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A generalised tensor product G 0 H of groups G, H has been introduced 
by R. Brown and J.-L. Loday in [3,4]. It arises in applications in 
homotopy theory of a generalised Van Kampen theorem. The reason why 
G 0 H does not necessarily reduce to GUh Oz Huh, the usual tensor product 
over Z of the abelianisations, is that it is assumed that G acts on H (on the 
left) and H acts on G (on the left), and these actions are taken into account 
in the definition of the tensor product. 

A group G acts on itself by conjugation (“g = hgh - ‘) and so the tensor 
square GO G is always defined. Further, the commutator map G x G + G 
induces a homomorphism of groups K: G 0 G + G, sending g@ h to 
[g, h] =ghg-‘h-l. We write J,(G) for Ker IC; its topological interest is the 
formula [3,4] 

qSK(G, l)=J,(G). 
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Results in [3,4] give a commutative diagram with exact rows and central 
extensions as columns: 

0 0 

I I 
HJG) ---+ f(G"') ---L J,(G) 4 H,(G) - 0 

=I =I I I 
H,(G)--+ f(G”“)A GOG-+ G A G- 1 (1) 

I I 

Here, G’ is the derived group of G, f is Whitehead’s quadratic functor 
[ 151, and G A G is a generalised exterior product (f and the map Ic/ are 
defined in Section 2). 

These relations with well-known constructions suggest the interest in the 
computation of G 0 G, and this is our chief aim. Note that diagram ( I ) 
implies that G @ G is finite if G is finite, so that explicit answers can be 
expected. 

1. THE CONSTRUCTION 

Let G and H be groups which act on themselves by conjugation, 
gg’cgg’g-1, and each of which acts upon the other in such a way that the 
following compatibility conditions hold: 

wgr = RWg,, c*q$ = W’h (2) 

for all g, g’ E G and h, h’ E H, where ghg- ‘, hgh -’ are here interpreted as 
elements of the free product G * H. Then the tensor product G@ H is the 
group generated by the symbols g@h and defined by the relations 

gg’Oh= (“g’O”h)(gOh), (3) 

gOhh’=(gOh)(hg@hh’), (4) 

for all g, g’ E G and h, h’ E H. 
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Remark 1. This definition differs from that given in [3] at two points: 
in [3], condition (2) is not assumed at the outset, and the right-hand side 
of (3) reads “(8’0 h)(g@ h) (and similarly for (4)), where 

“(g@h)=Pg@Ph (5) 

for g E G, h E H, and p E G*H. As pointed out by Higgins, this involves an 
ambiguity: (5) will define a genuine action only if it maps (3) and (4) into 
relations holding in G @ G. Condition (2) guarantees this, and so will be 
assumed throughout. 

Remark 2. When G and H act trivially on each other (but by con- 
jugation on themselves, as we always assume), GO H is the ordinary tensor 
product. This can be shown using (9) and (10) (see Proposition 3 below), 
or by direct calculation. 

Remark 3. Let L be a group. A function 4: G x H + L is called a crossed 
pairing if for all g, g’ E G, h, h’ E H, 

4kg’, h) = d(“g’, “h) dk,h), 

d(s, hh’) = $(g, h) 4(k Q’). 

A crossed pairing 4 determines a unique homomorphism of groups 4*: 
G@H-L such that d*(g@h)=#(g,h) for all gEG, ~EH. This fact is 
used frequently, for example, in the proof of the following proposition, 
details of which are left to the reader. 

PROPOSITION 1. (i) The groups G and H act on G @ H so that 

R(g’@h)=gg’@Rh, h(g@h’)=hg@hh’ 

for all g, g’ E G, h, h’ E H. Hence an action of G*H on G @ H is obtained. 

(ii) Suppose 8: G + A, 4: H + B are homomorphisms of groups, A, B 
act compatibly on each other, and 8, 4 preserve the actions in the sense that 

hgh) = og(4h), Qhg) = “Vs) 

for all g E G, h E H. Then there is a unique homomorphism 

such that (O@~)(gOh)=Og@~h f or all g E G, h E H. Further, if 6, +4 are 
onto, so also is 0 0 4. 
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(iii) There is a unique isomorphism 

T:G@H-+H@G (6) 

such that z( g @ h) = (h @ g) - ‘, for all g E G, h E H. 

In the next proposition, (i) and (ii) are of a familiar type, while (iii) is of 
a novel kind and is important in calculations. 

PROFYXITION 2 [4]. (i) There are homomorphisms of groups 
kG@H-+G, A’: G@H-+H such that A(g@h)=g*g-‘, A’(g@h)= 
gh h-‘. 

(ii) The crossed module rules hold for A. and A’, that is, 

(CMl) Wl) =g(4t)) g -‘, 

(CM2) tt, t-’ = ‘(“I,, 

for all t, t, E G Q H, g E G (and similarly for A’). 

(iii) A(t)@h=tht-‘, g@l’(t)=“tt-‘, and thus A(t)@A’(t,)= [t, t,] 
for all t, t, E G @ H, g E G, h E H. Hence, G acts trivially on Ker 1’ and H 
acts trivially on Ker II. 

