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Introduction

Motivation for this article is a question put to Ronnie Brown in June 2004 by a young woman,
Bree, at a party while he was visiting the Center for Computational Biology in Bozeman,
Montana, to give seminars. Bree said that she was studying maths and ‘found proofs neat’.
Also she had asked a lecturer why she should study mathematics, and he had said: ‘Because
it has lots of applications’. But, Bree remarked, really she wanted to know why it has lots of
applications.

We believe it is important for anyone teaching or studying mathematics to reflect on this
sort of question and to have formulated some kind of answer. We will say below what answer
was then given.

If indeed mathematics is important primarily for its applications, then the reactions of
Governments and the public is likely to be: ‘Fine: we will fund mathematics as and when it
is applied.’ This is largely what happens. On the other hand, if there is some fundamental
reason internal to mathematics as to why it has lots of applications, then this itself should be
strongly nurtured, even if the aim is principally that the golden eggs of applications should
continue. Most of us would argue that this ‘fundamental reason’ should be strongly supported
for its own sake.

To examine these questions we should, in part, look at history, and see what mathematics
has contributed to culture, to technology, to science and art, and to the individuals who have
given their lives to its study.

The natural mathematician is an asker of questions. A motivation for studying mathe-
matics is the desire to understand, to see what is true and why it is true. Our thesis, and the
kind of answer given to Bree, is that to this end, mathematics has over the centuries developed
a language, or even a set of evolving and interacting languages, for expression, description,
deduction, verification and calculation. These languages involve a myriad of concepts and
their interrelations.

As E. Wigner wrote in a famous article [9]:
“Mathematics is the science of skilful operations with concepts and rules invented just for

this purpose.” [this purpose being the skilful operation ....]
“The principal emphasis is on the invention of concepts.”
“The depth of thought which goes into the formation of mathematical concepts is later

justified by the skill with which these concepts are used.”

∗To appear in Eureka, 2006
†Mathematics Division, School of Informatics, University of Wales, Bangor. emails: r.brown@bangor.ac.uk;

t.porter@bangor.ac.uk

1



As one example, the mathematics of error correcting codes is necessary not only for
CDRoms and hard disks, but also for telecommunications, and the interpretation of the
messages from the Voyager space crafts. Some of this mathematics involves quite highbrow
concepts and tools of algebraic geometry, which were developed for entirely geometric reasons.

It is this vast language of concepts, which is developed for description, deduction, verifica-
tion, calculation, as suggested above, which makes mathematics necessary for high technology.
For more on “conceptualism”, see the book [4].

That also raises the question: To what extent should mathematics students be aware of,
and be trained in, the formation, as well as the skilled use, of mathematical concepts? How
would one teach this? How would one assess it? Who would teach it?

1 Analogies, Abstraction and Concepts

This article is about, rather than on, mathematics. It discusses some aspects of the nature of
this peculiar subject, mathematics, and its methodology.

The methodology of mathematics is little discussed in teaching or in research. Yet any
human activity benefits from a level of knowledge at a so-to-speak meta-level. At a humdrum
level, if you decide to go on holiday, you do not rush to the station to buy tickets – there
is usually some kind of analysis, e.g. where are you planning to go! At a higher level, we
expect a director of a play to be able to know and to express in words what she or he is
trying to achieve; a singer at a high level will still go to an experienced singing teacher, whose
experience and knowledge will help the singer to reach an even higher level of expression.

For mathematics, we made a start in discussing methodology in the article [2]. Here we
will signal some additional features, not emphasised in that article, but which are discussed
at length in [3]. These are centred around ‘analogy’.

This is a word little used in mathematics. After a lecture on knots by one of us to
schools in Leicester in the 1980s, where the analogy was made between addition of knots and
multiplication of numbers, leading to the notion of prime knot, a teacher came up and said
that was the first time in his mathematical career that anyone had used the word analogy
in relation to mathematics. After another similar lecture, a teenage boy had clearly got the
message, since he asked if there were infinitely many prime knots! He had also realised that in
mathematics the interest is often not in ‘What is the answer?’ but in ‘What is the question?’.

