representations on rigged Hilbert
spaces to the weak Cx—Hopf symmetry associated with quantum groupoids and to the general-
ized categorical Galois theory warrant further investigation in relation to quantum systems with
extended symmetry. Thus, the following corollary and the previous Proposition 9.4 suggest sev-
eral possible applications of GCG theory to extended quantum symmetries via Galois groupoid
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representations in the category of rigged Hilbert families of quantum spaces that involve interest-
ing adjoint situations and also natural equivalences between such functor representations. Then,
considering the definition of quantum groupoids as locally compact (topological) groupoids with
certain extended (quantum) symmetries, their functor representations also have the unique prop-
erties specified in Proposition 9.4 and Corollary 9.1, as well as the unique adjointness and natural
properties illustrated in diagram (9.3).

Corollary 9.1. The composite functor ¥ o R, : TGrpd—BHilb——Set, has the left adjoint n
which completes naturally diagram (9.26), with both ¥ : BHilb——Set and ¥ o R, being forgetful
functors. VU also has a left adjoint ¥, and R, has a defined inverse, or duality functor & which
assigns in an univalent manner a topological groupoid to a family of rigged Hilbert spaces in BHilb
that are specified via the GNS construction.

Remark 9.9. The adjoint of the duality functor —which assigns in an univalent manner a family
of rigged Hilbert spaces in the category BHilb (that are specified via the GNS construction) to
a topological groupoid— defines a Hilbert—functor adjoint representation of topological groupoids;
the latter generalizes to dimension 2 the ‘standard’ notion of (object) groupoid representations. A
similar generalization to higher dimensions is also possible for algebroid representations, for example
by considering functor representations from the category of double algebroids DA (or equivalently
from CM) to the category BHilb of ‘rigged’” Hilbert spaces.

Remark 9.10. For quantum state spaces and quantum operators the duality functor J = <
BHilb—TGrpd is the quantum fundamental groupoid (QFG) functor, that plays a similar role
for a quantum state space bundle in the category BHilb to that of the fundamental groupoid
functor I = m; : C;—X in diagram (9.24) of the generalized categorical Galois theory of [48]
(in the original, this is diagram (11) on p.67). The right adjoint R, of the QFG functor & thus
provides a functor (or ‘categorical’) representation of topological (in fact, locally compact) quantum
groupoids by rigged Hilbert spaces (or quantum Hilbert space bundles) in a natural manner. Such
rigged quantum Hilbert spaces are the ones actually realized in quantum systems with extended
quantum symmetries described by quantum topological groupoids and also represented by the QFG
functor in the manner prescribed by the functor m; (or I) in the generalized (categorical) Galois
theory of Brown and Janelidze as shown in diagram (9.1).

Let us consider next two diagrams that include, respectively, two adjoint situation quintets:

(n;J o M, Lo K; Top, TGrpd) ,and (u;J o M, Lo K;Top, TGrpd) . (9.27)

LoK .l
Top =—— TGrpd new — —— > (9.4%") — —— > old (9.28)

N

Set

LoK
Top 4><7M TGrpd new — —— > (9.4“") — —— > old (9.29)
\ TJ
L

BHilb
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as well as their complete diagram of adjoint pairs:

M
Top < BHilb new — —— > (9.5) — —— > old (9.30)

by o)

Set <—— TGrpd

where the two natural transformations (in fact, not necessarily unique natural equivalences) in-
volved in the adjoint situations are defined between the set-valued bifunctors via the families of map-
pings: np,a : (Lo K)(B),A]l—[B,(J o M)(A)] and pp.c : [(Lo K)(D),Cl—[D, (J o M)(C)]
with A, C in Obj(Top) and B, D in Obj(TGrpd); further details and the notation employed
here are consistent with Ch. V of [159]. Then, one obtains the following proposition as a direct
consequence of the above constructions and Proposition 4.1 on page 126 of [159]:

Proposition 9.6. In the adjoint situations (n; L o K,J o M; Top, TGrpd) and (u; L o K, J o
M;Top, TGrpd) of categories and covariant functors defined in diagrams (9.4) and (9.5) there
are respectively one-to-one correspondences nx : [Lo K on,g] = [J,J o M o g] (which is natural in
both g and n), and px : [Lo K o J, L] = [J,J o M o L] (which is natural in both J and L).