It is essentially shown in [4] that these ruies are consequences of the 
following special cases, which are themselves direct consequences of (2)(5) 
(cf. C41). 

PR0p0sIT10~ 3. The following relations hold for all g, g’ E G and h, 
h’E H: 

“(g-‘@h)=(g@h)-‘=h(gOh-‘), (7) 

(g@h)(g’@h’)(g@h)P’= cR*h’(g’Oh’), (8) 

(g hg-‘)@h’= (g@h) “(gWP’, (9) 

g’@(ghhP’)=g’(gOh)(g@h)P’, (10) 

[gOh,g’Oh’]=(ghg~‘)O(g’hrh’-‘). (11) 

2. BASIC RESULTS 

We now restrict attention to the tensor square GO G, and begin by 
giving for the kernel J,(G) of the commutator map K in the diagram (1) 
two crucial consequences of Proposition 2(ii), (iii). 
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PROPOSITION 4 [4]. (i) J,(G) is a central subgroup of G Q G. 

(ii) The elements of J,(G) arefixed under the action of G. 

Another main ingredient in (1) is Whitehead’s universal quadratic 
functor r [lS], whose properties we now briefly describe. 

Given an abelian group A, TA is the abelian group with generators ya, 
aEA, and defining relations 

Ha-‘1 = 74 

y(abc) ya yb YC = dab) y(bc) y(caX 
(12) 

for all a, 6, c E A. The following properties are not hard to check, and allow 
computation of I’ in the finitely generated case [ 151: 

(a) T(AxB)z:TAxfBx(A@B) 

n odd 
n even, (13) 

where Z, = (x(xn=e) for n20 (so that Z,=E is the infinite cyclic 
grow). 

It is an exercise in the use of Propositions 2 and 3 to check that for every 
group G there is a well-defined homomorphism 

t,W(Gab)+GQG (14) 

such that $(ygG’) =g@g [4]. Clearly Im $ is contained in J,(G), and is 
therefore central in G @ G. The cokernel of tj is written G A G, and is called 
the exterior square of G. The commutator map K: GO G + G’ clearly 
factors through K’: G A G -+ G’; the kernel of rc’ is isomorphic to the Schur 
multiplicator H,(G) [14,4, S]. The remaining parts of the exact rows in 
(1) derive from Whitehead’s r-sequence for SK(G, 1) and the generalised 
Van Kampen theorem of [4]. 

We state two immediate consequences (see [4]). First, let G be a finite 
group. Then both H,(G) (see [ 131) and r(Gab) (see (13)) are finite. Hence, 
J,(G) is finite, and so is G@G. (See also [9].) Similarly, if G is a finite 
p-group for some prime p, then so is GO G. 

PROPOSITION 5. If G is a finite group, then so is G Q G. Zf, in addition, G 
is a p-group for some prime p, then so is G Q G. 

Second, let G be a free group, so that H,(G) and H,(G) are trivial (see 
[ 131). By (1 ), $ is one-to-one. Since G’ is free (Nielsen-Schreier), the 
penultimate column of (1) splits and (using Proposition 4(i)) we have the 
following result [4]. 
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PROPOSITION 6. !f G is a free group, then 

GQ G E G’ x I’(G”). 

In particular, if G is free of finite rank n 3 2, G’ is then free of countably 
infinite rank and f(Gah) is free abelian of rank n(n + 1)/2. 

When G is abelian, the value of G 0 G is given by Remark 2 above. We 
conclude this section by dealing with the opposite extreme, namely, the 
case when G is perfect, that is, G = G’. The key to this is the following 
result of [4]. 

PROPOSITION 7. Let G be any group and let 

l-A&K&G-l 

be a central extension. Then there is a homomorphism 4: G @ G + K such 
that ICY is the commutator map IC. If G is perfect, then 5 is unique. 

Proof: Given g, E G, pick kiE K such that n(ki) =gi for i = 1, 2, and 
define a map (gi, g2) H [k,, k2]. This is independent of the choice of 
k,, k, (since the extension is central) and is a crossed pairing. It therefore 
induces a homomorphism 4: G Q G -+ K, which obviously satisfies n4 = K. If 
two homomorphisms 5, 5’: GO G + K satisfy rrl= rr[‘, then [(r’) ~’ = rq, 
where v: G @ G -+ A is a homomorphism which factors through the projec- 
tion G 0 G -+ GUb @ G”‘. The uniqueness of 5 for perfect G follows. i 

The definition of a covering group G of a group G is well known if G is 
finite [ 12, Chap. V, Sect. 231. We adopt a similar definition in the general 
case. So a covering group 6 of a group G is a central extension 

l-H,(G)aG-G- 1, 

where H,(G) is the Schur multiplicator and Im I c 6. Note that, while 6 is 
not uniquely determined by G, the commutator subgroup 6’ is so deter- 
mined. It follows that when G is perfect, G is unique (and also perfect). 
We now list some consequences of Proposition 7, of which the first is in 
C6, 3741. 

COROLLARY 1. When G is perfect, G 0 G is the (unique) covering group 
eof G. 

