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$1. INTRODUCTION 

THE RELEVANCE of crossed modules to problems on second homotopy groups, and to some 
difficult problems in combinatorial group theory, is well known (see [5]). The difficulties 
are essentially those of understanding free crossed modules, and, more generally, colimits 
of crossed modules. 

The algebraic purpose of this paper is to give a simple description of the coproduct of 
two crossed P-modules. 

The application of this algebra to homotopy theory comes from the generalisation of 
the van Kampen theorem to dimension two given by Brown and Higgins[3]. This theorem 
shows that certain unions of pairs of spaces give rise to pushouts of crossed modules. 

A simple special case of our main result (Corollary 3.2) concerns the union of 
’ Eilenberg-MacLane spaces. Suppose given a homotopy pushout 

W’, P&Q, 1) 

i I I 
K(R, 1) -x. 

Then we have immediately a long exact Mayer-Vietoris homology sequence: 

. . .+ H,(P)+H,(Q) g, H,(R)+H,(X)+H,_,(P)- . . . 

The problem is to describe H,(X) in terms of group theoretic invariants of P, Q, R and 

the induced maps i,: P - Q, j,: P - R. 

If i,, j* are injective, a well-known result of J. H. C. Whitehead implies 
X = {(Q*,R, 1). From Corollary 3.2 we obtain: 

THEOREM. If i,: P - Q, j,: P - R are surjective with kernels M, N, respectively, then 

n2X z (M n N)/[M, ~1. 

As an application we obtain, if P - MN and is, j* are surjective, an exact homology 

sequence 
H2P-+H2Q @ H,R+(MI-IN)/[M, N]-+H,P-+H,Q @H,R+O. 

This reduces to a well-known exact sequence of Stallings if M = P. 

62. COPRODUCISOFCROSSEDP-MODULES 

Let P be a group. Recall that a crossed P-module (X, x) consists of a group X on which 
P acts on the right (x, p) - xp, together with a morphism x: X -* P of groups satisfying 
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the two axioms: 

CM (1) x(x9 = P-' (XX)P, 

CM (2) y-‘xy = xv 

for all x, y E X, p E P. A morphism f: (X, &+(Z, i) of crossed P-modules is a morphism 
f: X+2 of groups such that if = x andfpreserves the P-action, i.e. f (x-“) = (fx)“, x EX, 

p E P. So we have a category of crossed P-modules. 
It is known that this category is cocomplete; an explicit description of pushouts is given 

in [3], and of colimits in [4]. Here we consider coproducts in more detail. 
Let (X, x), (A, a) be crossed P-modules. The free product X*A of the groups X, A 

inherits a P-action and a morphism 8: X*A +P satisfying property CM (1). In the 
terminology of [5], the pair (X*A, 0) is a precrossed P-module. To obtain from this a 
crossed P-module, one factors by the Pei@r group [5]; this is the subgroup of X*A 
generated by the Peiffer elements 

h -‘k -‘hkeh, h, kEX*A. 

Now modulo these Peiffer elements one has in X * A the rule 

xayb s xyaub x,y~X, a,bEA, 

which suggests the’relevance of the semi-direct product XA. * 
In order to simplify the notation we let X act on A via x, and A act on X via a (and 

via the given actions of P). This means that in evaluating a term such as axby, a, b E A, 
x, y E X, the product xby is an abbreviation of (Xx)(ab)(u ). Hence xby is here also equal 
to bxby, by the crossed module rules. 

With these conventions, the semi-direct product XA has multiplication 

(x, ah b) = (XY, aYb) x,y~X, a,bEA, 

and P-action 

(x, aY = (xp, a?, PEP. 

Let i: X - XA, j: A - XA be the two injections x - (x, l), a - (1, a). Let 
d’: XA - P be (x, a) - (xx)(aa). 

2.1. PROPOSITION. (i) Thefunction d’ is a P-morphism of P-groups, so that (XA, a’) is a 
precrossed P-module, (ii) If (C, y) is any crossed P-module, and f: X - C, g: A - C are 
morphisms of precrossed P-modules, then there is a unique morphism h = ( f, g): XA - C 
of groups such that hi = f, hj = g. Also yh - d’, and h is a P-morphism. 