Remark 9.11. One readily notes that a similar adjointness result holds for TGrpd and BHilb
that involves naturality in & = J, L and K, t, respectively. Moreover, the functor representations
in diagram (9.5) have adjoint functors that in the case of quantum systems link extended quantum
symmetries to quantum operator algebra on rigged Hilbert spaces and the locally compact topology
of quantum groupoids, assumed here to be endowed with suitable Haar measure systems. In the
case of quantum double groupoids a suitable, but rather elaborate, definition of a double system of
Haar measures can also be introduced (private communication to the first author from Prof. M.R.
Buneci).

10 Conclusions and Discussion

Extended quantum symmetries, recent Quantum Operator Algebra (QOA) developments and also
Non-Abelian Algebraic Topology (NAAT) [45] results were here discussed with a view to physical
applications in quantum field theories, general molecular and nuclear scattering theories, symmetry
breaking, as well as supergravity /supersymmetry based on a locally covariant approach to General
Relativity theories in Quantum Gravity. Fundamental concepts of QOA and Quantum Algebraic
Topology (QAT), such as C*-algebras, quantum groups, von Neumann/Hopf algebras, quantum
supergroups, quantum groupoids, quantum groupoid/algebroid representations and so on, were here
considered primarily with a view to their possible extensions and future applications in quantum
field theories and beyond.

Recently published mathematical generalizations that represent extended quantum symme-
tries range from quantum group algebras and quantum superalgebras/quantum supergroups to
quantum groupoids, and then further, to quantum topological/Lie groupoids/Lie algebroids [32,
39, 40] in dipole-dipole coupled quasi-particles/bosons in condensed matter (such as: paracrys-
tals/noncrystalline materials/glasses/topologically ordered systems) and nuclear physics, as well as
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Hamiltonian algebroids and double algebroid/double groupoid/categorical representations in Wy-
gravity and more general supergravity theories. We note that supersymmetry was also discussed
previously within a different mathematical framework [80]. Several, algebraically simpler, represen-
tations of quantum spacetime than QAT have thus been proposed in terms of causal sets, quantized
causal sets, and quantum toposes [174, 191, 66, 67, ?]. However, the consistency of such ‘quantum
toposes’ with the real quantum logic is yet to be validated; the ‘quantum toposes’ that have been
proposed so far are all clearly inconsistent with the Birkhoff-von Neumann quantum logic (see for
example, [?]). An alternative, Generalized Lukasiewicz topos (GLT) that may allow us avoid such
major logical inconsistences with quantum logics has also been developed [21, 22, 23, 25, 103, 101].
We have suggested here several new applications of Grassmann-Hopf algebras/algebroids, graded
‘Lie’ algebroids, weak Hopf C*-algebroids, quantum locally compact groupoids to interacting quasi-
particle and many-particle quantum systems. These concepts lead to higher dimensional symmetries
represented by double groupoids, as well as other higher dimensional algebraic topology structures
[52, 163]; they also have potential applications to spacetime structure determination using Higher
Dimensional Algebra (HDA) tools and its powerful results to uncover universal, topological in-
variants of ‘hidden’ quantum symmetries. New, non-Abelian results may thus be obtained through
higher homotopy, generalized van Kampen theorems [42, 49], Lie groupoids/algebroids and groupoid
atlases, possibly with novel applications to quantum dynamics and local-to-global problems, as well
as Quantum Logic Algebras (QLA). Novel mathematical representations in the form of Higher Ho-
motopy Quantum Field (HHQFT) and Quantum Non-Abelian Algebraic Topology (QNAT) theories
have the potential to develop a self-consistent Quantum—General Relativity Theory (QGRT) in the
context of supersymmetry algebroids/supersymmetry/supergravity and metric superfields in the
Planck limit of spacetime [25, 46]. Especially interesting in QGRT are global representations of
fluctuating spacetime structures in the presence of intense, fluctuating quantum gravitational fields.
The development of such mathematical representations of extended quantum symmetries and su-
persymmetry appears as a logical requirement for the unification of quantum field (and especially
AQFT) with general relativity theories in QGRT via quantum supergravity and NAAT approaches
to determining supersymmetry invariants of quantum spacetime geometry.