Proof When G = G’, GUb is trivial and so is Im II/. Hence, from diagram 
( 1 ), G 0 G is a central extension of G by Hz(G), and it is sufficient to prove 
that G 0 G is a perfect group (for then H,(G) c (G @ G)’ automatically). 
Now, G @ G is generated by elements g 0 g’, where g and g’ are products of 
commutators. It follows from (3) and (4) that G 0 G is generated by the 
g @ g’ with g and g’ simple commutators. But it follows from ( 11) that such 
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an element is a commutator in G 0 G. Hence, G @ G is perfect, and thus is 
isomorphic to G. 1 

COROLLARY 2. Zf e is a covering group of G, then there is a map 
q: G A G + (I?‘, which is an isomorphism if H,(G) is finitely generated. 

Proof. A map 5: GO G -+ G is given by Proposition 7. Clearly 
t(g@g) = 1 for all ge G. So we have a homomorphism q: G A G + G’ 
inducing a homomorphism ‘I’: H,(G) + H,(G). The condition Im z s G’ 
implies that q’ is surjective. Since H,(G) is finitely generated, it follows that 
u’ is an isomorphism. The live-lemma implies that q is an isomorphism. 1 

Remark. It would seem reasonable in the general case to define a cover- 
ing group as above but with the additional requirement that the map q of 
Corollary 2 is an isomorphism. 

The following result was suggested by the computational results of 
Section 6. 

PROPOSITION 8. Zf G is a group in which G’ has a cyclic complement C, 
then G@Gr(G A G)xC. 

ProojY Let C = (x); by assumption, the projection G -+ GUb maps C 
isomorphically to Gab, so we can write C = Gab. The exact sequence 

Z-(C)& GQGm, GA G- 1 

shows that Kerp is generated by x0x. So the canonical map 
t:G@G+C@CrCmapsKerpontoC@C.Ifxhasordern,thenx@x 
has order at most n, as (x @ x)” = x 0 xn. So t maps Ker p isomorphically 
to CO C. Hence there is a retraction G 0 G -+ Ker p, and so G @ G is the 
direct product (G A G) x C. # 

EXAMPLE. In the tables in Section 6 it is stated that A40 A, z Z, x Qz. 
This can be obtained from the previous two results, where the Z, factor is 
generated by a @ a (using the notation of Table I) while the Q2 factor has 
generators aQ b and a@a - ‘ba corresponding to the generators ab and ba 
for a&, where a4 = (a, b 1 a3 = b3 = (ab)2). 

3. FUNCTORIAL PROPERTIES 

It is clear that any epimorphism rc: K + G induces an epimorphism 
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(see Proposition l(ii)). In the favourable case when Ker 7c d Z(K), we can 
say something about the kernel of 710 rc. The following result, which is a 
special case of 3.1.3 of [7] and is related to Proposition 1 of [8], was also 
found by J.-L. Loday (cf. [ 1 I). 

PROPOSITION 9. Given a central extension 

there is an exact sequence 

(A@K)x(K@A)-f-+ K@K n@z, G@G- 1 

in which Im I is central. 

ProoJ: By Proposition l(ii) and (8) there is a homomorphism z which 
sends 

Putting C= Im I, it is clear that C< Ker(n@rr) and that n@ 7~ is onto. 
Furthermore, since A <Z(K), we have C < J,(K) < Z(K@K), by 
Proposition 4(ii), and in particular C is normal in KOK. It is thus 
sufficient to prove that the induced map 

II’: (K@K)/C+ GOG 

is an isomorphism, and this is done by constructing an inverse p as follows: 
For each ge G choose g’ E K such that a(g’) =g. Let v: K@ K + 

(K@K)/C denote the quotient map. Define p’: G x G + (K@K)/C 
by p’( g, h) = v(g’ @ h’). By (3) and (4), p’ is well-defined. We prove that p’ 
is a crossed pairing. Let g, h, k E G. Then 

,o’( gh, gk) p’( g, k) = v(g’h’ @ g’k’) v( g’ @ k’) 

= v( (g’h’ @ g’k’)( g’ 0 k’)) 

= v(g’h’@k’) 

= P’kkk). 

This verifies the first rule for a crossed pairing, and the other rule is proved 
similarly. The homomorphism p: G @ G + (KO K)/C determined by p’ 
clearly satisfies z’p = l,@,,. Also, if k,, k, E K, then 
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p’((k, 0 4 C) = PW, 0 b) 
=P(4k,)Q44) 
= v(k, Ok,) 
= (k, Q k*) c. 

Hence, R’ is an isomorphism, and the proof is complete. 1 

This result will be used in the next section to derive the value of GOG 
for dihedral groups from its value on quaternionic groups, following a 
suggestion of Loday. 

Under certain favourable conditions, the non-abelian tensor product 
distributes over direct products. These conditions obtain for the tensor 
square of a direct product, and this reduces the work in cataloguing the 
values of G 0 G for groups of small order (see Section 6 below). 

PROPOSITION 10. Let A, B, C be groups, with given actions of A on B and 
C, and of B and C on A. Suppose that the latter actions 

(4 commute: “a = ‘ba, so that B x C acts on A, 

(b) induce the trivial action of B on A @ C: ‘(a @ c) = a @ c, and 

(c) induce the trivial action of C on A Q B: “(a @ b) = a @I 6, 

for allaEA, bEB, CEC. Then 

A@(BxC)r(A@B)x(A@C). 