Proof. (i) Let (x, a), (y, 6) E XA. Then 

W-T a) a'(~, b) = (xx)(aa)(u)(ab) 

= (xx)(XvMaYW) 

= d’((x, a>C,v, 6)). 

by CM (1) 
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This proves a’ a morphism of groups. Also if p E P then 

f3’(xp, up) = x(xp)a(ap) 

=p-‘(xx)pp-‘W)p 

= (3(x, a))” 

so that a’ is a P-morphism. 
(ii) Since (x, a) = (x, l)(l, a), if h exists, it must be given by h(x, a) = (fx)(gu). With 

this formula 

h(-? a) KY, 6) = (fx)ka)(fy )@) 

= (fjc)(fy )(JV)“@) 

=_KV)@Y)~~) 

= h (xy, a%). 

by CM (2) 

So h is the unique morphism of groups such that hi =f, hj = g. 

Further 

and . 

yh(x, a) = (rfx)(rga) = a’& a), 

h(xP, a”) =f(x”)g(u”) 

= (_fxY(gu)” 

= (h(x, a))“. 

So h is a P-morphism. Cl 

The Peiffer group of the precrossed P-module (XA, ~9’) is the subgroup generated 
by the Peiffer elements 

h-lk-lhka’h 
, h, k E XA. (2.2) 

It is a normal, P-invariant subgroup ([5] Proposition 2). 

2.3. PROPOSITION. The Peifler group of theprecrossed module (XA, d’) is generated by 
the elements 

{x,u}=(X-‘X~,u-‘u”), XEX,UEA. 

Proof. Let I’ be the subset of XA of elements (x, 1) or (1, a) for x E V, a E A. Then V 
generates XA and is P-invariant. By [5] Proposition 3, the Peiffer group of XA is normally 
generated by the Peiffer elements (2.2) but with h, k E V. The only non-trivial such elements 
are of the form 

(1, a)-‘(x, 1))‘(1, u)(x, ly-","' x~X,ucA 

= (2, 2)(x0, ax”) where X = x-l, Z = u-i 

= (Xx0, z”*uq (*) 

= {X4> 
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since the second component of (*) is 

Also these elements {x, a > 
form, as is shown by the 

a -.%ixa a dxa _ 
- (;“a”) as a’=a, 

= (a”li) by CM (2), 

= cia”. 

generate the Peiffer group, since their conjugates are of the same 
equations (which the reader may verify) 

(1, V{x, a)(19 b) = (4 a} 

(Y, I)-’ (x7 a)(y, 1) = {xy, a’). cl 

We write {X, A} for the Peiffer subgroup of (XA, d’), and write (X 0 A, ~9) for the 
induced crossed P-module with X o A = (XA)/{X, A}. Let i: X - X o A, j: A - X o A be 
induced by the inclusions i: X- XA, j: A - XA, respectively. 

2.4. THEOREM. The crossed P-module (X 0 A, a) with the two morphisms i, j above is the 
coproduct of the crossed P-modules (X, x) and (A, u). 

Proof. This is immediate from Propositions 2.1, 2.3. q 

Our next aim is to identify Ker(a: X0 A -P). To this end, form the pull-back square 

Xx,A2: A 

so that X xp A = {(x, a) E X x A: xx = au)}. Let P operate diagonally on X x p A, and let X, 
A operate on X xp A via x and (Y, respectively. For (x, a), ( y, 6) E X x p A 

(xv a)(~, b) = (XY, ab) 

= (yxy, bab) 

= (Y, b)(x, u)~ xince u = ab. 

Hence X xp A is a crossed module over each of X, A and P (the latter via K = xx’ = crcu’). 
Define the function 

h:XxA+Xx,A 

(x, a) H (x -‘x0, (a -‘)“a), 

and write (x, a) for h(x, a). We write (X, A) for the subgroup of X xp A generated by the 
elements (x, a) for xE X, a EA. 

2.5. PROPOSITION. There is an exact sequence of P-groups 

I-Xx,Az 
d’ 

XA-P (2.6) 
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in which 4’: (x, a) H (x, a-‘). Further 

cp’(XA)=(XA} . 

so that there is an induced exact sequence 

I-(Xx,A)/(X,A) AXoAAP. (2.7) 

Also (X, A) contains the commutator subgroup of X xr A. 