A crucial feature of an analogy in mathematics is that it is largely not between objects
but between relations between objects. So in the example mentioned above there is no direct
analogy between knots and numbers, but you can add knots and multiply numbers. The laws
for adding knots (commutativity, associativity, zero, prime, . . .) have analogies to the laws
for multiplying numbers (with zero replaced by 1).

An advantage of this notion of analogy is that it can be easily appreciated by non mathe-
maticians. The rules 2 + 3 = 3 + 2, 2× 3 = 3× 2 are clearly analogous. Thus one can convey
that the process of abstraction is actually the process of recognising and then exploring pat-
terns and analogies. It is a fundamental method in mathematics and indeed in science and
thought.

The advantages of abstraction are at least three fold:

• Covering many examples by one theory;

• Developing a theory which can be applied to new examples as they arise;

• Simplifying proofs.
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The last advantage may be surprising to you. It arises because, in trying to see why something
is true, one seeks out the essential, and tries to discard the inessential. This often involves
the process of abstraction and generalisation, and allows one to see more clearly what is going
on.

Let us take a simple example. A prime number is defined to be a (positive) integer which
is not expressible as a product of two other positive integers neither of which is 1, and so
each is smaller than the first. The classic argument that any positive whole number has a
factorisation as a product of prime numbers is then something as follows: if n is given to us,
it is either prime or it is not. If it is prime, we stop and relax; if not then it can be written
as n = ab where a, b are less than n, and we repeat, cascading down to get the result. The
process stops because eventually the factors get too small.

Thinking about this, we can use the analogy of knots and numbers hinted at above to put
forward a definition of a ‘prime knot’. A knot is prime if it cannot be expressed as a sum
of two non-trivial knots. The analogy suggests that any knot should decompose as a sum of
prime knots. All seems to work well but how do we know the ‘cascade’ terminates? Trying a
similar proof in a different situation clarifies and emphasises the things that made the proof
for numbers work. What you need is some invariant number, i(K), defined for knots so that
i of the unknot is 0, and conversely, and if K = L+M , non-trivially, then i(L), i(M) < i(K).
Such invariants do exist1, so a moment’s thought shows the cascade must stop eventually and
the decomposition theorem works.

The two proofs are clearly ‘the same’. The important point to note in any abstraction from
these is the role of the measure of something that might be called ‘size’ either ‘as is’ in the
number case or measured by i(K). We could go further and abstract the essential structure,
giving lots of additional examples of its application. We will mention the case of polynomials
where ‘prime’ polynomials are called ‘irreducible’ and the size is given by ‘degree’.

The process of twigging a particular proof, and then seeing how that insight might be used
in other situations, is one way on which mathematics progresses. Sometimes one has a proof
in search of a theorem! That is, the proof would work if certain gadgets existed, but they are
not available. Trying to construct gadgets to give existence to a proof has advantages, since
the aim is clear, even if the theorems which would result, and their conditions, are not. The
construction of such gadgets can open new worlds of mathematical structures. An important
phrase in the progress of mathematics is: ‘What if?’

The original idea for a proof may be applied elsewhere through analogy. This illustrates
that mathematical progress is not a mystery, open to a few geniuses: mathematicians apply
many basic and common methods of discovery, but to their own material.

Of course, analogy is also at the heart of the modelling process as used in ‘Applied Math-
ematics’. Even in the origins of Newton’s work on motion, there was analogy, as to model the
position of a particle by three real functions of time is exactly an analogy between a ‘real-life’
situation and a mathematical one. Analogies are rarely exact and exploring the limits of them
is another source of ideas for pushing mathematics into new territory.

What are ‘concepts’, as referred to by Wigner? An example of a concept is distance,
say between towns. We then see that concepts are not things, but describe for us relations
between things, in a convenient way. The progress of mathematics is marked by the finding
of important concepts and their properties. Some concepts familiar to the public are:

length, area, volume, addition, zero, time, speed, velocity, mass, force, random,
function, . . .