Proof. Define 
cc:A@(BxC)+(A@B)x(A@C) 

aQ(b,c)~(aQb,aQc), 

and check that (3) and (4) are preserved. For (3) 

@(aa’@ (b, c)) = (aa’@ b, aa’@c), by definition, 

=((“a’@“b)(a@b), (“a’OUc)(a@c)) 

=(“a’@“b,“a’@“c)(a@b,a@c) 

= cc(“(a’Q (b, c))) da0 (6 ~1). 
For (4) 

a(a@ ((6, c)(b’, c’))) = cr(a @ (bb’, cc’)) 

=(a@bb’, a@cc’) 

=((a@b)(ba@bb’), (a@c)(caOcc’)) 

= (a@b, a@c)(b(a@b’), ‘(a@c’)). 
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The first factor is a(~@ (h, c)), while the second should be 

a((bqu@(h’, c’)))= ‘b.“(u@h’,a@C’), 

which it is, using (b) and (c). 
The inverse map must be 

and it must be checked that 

(i) relations (3) and (4) are preserved, 

(ii) the images under p of a 0 b and a @ c commute, 

(iii) c@ and PM are identity maps. 

First, (ii) follows by applying (4) to 

uO(h,c)=uO((h,e)(e,c))=uO((e,c)(b,e)) 

and using (b) and (c). This also shows that flcr = 1, while CZB = 1 is obvious. 
Finally, (3) carries over automatically, while for (4), 

fi(u@bb’, e)=uO(hh’, e)=u@(h, e)(h’, e) 

= (08 (h e)) ‘(a@ (h’, e)), 

whereas 

D((UOb) “(UOb’), e) = (a@ (b, e))(hu, (‘h’, e)), 

as required, and similarly for (e, a 0 cc’). 1 

The distributive law for tensor squares is a straightforward consequence 
of this; in it, groups G and H are understood to act trivially upon each 
other and on themselves by conjugation, so that the cross terms on the 
right-hand side are ordinary tensor products. 

PROPOSITION 11, 

(GxH)@(GxH)=(G@G)x(G@H)x(H@G)x(H@H). 

ProoJ: This will follow from the previous result (together with 
Proposition l(iii)) provided we can show that conditions (b) and (c) hold 
(condition a) is automatic), that is, G acts trivially on (G x H) @ H, G @ H, 
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H@ H, and H acts trivially on (G x H) Q G, HO G, G @ G. Now G fixes 
HO H (since it fixes H) and also G @ H (since this is an ordinary tensor 
product). Hence G also fixes their direct product, which is G-isomorphic to 
(GxH)@H. 1 

4. DIHEDRAL AND QUATERNIONIC GROUPS 

Let Qm be the quaternionic group of order 4m with presentation 

(x,yIym=x2,xyx-‘=y~1), (15) 

and let D, be the dihedral group of order 2m with presentation 

(X,yIym=x2=e,xyx~‘=y-‘). (16) 

We compute Q, @ Qm directly, then use Proposition 9 to find D, @D,. 
Immediate consequences of the defining relations in (15) are 

xy=y-‘x, yx=xy-‘, yxy ~ ’ = y2x, 

[x,y] =y-2= [y, x]-1. 
(17) 

We often use these, the formulae in Proposition 3, and the crucial fact that 
J,(Q,) = Ker IC is central and Q,-trivial (by Proposition 4) without explicit 
reference. Now we work in Q, 0 Q,. 

(4.1) 

yoy* =yQ L-Y, xl 
=‘(yQx)(yQx)-’ 
= (yoy2x)(Yox)-’ 
= (yQxy~-2)(yQx)-’ 

= (YQX) “(YQY-2)(YQx)-1 
=yQ.J-2, 

since this is central and Q,-trivial. Hence, using (7), 

(YQy)2=YQY2=YQY~2=(YQY)-2, 

so that 

(yQy14=e. 
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(4.2) Since (y@x)(x@y)~J~(Q,,,), it is central, and so x@y and y@s 
commute. Note also that x 0 x and y 0 y are central. As we will see, these 
four elements generate Q,@ Q,, which is thus abeiian. 

(4.3) For qa 1, 

xQy4= (xQy) Y(xQyY-‘) 

= (xQy)(xy-*Qyy-‘) 

=(xQy) x(y-*Qyy-‘) (xQy4-‘) 

= (xQy) (xQy4-1) (yQy)-*-) 

= (x@y)‘(y@y)-4’4-” 

= (xQy)Y (yQy)‘(4-‘), by (4.1). 

(4.4) By (4.3) with q=2, 

(mY)2(YQY)2=xQY2 

=x0cy,x1 

=“(yQx) (yQx)-’ 

=(y-‘Ox) (yQx)-’ 

=-“-‘(yQx)-’ (yQx)-‘, bY (719 

=(y0xy2)-’ (yQx)-’ 

=((y0x)-“(y0y2))--’ (yQx)-’ 

= (YoY)2(yox)-2. 

Hence, 

(xQy)*=(yQx)-2. 