Proof. The check that 4’ is a P-morphism is easy. It is clear that 4“ is injective and 

has image equal to Ker ~3’. Also C$ ‘( x,a)=(x,a),xEX,aEA.Hence~‘(X,A)={X,A}, 
and it follows that (X, A) is normal in X xp A. The exact sequence (2.7) is immediate. The 

last statement of the Proposition follows from the fact that (X o A, a) is a crossed module, 

and so Ker d is abelian. (A direct verification is easy.) q 

LetM=xX,N=aA.Thenx: Xx,A-Psatisfies 

K(X xpA) = MflN, 

K (X, A ) = [M, N]. 

2.8. PROPOSITION. Let U = Ker X 0 Ker CY. Then there is an exact sequence of P-groups 

I-U+Xx,A AMfIN- (2.9) 

and an induced exact sequence of P-modules 

(2.10) 

Proof This is immediate. fJ 

2.11. COROLLARY. The morphism d: X o A - P is injective if and only if 
(i) Ker x @ Ker LY 2 (X, A), and 
(ii) [M, N]= MnN. [7 

2.12. EXAMPLE. Let X = P, x = I,, and let cy = 0, so that A is a P-module. Then 

m-uv=[M,N]={i). 
IfpEP, acA, then 

(p, a) = (p-'PO, (a-W) 

= (1, (a-W), 

and Ker X @ Ker LY = A. So the conditions of (2.11) for d: P o A - P to be injective are here 

satisfied if and only if A is generated by the elements (a-‘)ra, a E A, p E P. Note also that the 

composite Jj: A - P o A - P is just a; which is zero. So if d: P o A - P is injective then j = 0: 
A-PoA. 

We now write A additively. An example where A is generated by the elements a - ar, 
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a E A, p E P is when A is obtained from a P-module B by factoring out the submodule 
generated by elements 2b - b’@ where b ranges over a set of generators of B as P-module, 
and t(b) E P. In particular, if P is the infinite (multiplicative) cyclic group on a generator 
t, and B = ZP is the group-ring of P considered as P-module, we can factor B by the 
submodule generated by 2 - t( = 26 - 6’ where b = 1) to obtain a P-module A. Then A 
is isomorphic to the additive group of rational numbers m/2”, m E Z, n 2 0, so that A is 
non-zero (This special case is essentially due to Adams[l] p. 483.) 

2.13. Remark. The pull-back diagram for X x p A together with the map 
h:Xx A- X xrA, (x, a) I--+(X, a), is (with due allowance for the change from left to right 

actions) a crossed square in the sense of [7] $5. 

2.14. Remark. The construction of the coproduct X 0 A as a quotient of X * A may be 
found in [9], p. 428. 

$3. APPLICATIONS 

Let (K, &) be a pair of pointed spaces. It is standard that the second relative homotopy 
group n#, &), with the usual action of rr,& and the usual boundary QK, &)+r,&, is 
a crossed n&-module. Further, we have the following special case of the pushout theorem 
for crossed modules in [3]. 

3.1. THEOREM (Brown-Higgins). Zf the connected CW-complex K is the union of 
connected subcomplexes K,, Kz with connected intersection &, and (K,, &), (K2, K,) are 
l-connected, then there is an isomorphism of crossed Q&-modules 

Proof Apply Theorem C of [3] to the diagram of inclusions 

t&9 &) - (4 7 K,) 

I I 
(J&v Ko) - K 4,). •I 

3.2. COROLLARY. Suppose, in addition to the assumptions of (3.1), that I&, = 0. Let 
P = z,K& and let X, A denote the crossed P-modules n,(K,, I&,), n,(K,, &), respectively. Then 
there is an isomorphism of P-modules 

r,K = (X XPA)/(X, A) 

and hence an exact sequence: 

where M, N are the kernels of rc,K,+n,K,, ~L,K,,+IC~K~ respectively. 

Proof The assumption that n,K, = 0 implies that 

TzKi = Ker(r*(&, KJ --+ 11 K,J for i=l,2,-. 0 

3.3. Remark. The exact sequence of (3.2) strengthens and generalises Theorem 1 of [6], 
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which assumes that K is 2-dimensional and & is the l-skeleton of K, and does not 
determine the kernel of z2K, @ n,K,-+z,K. 

We now give an application to the homology of groups. 