QNAT is also being applied to develop studies of non-Abelian quantum Hall liquids and other
many-body quantum systems with topological order [227, 33, 228, 230].

In a subsequent report [26], we shall further consider the development of physical applications
of NAAT [45] towards a quantum non-abelian algebraic topology (QNAT) from the standpoints
of the theory of categories-functors-natural equivalences, higher dimensional algebra, as well as
quantum logics. This approach can also be further extended and applied to both quantum statistical
mechanics and complex systems that exhibit broken symmetry and/or various degrees of topological
order in both lower and higher dimensions.

A Appendix

A.1 Von Neumann Algebras

Let ‘H denote a complex (separable) Hilbert space. A von Neumann algebra A acting on H is a
subset of the algebra of all bounded operators £(H) such that:
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(1) A is closed under the adjoint operation (with the adjoint of an element 7" denoted by 7).

(2) A equals its bicommutant, namely:

A={A€L(H):VB € L(H),YC € A, (BC =CB) = (AB = BA)} . (A1)

If one calls a commutant of a set A the special set of bounded operators on £(H) which commute
with all elements in A, then this second condition implies that the commutant of the commutant
of A is again the set A.

On the other hand, a von Neumann algebra A inherits a unital subalgebra from L(H), and
according to the first condition in its definition A does indeed inherit a *-subalgebra structure, as
further explained in the next section on C*-algebras. Furthermore, one has a notable Bicommutant
Theorem which states that A is a von Neumann algebra if and only if A is a *-subalgebra of L(H),
closed for the smallest topology defined by continuous maps (&,m) — (A&, n) for all (A&, n), where
(.,.) denotes the inner product defined on H . For a well-presented treatment of the geometry of the
state spaces of quantum operator algebras, see e.g. [4]; the ring structure of operators in Hilbert
spaces was considered in an early, classic paper by Gel'fand and Naimark [100].

A.2 Groupoids

Recall that a groupoid G is a small category in which all morphisms are invertible, and that has a
set of objects X = Ob(G) . Thus, a groupoid is a generalisation of a group, in the sense that it is
a generalized ‘group with many identities’, this being possible because its morphism composition—
unlike that of a group— is, in general, only partially defined (as it is too in the case of abstract
categories). One often writes G4 for the set of morphisms in G from x to y .

A.2.1 Topological groupoid: definition

As is well kown, a topological groupoid is just a groupoid internal to the category of topological
spaces and continuous maps. Thus, a topological groupoid consists of a space G, a distinguished
subspace G(0) = Ob(G) C G, called the space of objects of G, together with maps

TS G:>>:Gw) (A.2)
called the range and source maps respectively, together with a law of composition
0 : G?:=GxeG={(1,72) €GXG : s(y1)=r(yp)} — G, (A.3)
such that the following hold :
(1) s(y1092) =7(12) , r(y1072) =r(n) , for all (y1,72) € G? .

(2) s(z) =r(z) ==, for all z € GO .

(3) vos(y)=v,r(v)ey=7,forallyeG.
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(4) (more)oyz=910(12073) -

1 1

(5) Each « has a two-sided inverse y~! with vy~ = r(y) , 7'y = s(7) . Furthermore, only for

topological groupoids the inverse map needs be continuous.

It is usual to call G(O) = Ob(G) the set of objects of G . For u € Ob(G), the set of arrows
u—u forms a group Gy, called the isotropy group of G at u.

The notion of internal groupoid has proved significant in a number of fields, since groupoids
generalise bundles of groups, group actions, and equivalence relations. For a further, detailed study
of groupoids and topology we refer the reader to the recent textbook by Brown [43].

Examples of groupoids are often encountered; the following are just a few specialized groupoid
structures:

(a) locally compact groups, transformation groups , and any group in general,
e (b) equivalence relations,

e (c) tangent bundles,

e (d) the tangent groupoid,

e (e) holonomy groupoids for foliations,

e (f) Poisson groupoids, and

e (g) graph groupoids.