(4.5) 

(YQY)m=YQYm 

=yox* 

= (YQX) x(YQx) 

= (YQX) (y-‘Ox) 

= (yQx)(YQx)-1(YQY)2, as in (4.4). 
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Hence, 

By (4.1), this means that y @I y = e when m is odd, and ( y 0 y)2 = e when 
m is divisible by 4. 

(4.6) Applying the automorphism t of (6) to (4.3), 

ypox= (y@x)P (y@yp+-1), 

for pb 1. 

(4.7) 

xypoy4= “(yp@y4)(x@yq 

= (x@y)Y (y@y)p4+4(4--1). 

(4.8) Applying z to (4.7), 

yP@xy4= (y@x)p(y@y)p4+p(4--). 

(4.9) 

xyP@xy4= (xy”@x) “(xy”@y”) 

= “(y”@x)(x@x) x2(yp@y4) “(xOy4) 

= “-‘(y”ox)(x@x)(yp@yq qx@yq 

= (yPOx -‘)-‘(x@x)(y@y)pqx-‘@yy. 

But 

ypox-’ = yP@xyM 

= (YPOX) “(y”0y”) 

=(YO~)~(YOY)~~-~)(YO~)~~, by(4.6), 

= (y@x)qy@y)p(p--), by (4.5). 

A similar formula holds for x-l @I y4 (using z), and so xyp @ xy4 = 
(y@x)-p(x@x)(x~y)-4(y@y)p(p+‘)+4(4+l)+p4. 

This establishes our claim that Qm 0 Q, is generated by x @I x, x@ y, 
y &I x, and y @I y, and is thus abelian. 

(4.10) 

x@x2=x@y” 

=(X@y)m(yOy)m(m-? 
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So, if m is odd or a multiple of 4, 

(4.11) 

So, in every case 

and 

(x0x)2= (X@y)m. 

(x@x)2=x2@x 

=y”@x 

= (y@x)” (y@yy+“. 

by (4.6), with p=2m, and (4.5). By (4.2) and (4.4), it follows that 
(xOy)(yOx)=e when m is odd. 

(4.12) For any m, the relations (4.7), (4.8), and (4.9) remain valid when 
p and/or q is negative. This is seen by replacing p (say) by 2m -p and 
using the fact that (y@~)~” = e = (x~y)~“, 

PROPOSITION 12. Let m be odd, and let Z, x Z, have factors generated 
by a, b, respectively. Then the mapping 

is an isomorphism. Also, J2( Q,,,) is isomorphic to Z4 generated by x @ x. 

Proof: That 13 is a well-defined epimorphism follows from (4.9), (4.10), 
and (4.11). To complete the proof, we must construct the inverse 6’ to 0. 
According to (4.5), (4.7), (4.8), (4.9), 0’ should have the following effect: 

yPOyY~e, 

xyp @ yY H azqbY, 

yp @ xyq H a2Pb --P > 
XYPOXyYHa’+2’P+y)bP-Yy, 
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that is, for 6, E E (0, 1 }, and p, q arbitrary (by 4.12), 

x&y” Q x&y” H a 6~+2&p+269b(-l))ebq-(-l)6&q 
(18) 

It remains to check that this preserves the defining relations (3) and (4) 
of Q, @ Q,. By Proposition l(iii), it is enough to check (3), since, if u 0 u 
maps to ai@ under (18), then u @ u maps to a’b-j. To do this, take 

g = x6yp, g’ = x&yY, h = xqyr, 

with6,s,vE{O, l}andO<p,q,r<2m-l,anduse(17)toreducegg’@h 
and “(g’ @ h) to standard form. It is then routine to check that the 
application of (18) to both sides yields the same result. 1 

In the case when m is even, the same method leads to the following 
result; the proof is omitted. 

PROPOSITION 13. Let m = 4r + k, where k = 0 or 2. Then 

generated by (~Qx)(xQy)~‘~(yQy)~~~, xQy, yQy, and (xQy)(yQx), 
respectively. Furthermore, J,( Q,) is isomorphic to Z, x Z, + 2 x Z,, generated 
by (xQx)(xQy)“(~Qy)~‘~, YQY, and (xQy)(yQx), respectively. 

To calculate the tensor square for dihedral groups, put 
z =x2 = y”~ Z(Q,), so that D, = Q,J(z). It follows from Proposition 9 
that D,OD, is just the factor group of Q,@ Q, by the subgroup 
N= CzQQe,, Q,Qz). Now ~Qy~=(yQy)“‘~, zQxyp=(zQx) “(zQyp) 
= (xox)2(YoY)-“, so that N=((x@x)~, (y@y)“). This leads at 
once to the following result. 

PROPOSITION 14. 

D,@D,= 
z2 x L m odd, 
n2xn,xn2XE~, m even. 

where the factors are generated respectively by x @ x, x @ y and (for m even) 
by YQY and (xQy)(yQx). 

Remark. This result also covers the case m = 0, since we interpret Z, as 
Z. However, this does not follow from the calculation for Q,,, and has to be 
proved separately. 