3.4. THEOREM. Let M, N be normal subgroups of a group and let L = M f7 N. Then there 
is an exact sequence 

Hz(MN)-,H,(MIL) 0 H,(NIL)+LI[M, Nl+H,(MN)+H,(M/L) 0 H,(N/L)+O. 

Proof. Let P = MN, Q = P/M = NIL, R = PIN = M/L. 
Let K,, = K(P, l), K, = K(Q, l), K2 = K(R, 1) be Eilenberg-MacLane CW-complexes, 

and let the maps i,: &+K,, i2: &+K, realise the morphisms P+Q, P+R, respectively. 
By homotopies and use of mapping cylinders, we may assume i,, iz are cellular inclusions. 
Let K be the pushout of i,, iz. Part of the Mayer-Vietoris homology sequence for 
K = K, U K2 is 

H,&+H,K, @ H2K2-+H2K-+H,K,,-+H,K~ @ H,K,+H,K+O. 

Now Hi& = H,P, H,K, = HiQ, H,K, = HiR. Also n,K z P/MN = 0. Hence H,K = 0 and 
H,K = 7r2K. By Corollary 3.2, H,K = (M n N)/[M, N] (since 7r2K, = 7r2Kz = or, K,, - 0). 0 

3.5. Remark. The exact sequence of Theorem 3.4 reduces to a well-known exact 
sequence of Stallings in the case M c N, so that L = M ([2] p. 47). This latter sequence 
was deduced in [3] by a similar method to the above. 

3.6. Remark. Let M, N be normal subgroups of a group P, and let Q = P/M, 
R = P/N, G = Pf MN. The method of proof of Theorem 3.4 yields an exact sequence 

H,P+H,Q 0 H,R+H,K+H,P+H,Q 8 H,R+H,G-+O 

(where K is as in the proof). By Exercise 6 on p. 175 of [2], there is an exact sequence 

H,K - H,G - (I~,K) ozc iz - H,K - H2G - 0, 

and by Corollary 3.2, z,K = (M fl N)/[M, N]. 

3.7. Remark. A subsequent paper with Loday will extend the sequence (3.4) to the left, 
by identifying H,K (where K is as in the proof) in terms of M, N, P as a kind of “Ganea 
term” [lo]. 

3.8. Remark. Theorem 3.4 has applications to presentations of the trivial group, for 
example the presentation (in which [a, b] = a-lb-lab) 

P = (x, y: x -qxm, y”], y -‘[yp, x’l) 

where m, n, p, q E Z. (This presentation was found by Gordon, and was communicated 
to me by Lickorish. I am grateful to Professor Gordon for permission to include it here.) 
Let P be the free group {x, y > and let M, N be the normal closures in P of each of the 
relators. Then P = MN, since P presents the trivial group (see 3.9 below). Now Q = P/M, 
R = P/N are one-relator groups whose relators are not proper powers, so that HzQ, H,R 
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are triviaLby Lyndon’s Identity Theorem. Also one verifies easily that H,P-*H,Q 0 H,R 
is an isomorphism. It follows from Theorem 3.4 that M fl N = [M, N]. 

3.9. Remark. For completeness we include a proof (due to Holt but similar to Gordon’s 
proof) that P of 3.8 presents the trivial group. We work in P/MN, first by a change of 
convention, writing the relations as 

x = x _“y”x”y -* 

y = x -pyqxpy-q. 

(1) 

(2) 

Then (1) implies 

whence 

Also (2) implies 

whence 

x(“+I)qP = yw x”“P y-m?. 

xpy = yqxpy -4 

xpym = y"4xpy -w 

(3) 

and 

(xp ym)@ = ym4 xnqP y-w. (4) 

From (3) and (4) we deduce x(“+‘)‘~ commutes with xPym and hence with y”. But ymm 
conjugates xCn+ ‘Yq to X(n+‘)Ym’nP and so x(“+‘~~‘~ = 1. Conjugating repeatedly by y-” gives 
xp = 1, and then y = 1 from (2) and x = 1 from (1). 

3.10. Remark. Special cases (e.g. m =p = 2, n = q = 1) of the example have been 
considered as possible counter examples to the Andrews-Curtis conjecture[8], and this is 
one of the reasons for presenting the example in detail. 

Acknowledgements-I am indebted to P. J. Higgins and J.-L. Loday for conversations on matters related to this 
paper, and to M. Dunwoody for helpful comments. 
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