As a simple, helpful example of a groupoid, consider the case (b) above of a groupoid whose
morphisms are defined by the equivalence relation in an equivalence class or set. Thus, let R be an
equivalence relation on a set X. Then R is a groupoid under the following operations: (z,y)(y, z) =
(2,2),(z,y)~! = (y,2). Here, G® = X, (the diagonal of X x X ) and r((z,y)) = =z, s((x,y)) = ¥.

Thus, R? = {((z,v), (y,2)) : (z,9), (y,2) € R}. When R = X x X, R is called a trivial groupoid.
A special case of a trivial groupoid is R = R, = {1,2,...,n} x {1,2,...,n}. (So every i is equivalent
to every j). Identify (i,j) € R, with the matrix unit e;;. Then the groupoid R, is just matrix
multiplication except that we only multiply e;;,ex when k& = j, and (eij)*l = ¢j;. We do not
really lose anything by restricting the multiplication, since the pairs e;;, ey, excluded from groupoid
multiplication just give the 0 product in normal algebra anyway. For a groupoid G;.to be a locally
compact groupoid means that G;. is required to be a (second countable) locally compact Hausdorff
space, and the product and also inversion maps are required to be continuous. Each G} as well
as the unit space G?C is closed in G;.. What replaces the left Haar measure on G;. is a system of
measures A% (u € G?c), where A" is a positive regular Borel measure on G}’ with dense support.
In addition, the A\* s are required to vary continuously (when integrated against f € C.(G;.) and
to form an invariant family in the sense that for each x, the map y — xy is a measure preserving
homeomorphism from Gj,(z) onto Gj.(x). Such a system {A\"} is called a left Haar system for the
locally compact groupoid Gi.

This is defined more precisely next.
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A.3 Haar systems for locally compact topological groupoids

Let
G —=G =X (A.4)

be a locally compact, locally trivial topological groupoid with its transposition into transitive
(connected) components. Recall that for x € X, the costar of x denoted CO*(x) is defined as the
closed set | {Gi.(y,z) : y € G}, whereby

Gie(0,%0) — CO*(x)—X, (A.5)

is a principal Gi.(zo,yo)-bundle relative to fixed base points (xo,y0). Assuming all relevant sets
are locally compact, then following [207], a (left) Haar system on Gj. denoted (Gj.,7) (for later
purposes), is defined to comprise of i) a measure x on Gy, ii) a measure x on X and iii) a measure
e on CO*(x) such that for every Baire set E of G, the following hold on setting £, = ENCO*(x) :

(1) +— py(E;) is measurable.

(3) p:(tEy) = pe(Ey), for all t € G(x, 2z) and z, z € Gy .

The presence of a left Haar system on G;. has important topological implications: it requires
that the range map r : Gj. — G?c is open. For such a G;. with a left Haar system, the vector space
C.(Gy) is a convolution *—algebra, where for f,g € C.(Gy.):

frg(x)= [ fOgttz)d\"®@)(t), with £*(x) = f(z~1).

One has C*(Gy.) to be the enveloping C*-algebra of C.(G;.) (and also representations are required
to be continuous in the inductive limit topology). Equivalently, it is the completion of myni, (Ce(Gie))
where Ty is the universal representation of Gj.. For example, if G;. = R,, , then C*(Gy.) is just
the finite dimensional algebra C.(G;.) = M,,, the span of the e;; ’ s.

There exists (viz. pp. 91-92 in ref. [180]) a measurable Hilbert bundle (GY,H,p) with
H = {HUGGO } and a G-representation L on H (see also [181, 182]). Then, for every pair &,n
of square integrable sections of H, it is required that the function x — (L(x)&(s(x)),n(r(z))) be
v—measurable. The representation ® of C.(Gy.) is then given by:

(@(f)El,m) = [ f(=x) (s(z)), n(r(z)))dvo(z).
The triple (u, H, L) is called a measurable Gy.—Hilbert bundle.
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