481/111/!-13 
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5. METACYCLIC GROUPS 

Let G be the metacyclic group generated by x and y subject to the 
defining relations 

y” = e, xm = e, xyx-’ = y’, (19) 

where I, m, n E N, and assume that 

1” G 1 (mod n) (20) 

to ensure that 

G= {y’x’(O<i<n- l,O<j<m- 1) (21) 

has order mn. Also, for ease of computation, we take the favourable special 
case when n is odd. The following immediate consequences of (19) will be 
used without explicit reference: 

xpy 4x ~ P = y”“, yYxPy--Y = Y(I -IPjxP Y 3 (22) 

for any p, q E N. 
Before beginning the calculation, note that G 0 G is abelian, since G’ is 

cyclic and J,(G) = Ker K is central, by Proposition 4(i). Since J,(G) is also 
G-trivial (Proposition 4(ii)), 

both x and y fix x0x, y@y, (x@y)(y@x). (23) 

Now it is clear from (3), (4), (7) that these last three elements, together 
with x 0 y, generate G @ G qua G-module; our first main objective is to 
show that they generate G @ G as a group. As in Section 4, we proceed in a 
series of steps. 

(5.1) (y@y)‘-‘=e. 

Proof: First, it follows from (11) that 

(yoy)“-1’2=y’-‘@y’-‘=[x,y]@[x,y] 

=[xOy,x@y]=e. 

Next, by (23) 

YoY=“(yoY)=y’oy’=(Yoy)p. 

Finally, by bilinearity, 

(y@y)“=y@y”=y@e=e. 

(5.1) now follows from the last three formulae, since n is odd. 1 



NON-ABELIAN TENSOR PRODUCTS 193 

(5.2) Y(XOY)= (XOY). 

Proqf 

“(xOy)= (‘x)@y= (y’-‘x@y)=y’-‘(x@y)(yl-‘@y) 

=“-‘(x@y)(y@y)‘-‘=“‘-‘(x@y), 

by (5.1). Hence, x 0~ is fixed by y’, and (5.2) follows since 1 is coprime to 
IYI =a 1 

(5.3) “(XOY) = (x@y)‘. 

Proof. 

“(x~y)=x@(-yy)=x@y’ 

= (x@y) qxoy’- ‘) 

/- I 
= n .‘.“(x@y) 

k=O 

= (XOY)‘, by (5.2). 

It now follows that G @ G is a 4-generator group, as claimed above. g 

(5.4) ~~@y~=(x@y)~‘~, yy@xp=(y@x)y‘p for p,qEN, where the 
exponent on the right is defined by 

p.q=p(l+l+ ..’ +I+‘). 

ProoJ Using (2), (3) p - 1, q - I times, respectively, we have 

x~~y~=-~(x~~‘~y~)(x~y~) 

=-“-‘(x~y~)...*(x~y~)(x~y~), 

and 

x@yq=(xoy)qx@y~-‘) 

=(x@y)qx@y)‘-qx@y) 

= (XOY)“, by (5.2). 

The first equation now follows from (5.3), and the second by applying the 
automorphism z of Proposition 1. @ 

(5.5) y~x~~y’xs=(x~x)~s(yoy)~r(x~y)“~(yox)~’s. 
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ProoJ 

yPXqOylX.s=?P(XYOy’~~y)(yPOyr2CJ), by (2) 

= -““((x4 By’) -f(xY @ x-‘))( yp @ 4’1) -f( y” @ x.7), by (4) 

= (X”@yr)(XY@XS)(yPgyr)(yP@xJ), 

since y acts trivially on G @ G, and the result now follows by (5.4) and 
bilinearity. 1 

(5.6) The right-hand side of (5.5) must be independent of the choices of 
p, r modn, and of q, s mod m. Adding n to each of p, r and m to each of q, s 
in turn, while keeping the others fixed, we obtain relations equivalent to 

(ygyy=e= (x0x)“, 

(yOx)“=e=(x@y)“, 

(YOX) I+/+ .,. +/+’ =e=(x@y)l+l+ ... +I”‘- 

(5.7) Subject only to the conditions ((5.1) and (23), (5.2)) 

(a) (y@yF ’ = e, 
(b) y acts trivially on G @ G, 

the original defining relations (3) and (4) pass (via (5.5)) to trivial relations 
between the four new generators. That y acts trivially on y@y, x By, 
y@x, and x0x means respectively (using (5.5)) nothing, (a), (a), and 

x@x=-v(x@x)=-vx~-I‘x 

= (y’-‘x)@(y’-‘x) 

=(y@y)“-“z(x@x)(x@y)‘-‘(yox)l-‘. 

That is, (a) and (b) are equivalent to 

(Y@Y)‘-’ =e=((xOy)(yOx)F’ 

It follows that (5.6) and (5.7) constitute defining relations for G @ G, and 
we have proved the following result. 

PROPOSITION 15. Let G be the metacyclic group 

(x,yIyn=e=xm,xyxpl=y’), 
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where 1” - 1 (mod n) and n is odd. Then G @ G is the direct product of four 
cyclic groups with generators 

X0X, YQY, bQY)(YOX), (XQY) 

of orders 

m,(n,I-l),(n,I-l,l+Z... +F’),(n, l+E+ ... +fmP1) 

respectively. 

Referring to diagram (l), the image of tj is generated by the set g@g, 
g E G. Using (5.5), it follows that 

Im ti = (xQx,yQy, (xQy)(yQx)), 

so that H,(G) is cyclic of order 

IxQyl -(n, I- l)(n, 1+1+ ... +I”-‘) 
IG’I n 

(an integer, because of (20)), which agrees with the results of [2]. 

