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0. Introduction. In (2) we denned the Kunneth suspension of a cohomology operation
—the Kunneth suspension involves an arbitrary ess-complex Y rather than the 1-
sphere S1, as with the usual suspension of a cohomology operation. Now the suspension
homomorphism is well known to be related to the operation of forming loop spaces
(cf. (4)). The main object of this paper is to prove a similar result for the Kunneth
suspension.

Our results fall under the following general scheme. There is a natural function

where square brackets denote homotopy classes of maps, and Xr, Yr are function
complexes. Although this function is perfectly explicit, it is not obvious how to
compute /? in general, part of the difficulty being that the spaces Xr, ZY have to be
computed before ft can be. However, in the case when Z = A, a css-Abelian group,
the homotopy type of AT is very simply related to the cohomology of Y and homo-
topy of A. Hence in this case, and when X also is a css-Abelian group, we can hope
for more convenient expressions for /?; for example, when X and Z are both css-Abelian
groups, we show how to express /? in terms of the Kunneth suspension.

In section 3 we show how the methods given here may be used to determine the
homotopy type of XT by induction on the Postnikov system of X.

The problem from which the present work arose was pointed out to me by Dr M. G.
Barratt; similar problems are considered by Thorn in (5). The results of this paper,
and of (2), formed part of an Oxford doctoral thesis written under the supervision of
Dr Barratt, to whom I am deeply indebted for advice and criticism.

1. Preliminaries. We refer the reader to (2) for any notations and definitions not
discussed here.

The category of ess-complexes with base point is written 2£. The correct product
in 2E is the collapsed or smash product

X%Y = Yx 7 / (Xx*u*x 7).

The standard ^-simplex A9 has no base point, and so we define the complex with base
point

A«#X = A«xZ/A«x*.
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The function complex Xr in 3£ is defined by

,X) (1-1)

with the obvious ess-operators and base point. (Maps and homotopies will always
respect base point.) This complex satisfies the exponential law: for all X, Y, Z in 3C
there is a natural isomorphism (the exponential map)

fi:Xz*Y ^(XY)Z. (1-2)

The proof of this fact is a simple modification of Cartan's proof (3) of the exponential
law in the usual ess-category.

In dimension 0, the exponential map reduces to a bijection

(1-3)

So the evaluation map e:XY % Y ^- Xis uniquely defined by the condition

fi(e) = 1:XY ->XY.

When X is Kan, the function complexes in (1-2) admit path components, and fi
induces a bijection of these. In particular fi induces a bijection of homotopy classes

Let X, Y, Z e SC. The function

/#:Map(X,Z)^Map(XI\ .Z r ) (1-4)
is the composition

Map (X, Z) -^ Map (XY %Y,Z)-^ Map (XY, ZY).

Explicitly, if/: X -> Z, and g e {XY)q, then /?(/) (g)e (ZY)p is the composition

When Z is Kan, fi induces a function

fi:[X,Z]-+[XY,ZY]. (1-5)

The case of interest to us is when Z is an i^D-complex (i.e. a css-Abelian group).
Then ZY is also an .FD-complex, the sets [X, Z], [XY, ZY] are Abelian groups and fi is
a homomorphism.

Finally, we recall two facts from (2). First, for any X in 9£ and -PD-complex A
there is a natural isomorphism

y:[X,A]^H°(X;NA), (1-6)

where H°(X; NA) is the 0-dimensional cohomology of X with coefficients in the
normalized chain complex NA of A.

Secondly, for any Y in X and -F-D-complexes A, A' such that

Hr{Y; NA) » Hr(NA') (r > 0),
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there is an isomorphism

K:H°(X>* Y; NA) -»• H°(X; NA').

This isomorphism, which is natural with respect to maps of X, is called a Kiinneth
isomorphism of type (Y, NA; NA').

