Erratum on multirelative algebraic K-theory and on Hopf formulae for the higher homology of a group

GRAHAM ELLIS

Several years ago I omitted a crucial hypothesis from the statement of results in three papers [6, 2, 7]. It seems that this has been causing a bit of confusion. G.Donadze and N.Inassaridze [4] have recently produced a counterexample to the formulae for the higher homology of a group stated in [2, 7]. Previously S. Bloch and S. Lichtenbaum [1] had noted the incorrectness of a result on multirelative algebraic K-theory stated in [6], and a counterexample was provided by J.-L. Loday and C. Weibel. On the positive side, the omission has lead to new and more transparent proofs of the results [5, 8].

The omitted hypothesis concerns a group G with normal subgroups N_1, \ldots, N_n . This data gives rise to an n-cubical diagram involving the groups $G_{\Delta} = G/\prod_{i \in \Delta} N_i$ for each subset $\Delta \subset [n] = \{1, \ldots, n\}$ and a quotient homomorphism $G_{\Delta} \to G_{\Delta \cup \{i\}}$ for each $i \notin \Delta$. By inductively defining

$$G_{\Delta \cup \{-i\}} = \ker(G_{\Delta} \to G_{\Delta \cup \{i\}})$$

for $\Delta \subset [\pm n] = \{\pm 1, \pm 2, \dots, \pm n\}$ and $i \in [n] \setminus \Delta$ we obtain a functor $\{-1 < 0 < 1\}^n \to G$ roups. Let us say that the (n+1)-ad of groups $(G; N_1, \dots, N_n)$ is connected if any one of the following three equivalent conditions is satisfied.

- 1. The induced *n*-cubical diagram of classifying spaces $\{BG_{\Delta}\}_{{\Delta}\subset [n]}$ is connected in the sense of [3].
- 2. The homomorphisms $G_{\Delta} \to G_{\Delta \cup \{i\}}$ are surjective for all $\Delta \subset [\pm n]$ and $i \in [n] \setminus \Delta$.
- 3. For all subsets $\Delta, \Gamma \subset \{1, \dots, n\}$ with $|\Delta| \geq 2, |\Gamma| \geq 1$ the following equality holds:

$$\left(igcap_{i\in\Delta} N_i
ight) \left(\prod_{j\in\Gamma} N_j
ight) = igcap_{i\in\Delta} \left(N_i(\prod_{j\in\Gamma} N_j)
ight) \,.$$

An (n+1)-ad of groups is automatically connected when n=1 or 2. However, for $n \geq 3$ this is not so.

The results in [6, 2] are obtained by applying a generalised van Kampen theorem of R. Brown and J.-L. Loday [3] to the n-cube of spaces $\{BG_{\Delta}\}_{\Delta\subset[n]}$. As the generalised van Kampen theorem applies only to connected n-cubes, it is necessary to hypothesise that this particular n-cube be connected. This hypothesis was omitted. It is also needed in the purely algebraic setup in [7], the point being that Example 3.1 fails for $n \geq 3$ without the hypothesis.

The formula for the integral homology $H_{n+1}(G)$ of a group given in [2, Theorem 1] involves a group F with normal subgroups R_1, \dots, R_n . The statement of the formula is fine for n = 1, 2, but for $n \geq 3$ it is necessary to add the hypothesis that the (n + 1)-ad $(F; R_1, \dots, R_n)$ be connected. Fortunately, this hypothesis is satisfied for all G when the (n + 1)-ad is obtained by either of the methods described in [2]. The connectedness hypothesis also needs to be added to [2, Proposition 2] and to the corresponding results for cohomology obtained by purely algebraic means in [7].

The multirelative algebraic K-theory in [6] concerns a ring Λ with ideals I_1, \ldots, I_n . An (n+1)-ad of groups $(St(\Lambda); S_1, \ldots, S_n)$ is obtained by considering the Steinberg group $St(\Lambda)$ and setting S_i equal to the kernel of the surjective group homomorphism $St(\Lambda) \to St(\Lambda/I_n)$. To all theorems in the paper it is necessary to add the hypothesis that this (n+1)-ad be connected. Fortunately, it is connected in the one explicit calculation given in the paper (Proposition 1.4).

I'm grateful to Ronnie Brown for helpful comments on this note.

References

- [1] S. Block and S. Lichtenbaum, "A spectral sequence for motivic cohomology", K-theory Preprint Archives 62 (1995).
- [2] R. Brown and G.Ellis, 'Hopf formulae for the higher homology of a group', Bull. London Math. Soc. 20 (1988) 124-128.
- [3] R. Brown and J.-L. Loday, 'van Kampen theorems for diagrams of spaces', Topology 26 (1987) 311-334.
- [4] G. Donadze and N. Inassaridze, private communication.
- [5] G. Donadze, N. Inassaridze and T. Porter, 'N-fold cech derived functors and generalised Hopf formulas", recent internet preprint.
- [6] G. Ellis, "Multirelative algebraic K-theory: the group $K_2(\Lambda; I_1, \dots, I_n)$ and related computations", J. Algebra, vol. 12, no. 2 (1988), 271-289.
- [7] G. Ellis, 'Relative derived contravariant functors and the cohomology of groups', J. Pure Applied Algebra 64 (1990) 21-33.
- [8] M. Levine, "The weight two K-theory of fields", K-Theory 9 (1995) 443-501.

Mathematics Department
National University of Ireland, Galway
Galway
Ireland
graham.ellis@nuigalway.ie