6. GROUPS OF SMALL ORDER 

If IGI = n then G 0 G is presented with n2 generators and 2n3 relations. 
For small values of n, say n d 12, these can be input directly to the Tietze 
transformation program [ 111 and the structure of G 0 G deduced. In order 
to study tensor squares of groups of larger order we wrote a program to 
simplify the presentation before it is input to the Tietze program. The n 
elements of G are denoted by integers 1 to n, 1 being the identity, and the 
generator a 0 b E G @ G is denoted by the integer na + 6. 

These n2 generators for G @ G are stored in an array and simplifications 
are made during a scan of the relations. Whenever a relation shows that 

(i) a generator is trivial, or 
(ii) one generator is equal to another generator (or its inverse) 

the array of generators is modified accordingly. 
When no further simplification of type (i) or (ii) is possible by consider- 

ing the relations one at a time then a small subset of the relations is input 
to the Tietze program. After substring searching (see [ 111 for a descrip- 
tion) more deductions of type (i) and (ii) may be made and the generator 
array simplified again. It is fairly typical that the number of generators of 
G Q G is reduced to about n by this process and although the number of 
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relations is not greatly reduced, the number of distinct relations is reduced 
to the order of n2. This technique allows G 0 G to be computed for 1 G/ up 
to 48 but certain groups of larger order can also be handled; see Section 7. 
Table I below gives G @ G for all non-abelian G of order ~30. We have 

TABLE II 

No. 6 

No. 12 

No. 13 

No. 14 

No. 15 

No. 16 

No. 20 

No. 33 

No. 34 

No. 35 

No. 39 

Generators 
Relations 

Generators 

Relations 

Generators 

Relations 

Generators 

Relations 

Generators 

Relations 

Generators 

Relations 

Generators 
Relations 

Generators 
Relations 

Generators 
Relations 

Generators 

Relations 

Generators 

Relations 

x,=a@a,x,=a@3b,x,=a@a-‘ba 
x;=l,[xI,xz]=[x,,x,]=l. x:=x:, 
x=x,x* =x, 

x,=aQa,x2=a@b,x3=b@a, 
x,=b@b 
xy = xi = x:x: =x:x: = 1, 
[x,,x,]=l,l<i<j<4 

x,=a8a,x,=a~b,x,=b~a, 
x,=b@b 
x; = x; =x: = xi = 1, [x,, x,] = 1, 
1 <i<j44 

x,=aOa,x,=aOb,x,=bOa, 
x,=b@b 
x:=x:=x:= 1, x; = xg, 
[x,,x,]=l. l<i<j<4 

x,=a@a,x,=a@b,x,=b@a, 
x,=b@b,x,=a@b2 
x~=x:=x:=l,x:=x:,x:=x:, 
[x,,x,]=l,l<i<j<5 

x,=aOa,x2=aOb,x,=b6a, 
x,=b@b,x5=a@cc,x6=c@a, 
x,=cOc,x,=b@c,x9=c@b 
xf=l,l~ii9,[x,,x,]=l,l~i~jQ9 

x,=aQb,x2=aObc 
xf = x; = 1, xf(x,x,‘)2x, = 1, 
(x*xJ*x,-=xz = 1 

x,=a@a,x,=a@ab,x,=a@ba-’ 
~:=~,Ix*,~2l=cx,,x,l=1, 
x; = x3x2x3, x:=x2xJxz 

x,=a@b,x2=a@bb2 
xi’= 1, x:x: = 1, (x,x$ =x2 

x,=a@a,x2=a@b,x3=b@aa, 
x,=b@b 
x==,y2zx’z= 1, x;x;s 1 1 4 2 
[x,,x,]=l,l<iijQ4 

x,=a@aa,x2=aQb,x,=b@a, 
x,=b@b,x,=a@b--‘,x,=a@bab 
xj=l,l<i<6, [x,,x,]=l, l<i<j&6 
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followed the format of Table I in [S]. We should note that the structure of 
G @ G was determined, after simplification by the Tietze program, by using 
the suite of group theory programs set up on the St. Andrews VAX, in par- 
ticular a Todd-Coxeter coset enumeration program and an Integer Matrix 
Diagonalization program. The notation follows that of previous sections 
and, in addition, A,, A,, B(2,3) denote the alternating group of degree 4, 
its (unique) covering group, and the Burnside group of exponent 3 on 2 
generators, respectively. 

All but 11 of these groups GO G can be deduced from Propositions 11 
to 15. (Note that the groups 22, 24, 36, and 40 are metacyclic and covered 
by Proposition 15.) In Table II we give for each of these 11 groups explicit 
generators for G 0 G together with defining relations. Note that the map 
A4-+A4 induces a map a,@,& + A, @ A, which is an isomorphism since, 
by the machine computations, the groups have the same orders. Note also 
that the groups 12, 13, and 14 are all split metacyclic with even kernel, so 
there is hope of generalising these computations, and that 6, 20, 33, and 34, 
as well as examples 2 and 3 in Section 7, are covered implicitly by 
Proposition 8 (see also Proposition 16). 