1You can use genus or bridge number as suitable invariants here.
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Students of mathematics will know many more!
Now we can see again that analogies are usually not between things themselves, but

between the relations among things. Knots are not analogous to numbers, but the relation
between three knots given by addition has analogies to the relation between three numbers
given by multiplication. We see a similarity of pattern.

Curiously, the notions of concept, analogy, pattern, themselves have some relationship.
What is it, precisely? Could there be a mathematics of this?

2 Training Professional Mathematics?

Answers to the questions of what is mathematics and what are the reasons for its success
should influence the teaching of mathematics. This is analogous to the fact that a musician
is expected to be taught not only technique but also musicianship: both are needed. It is
therefore interesting to look at aims in other areas of study.

Here are the aims which have been given for a course in design:

1. To teach students the principles of good design;

2. To encourage independence and creativity;

3. To give students a range of practical skills so that they can apply the principles of good
design in an employment situation.

Is there something here from which mathematics degree courses can learn? Is it reason-
able aims for a mathematics course to replace in the above the word “design” by the word
“mathematics”? If not, why not?

The report [7] gives employers’ views that mathematics graduates are not good at problem
formulation, planning, work evaluation, communication. The report [5] analyses skills that
mathematics degrees do teach.

A common statement is that there is no agreement on what constitutes ‘good mathemat-
ics’. This is part of the point! We do not want to follow the argument, sometimes put, that
‘top mathematics is what is done by top mathematicians’, since that is not only circular but
also a cop-out. We do want to encourage individual judgement and creativity. We do want
students to be able to evaluate, in various modes, what they have learned.

For some, the main fascination in mathematics is the challenge of problems. Certainly,
the solution of a famous problem will give the solver fame, in at least the mathematical
world. Yet problems can be stated only at a given level of conceptualisation; so others see
the progress of mathematics as strongly involving the development of a rigorous language,
involving interlinked concepts which also allow the formulation of new problems. It can be
argued that it is the development of such a language which has been the main contribution
of mathematics to culture, science and technology over the centuries. Stanislaw Ulam told
Ronnie Brown in 1964 that taking up the challenge of famous problems may in fact distract
young people from developing the mathematics which is most appropriate to them. It is
interesting that someone as good as Ulam should make this point.

Mathematics is not only about doing difficult things, but also providing the framework to
make difficult things easy (thus giving new opportunities for difficult tasks!). As Grothendieck
wrote to Ronnie Brown ( [6], 5/5/1982): ‘The introduction of the cipher 0 or the group concept
was general nonsense too, and mathematics was more or less stagnating for thousands of years
because nobody was around to take such childish steps ...’

In this direction of developing language, we can usefully quote G.-C. Rota [8, p.48]:
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“What can you prove with exterior algebra that you cannot prove without it?”
Whenever you hear this question raised about some new piece of mathematics, be
assured that you are likely to be in the presence of something important. In my
time, I have heard it repeated for random variables, Laurent Schwartz’ theory of
distributions, ideles and Grothendieck’s schemes, to mention only a few. A proper
retort might be: “You are right. There is nothing in yesterday’s mathematics that
could not also be proved without it. Exterior algebra is not meant to prove old
facts, it is meant to disclose a new world. Disclosing new worlds is as worthwhile
a mathematical enterprise as proving old conjectures.

One problem is that there is no one or easy answer to the question “What is good math-
ematics?” Few students are given opportunity or language for any answer. But for someone
who loves, or teaches, the subject, it is a key question.

Finally we give a small extract from another letter of Alexander Grothendieck to Ronnie
Brown:

The question you raise “how can such a formulation lead to computations” doesn’t
bother me in the least! Throughout my whole life as a mathematician, the possi-
bility of making explicit, elegant computations has always come out by itself, as a
byproduct of a thorough conceptual understanding of what was going on. Thus I
never bothered about whether what would come out would be suitable for this or
that, but just tried to understand – and it always turned out that understanding
was all that mattered. ([6],12/04/1983)

It is clear that we are raising more questions than we are answering!
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