2. First results. Our object is to describe the homomorphism

in a way suitable for computations. In practice we start off with A a minimal css-
Abelian group, for example, an Eilenberg-Maclane complex. Now AT will not usually
be minimal, but we know that there is a homotopy equivalence

where A' is a minimal css-Abelian group, and so simply a product of Eilenberg-
Maclane complexes (see, for example, 5-12 of (2)). For purposes of computation we
seek to describe not /? but the composition

[X, A] -L [Xr,Ar] i i \XT, A'].

The trouble is that in replacing AY by A' we have also altered the explicit homo-
morphism /?.

This difficulty is overcome by the following theorem, in which the homotopy equiva-
lence A is chosen to be closely related to other convenient maps.

Let Y in % and A, A' in &9) be such that H*( Y; NA) x H(NA') (this is equivalent
to n%(AY) x n^A')), and let K be a Kiinneth isomorphism of type (Y, NA; NA').

THEOREM 1. There is a ess-homotopy equivalence

such that the following diagram is commutative for all X in 2£.

[ Z * Y, A]—7-+ H°(X% Y; NA)

(2-1)

Proof. Each map in (2-1) (except A*, which has not yet been chosen) is an isomor-
phism. Put X = AT in (2-1) and let i e [AY, Ar] be the class of the identity map.

We define A: Ar ->• A' to be any map in the class
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Standard arguments using the naturality of the maps concerned show that diagram
(2-1) is commutative. (The abstract result is that any natural transformation of
representable functors is representable.) Hence A* is an isomorphism for all X, and
so A is a css-homotopy equivalence.

For the rest of this section, we assume A is chosen as in Theorem 1.

THEOREM 2. The following diagram is commutative.

[X,A] — - • H°(X;NA)

\ V
[XY,AY] H°(XY%Y;NA) (2-2)

A * l r I *
[XY, A'] —U H»{XY; NA')

Proof. We consider the following diagram.

1*.

[XY

, 1N

/^ />
,AY]

A']-

\XY%Y,
/

7

A]-

> H°(X; NA)

-^H°(XYXY;NA)

—> H°(XY;

K

NA')

Each cell of this diagram is commutative: the top cell by naturality of y; the left-
hand cell by definition of /?; and the bottom cell by Theorem 1. Hence diagram (2-2)
is commutative.

Since the Kiinneth isomorphism K is computable Theorem 2 throws the computation
of ft onto the computation of the cohomology map induced by e: XY % Y -¥• X. Our
next theorem gives a description of e when X = A an .FD-complex.

Recall that the fundamental class of an .FD-complex A is the class w( A) in H°(A; NA)

where iA in [A, A] is the homotopy class of the identity map. The evaluation class of K
is the class e in H°(A' % Y; NA) such that /c(e) = 0)(A'), the fundamental class in
H°(A'; NA).

THEOREM 3. In the diagram

e* (A*l)*
H°(A; NA) > H°(AYX Y;NA) < H°{A'% Y; NA)

J L (2-3)
I A* ]•

H°{AY; NA') * H\A'; NA')

toe have Ke*w(A) = X*(o(A') = /c(A# l)*(e).
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Proof. The square of (2-3) is commutative by naturality of K.
We consider the following diagram which is commutative by naturality of y and

Theorem 1.

[A,A] y—> H°(A;NA)

[A7* 7, A] —^» H°{AY » Y; NA)

[A*, A']A 1
[A', A']-

> H°(Ai

y—> EH A'

i';NA')

W
; NA')

By definition of e, /.ie*(iA) = iAr.

Hence iA, and iA. both map to the same element in [Ar,A'] (namely the homotopy
class of A). Hence iA and tA, both map to the same element in H°(AY; NA'). The
required relation

^ /ce*

follows immediately. The relation \*u(A') = /c(A* 1)* (e) follows from the definition
of e and naturality of K.

Computations of the evaluation class e for simple A and Y were given in the
Appendix of (2).

Remark. In the last paragraph of page 36 of (5) a formula is given for g*(t) where
g is an evaluation map and i a fundamental class with reals as coefficient group. There
is a gap in the argument (pointed out to me by M. G. Barratt) since, although it is clear
that there are unique elements u, v such that g*{t) = lxi + dxu + d2xv (as stated),
it is not obvious that u and v are non-zero and so generators of the cohomology groups
they lie in. However, our Theorem 3 relates such an evaluation map to an evaluation
class, and such classes were calculated in the Appendix of (2). In particular Theorem
A. 8 (i) of (2) implies that the stated formula is true even in integral cohomology.