7. MISCELLANEOUS EXAMPLES 

For the sake of completeness, we include a list of all cases not mentioned 
explicitly in the foregoing for which GO H is known to us. 

1. (P. J. Higgins) Take two copies of Z each acting on the other by 
the non-identity automorphism. These actions are clearly compatible, and 
H @ E g Z x B, with factors generated by x 0 y and x @ y -I, where x, y are 
generators of the two copies of Z. 

2. By the machine method of the last section, it can be shown that 
when G = GL(2,3), 

GOG=SL(2,3)xZ,. 

Explicitly, taking G = (a, b 1 a8 = b3 = (ab)* = [a4, b] = e), we obtain the 
presentation 

G~G=(x~,x~,x~Ix~=[x~,x~]=[x~,x~]=~, 
x: =x*x3x*, x: =x*x3x*), 

where x,=uQu, x,=u@b, x3=u@u4b-‘. 

3. The biggest group handled so far by the machine is 

S, = (a, b ( u4 = b6 = (ub)* = (u-1b)3 = e), 
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which gives 

z SL(2,5) x z,, 

where x,=aQb and x,=a@b3. 

4. In the last example, SL(2,5) is the covering group a, of A 5 (see 
Corollary 2 in Section 2). Comparison of this with line 33 of Table I 
suggests a more general result. This turns out to be true in all but the 
exceptional cases n = 6 and n = 7, where it needs to be restated for the 
following reason. While H2(Sn) = Z, for all n > 4 (see [ 12]), the same is 
true for A, except for n = 6 and 7, when the multiplicator is Z,. We can 
thus state the following consequence of Proposition 8 of Section 2. 

PROPOSITION 16. For the symmetric group S,, n > 4, 

S,QS,r$:,xZ,, 

a group of order 2. n!. 

5. (R. Aboughazi [ 11) If H is the Heisenberg group with generators 
x, y, z and relations [x,y] = z-l, [z, x] = [z, y] =e, then Z-Z@H= (Z)” is 
the free abelian group with generators x @ x, y @ y, x 0 y, y 0 x, x Q z, and 
y @ z. The non-trivial actions of H on H 0 H are determined by 

“m’“(XQy)=(XQy)(xQz)-m(yQz)-“, 

““fl(yQx)= (yQx)(xQz)-“(yQz)“. 

6. (D. Guin) If A is a G-module considered as acting trivially on G, 
then there is an isomorphism G@A + (ZG)@,,A which sends 
g@aw(g-l)@a [lo, Prop. 3.21. 

8. OPEN PROBLEMS 

1. Let G and H be finite groups acting compatibly on each other. 
Then is it true that G@ H is finite? In addition to the foregoing the values 
of Z, 0 Z, have been computed by R. J. Sanders (Nottingham) for various 
compatible actions. In every case, the result has been finite and even cyclic 
(it is always abelian). (This question is settled affirmatively in [9] but no 
purely algebraic proof is known.) 

2. Let d(G) be the minimal number of generators for a group G. Can 
any general estimate of d(G @ G) be found when G is finite? Note that, 
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when G is free of rank 2, d( G @ G) is countably infinite (Proposition 6). On 
the other hand, for all the groups in Sections 4 and 5, G @ G is generated 
by {x0x, x@y, y@x, y@9y}=X@X, where X=(x,y} generates G. 
Note that, for G @ G = (X0 A’) to hold for G = (X) when /XI= 2, 
we must have G’ = (G @ G)/J,(G) cyclic, since x @ x, y @y, 
(xOY)(YOX)~J,(G). 

3. If G is soluble of derived length I(G), then G @ G is soluble and 

Z(G@G)=Z(G) or Z(G) - 1. 

Examples of both types appear in the foregoing. Is there any intrinsic 
characterisation of soluble groups of either type? 

4. If G is nilpotent of class cl(G), then G @ G is nilpotent and 

cl(G@G)=cl(G’) or cl(G’) + 1. 

Can either of these types be characterised internally? Note that, when G is 
a finite nilpotent group, it follows from Proposition 11 that GO G is just 
the direct product of the tensor squares of the Sylow subgroups of G, so 
this is really a problem about p-groups. 

5. Examine the behaviour of GO G under the formation of free 
products. 

6. Complete the evaluation of G @ G for all metacyclic G. 
7. Use the ideas in the proof of Proposition 8 to compute the tensor 

square of GL(2, p) and other linear groups. 
8. Give an algebraic proof of the exactness of the top row 

H,(G) - T(G”‘) --f+ J,(G) - H,(G) - 0 

of diagram (1). We suspect that this is an edge exact sequence of a spectral 
sequence of algebraic origin. 

Nofes added in proof 1. We should remark that G@G and G A G were studied in [6] 
(with different notation), while P@ G for G a crossed P-module was studied in [ 193. 

2. The calculation of D,@D, (Proposition 14) is accomplished by a different method in 
[ 171 and the calculation of Z @ Z for non-trivial actions (Example 1, Section 7) is also carried 
out there. 

3. The behavior of G@ G under the formation of free products is solved in [16]. 

4. The evaluation of G @ G for metacyclic groups is completed in [ 183. 
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