3. Kiinneth suspensions. In this section we prove the result intimated in the
Introduction by characterizing

(where A, B are both 2^Z)-complexes) in terms of the Kiinneth suspension K of section 8
of (2).

Let K1} K2 be Kiinneth isomorphisms of types (Y, NA; NA'), (Y, NB; NB'), respec-
tively, determining homotopy equivalences

as in Theorem 1. It was shown in (2) that K1; K2 determine a Kiinneth suspension

K: Op (NA, NB) -> Op {NA', NB').
45 Camb. Philos. 60, 4
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Now it follows from Theorems 7-2, 7-8 of (2) that there is a natural isomorphism

THEOREM 4. The following diagram, in which O,A*,A2# are isomorphisms, is
commutative.

[A,.

P\ JK
'] O$(NA',NB')

[A?,B']< [A',B']

Proof. Let k e [A,B] and let I = 0(&) e Op (NA,NB). We consider the following
diagram.

y i
[A,B] > H\A; NB) < H»(A; NA)

P

Y; NB) < H°(AY * Y; NA)

A«| U, U, (3-1)
i y -V K{1) -V

[Ar,B'] >H°{AY;NB')< — H°{Ar;.

K

This diagram is commutative: the left-hand cells by Theorem 1 and naturality of
y; the right-hand cells by naturality of cohomology operations and definition of K.

Suppose that k in [A, B] maps by the left-hand vertical arrows down to k' in [A',B'].
By construction of O / 7 , ^ / , w ,/l^^ 7/ , A^ /n n\

J y(k) = <D(fc) (a){A)) = l{tJ{A)), (3-2)
y(k') = <!>(k'){a)(A')). (3-3)

By Theorem 3, o)(A) e H°(A;NA) maps by the right-hand vertical arrows down to
o)(A') € H°(A'; NA'). Now (3-2) implies that k and <J)(A) map by any path in diagram
(3-1) to the same element in H°(A'; NB'). Hence (using (3-3))

This implies that <&(k') = K(1) = K(<&(1C)), which is what we were required to prove.
Remark. It is well known that the suspension of a cohomology operation is additive.

This result generalizes to Kiinneth suspensions as follows (using the notation of this
section): if Y is an i/'-space in the sense of Hilton-Eckmann, then the image of the
Kiinneth suspension K consists of additive operations. It would be interesting to know
if there are additive operations which are not components of a Kiinneth suspension.

4. Homotopy type of function spaces. When Y is finite dimensional, the previous
results may be used to compute the homotopy type of Xr by induction on the Post-
nikov system of X.
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The Postnikov system of a connected complex X consists of (i) a sequence

p(n):X(n)^X(n-l) (n ̂  1)

of fibre bundles with fibre the Eilenberg-MacLane complex K(nn,n), nn = TTn(X)\
(ii) a sequence of maps h(n): X -> X(n) such tha t p(n) h(n) = h(n— \),{n ^ 1). Further
the X(n) satisfy nr(X(n)) = 0(r > n), and the h(n) are such that h(n)^:nr(X) -*-nr(X(n))
is an isomorphism for r ̂  n. If X is simply-connected, as we now assume, then the
bundles p(n): X(n) -> X(n— 1) may be taken to be principal, so that they are entirely
described by a classifying map k(n + l):X(n— 1) -> K(nn,n+ 1).

We now consider this Postnikov system 'raised to the power Y'. For simplicity we
do not consider all components of the function spaces, and Xr will denote only the
component of the trivial map in the function complex of maps Y ->• X.

First of all, nq(X
T) is naturally isomorphic to [SqY, X]. This implies that the map

h(n)Y:XY ->• X(n)r induces isomorphisms nq(X
Y) -> nq(X{ri)Y) for g + dim Y ̂  n.

Secondly, the principal bundle

determines the principal bundle

K(nn, n)Y -+ X(n)r -+ X(n-l)r

with classifying map
k(n+l)r:X(n- 1)F -^ K(nn,n+ l)r.

If we assume inductively that X(n— l)r and the evaluation map

e(n-l):X(n-l)rxY->X(n-l)

are known, then Theorem 2 enables us to calculate k(n +1)Y and so X(n)r. The evalua-
tion map e(n) must then be computed from the diagram

K{nn,n)r»Y • X(n)r * Y > X(n- 1)Y% Y

el \e(n) I 6 '"" 1 '
K(7Tn,n) > X(n) > Z ( n - l )

in which e(n— 1) is known by the inductive assumption and e may be computed using
Theorem 3.

By these algebraic methods it is possible to recover Barratt's results in (l) on the
track group [SrY, X] where Y is an 4^-eomplex (i.e. Y is (n— l)-connected and of
dimension not greater than n+l): the computations for the case r + n > 2 were
earned out in the author's thesis. Rather than repeat these computations here, we
give a simple example which uses only the Kiinneth suspension and which illustrates a
feature of Barratt's work, namely the way in which a certain extension is determined
by the action of Sq1 in Y. (The appearance of Sq1 is due to the Cartan formula and the
fact that if X is ̂ -connected (p > 2) then the first ^-invariant of X is essentially Sq2.)
Our method also gives for free information on induced homomorphisms.

Example. Let X = S* v2ei>+1 (p > 2) and let Y = £"-ru2e"-r+1, so that SrY = X.
Now nq(X

Y) = 0 for q+p — r+ 1 < p, that is. for q < r — 1. Barratt showed in (l)

45-2
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that nr_x{XT) = Z2 and that nr(X
Y) = Zt—the latter result was obtained by very

geometric methods. We re-prove this result and also prove non-triviality of the map
ij*:nr_1(X

T) -> nr(X
Y) induced by composition with the generator 7]enr(S

r-1) (r ̂  3).
Let W = XY, Wn = X(n)r. Then nr(X

Y) is isomorphic to nr(Wp+1). Now X{p+ 1)
is the total space of a fibration with fibre K(Z2, p + 1), base K(Z2, p) and classifying map
Sq2:K(Z2, p) ->- K{Z2,p + 2). Therefore Wp+1 is the total space of a fibration with fibre
K(Z2,p+ l)r, base K{Z2,p)Y and classifying map

(Sq*)Y:K(Z2,p)Y ->K(Z2,p + 2)Y.
For general Y,

nq(K(7T,n)Y) x [S"Y,K(n,n)] » H*-«{Y; n),

the last isomorphism following from (1-6) (our conventions on grading give Y non-
trivial cohomology only in non-positive dimensions). So in our particular case there
are homotopy equivalences

\x:K(Z2,p)Y -+ K(Z2,r~l) x K(Z2,r) = A', say,

)Y ->K(Z2,r+l)xK(Z!,,r + 2) = B', say.

By Theorem 4, Aa and A2 may be chosen to transform {Sq2)Y into K(Sqz):A' -*• B'
where K is a Kunneth suspension.

In the Appendix of (2) we calculated a Kunneth suspension of this type and found
that K.(Sq2) is given by the diagram

K(Z2,r-l)xK(Z2,r)

f (4-1)

K(Z2,r+\)xK{Z2,r + 2).

We have immediately that ?rr_1(Tf) = Z2 and that nr(W) is an extension of Z2 by
Z2. This extension is determined by the map K(Z2, r) -> K(Z2, r+1); since Sq1 is non-
trivial the extension is non-trivial and nr( W) = Z±.

Finally, the map K{Z2,r— 1) ->• K(Z2,r+ 1) determines the function ij* in the
induced fibration. Hence 7)*:nr_1(W) ->• nr(W) is non-trivial if r ^ 3. (It also follows
from (4-1) that 7j*:nr(W) -> nr+1(W) is non-trivial.)
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