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COPRODUCTS OF CROSSED P-MODULES:
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§1. INTRODUCTION
THE RELEVANCE of crossed modules to probiems on second homotopy groups, and to some
difficult problems in combinatorial group theory, is well known (see [5]). The difficulties
are essentially those of understanding free crossed modules, and, more generally, colimits
of crossed modules.

The algebraic purpose of this paper is to give a simple description of the coproduct of
two crossed P-modules.

The application of this algebra to homotopy theory comes from the generalisation of
the van Kampen theorem to dimension two given by Brown and Higgins[3]. This theorem
shows that certain unions of pairs of spaces give rise to pushouts of crossed modules.

A simple special case of our main result (Corollary 3.2) concerns the union of
Eilenberg-MacLane spaces. Suppose given a homotopy pushout '

K(P, 1)—— K(Q, 1)

IR

KR, 1)——X.
Then we have immediately a long exact Mayer—Vietoris homology sequence:

- The problem is to describe H,(X) in terms of group theoretic invariants of P, O, R and
the induced maps iy: P— Q, j4«: P— R.

If i., jx are injective, a well-known result of J. H. C. Whitehead implies
X = K(Q*:R, 1). From Corollary 3.2 we obtain:

THEOREM. If i . P— Q, j,: P— R are surjective with kernels M, N, respectively, then

X = (M NN)/[M, N].

As an application we obtain, if P = MN and i, j4 are surjective, an exact homology
sequence o
H,P-H,Q ® H,R->(MON)/[M,N]-H P-H Q @ H,R-0.

This reduces to a well-known exact sequence of Stallings if M = P,

§2. COPRODUCTS OF CROSSED P-MODULES
Let P be a group. Recall that a crossed P-module (X, y) consists of a group X on which
P acts on the right (x, p) — x, together with a morphism x: X — P of groups satisfying
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the two axioms:

CM (1) x(x") =p~' (xx)p,
CM (2) ylxy =xv

for all x,ye X, peP. A morphism f. (X, x)—=(Z,{) of crossed P-modules is a morphism
f2 X - Z of groups such that {f = y and f preserves the P-action, i.e. f(x") = (fxY, xeX,
p € P. So we have a category of crossed P-modules.

It is known that this category is cocomplete; an explicit description of pushouts is given
in [3], and of colimits in [4]. Here we consider coproducts in more detail.

Let (X, x), (4, a) be crossed P-modules. The free product X x4 of the groups X, 4
inherits a P-action and a morphism 6: X x4 — P satisfying property CM (1). In the
terminology of [5], the pair (X * A, 8) is a precrossed P-module. To obtain from this a
crossed P-module, one factors by the Peiffer group[S]; this is the subgroup of X x4
generated by the Peiffer elements

h—'k - hic®, hkeXxA.
Now modulo these Peiffer elements one has in X x4 the rule
xayb = xya?b x,yeX, a,beA,

which suggests the relevance of the semi-direct product XA4. ~

In order to simplify the notation we let X act on 4 via y, and 4 act on X via « (and
via the given actions of P). This means that in evaluating a term such as a*®, a, be 4,
x, y € X, the product xby is an abbreviation of (yx)(ab)(xy ). Hence xby is here also equal
to bx’y, by the crossed module rules.

With these conventions, the semi-direct product X4 has multiplication

(x, a)(y, b) = (xy, a’b) x,yeX, a,bed,
and P-action
(x,ay = (x*, a*), pEP.
L.et ii X — XA, j; A — XA be the two injections x — (x, 1), a — (1, a). Let

3 XA — Pbe (x, a) — ( xx)(«aa).

2.1. PROPOSITION. (i) The function d' is a P-morphism of P-groups, so that (XA, d") is a
precrossed P-module. (ii) If (C, v) is any crossed P-module, and f: X — C, g: A — C are
morphisms of precrossed P-modules, then there is a unique morphism h = (f, g): XA— C
of groups such that hi = f, hj = g. Also yh = &', and h is a P-morphism.

Proof. (i) Let (x, a), (p, b) € XA. Then

0’(x, a) 0'(y, b) = (xxNaa)(xy Nab)
= (xx)(w Noa”)(ab) by CM (1)
=0'{(x, a)(y, b)}.
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This proves ¢’ a morphism of groups. Also if p € P then

8'(x?, @) = y(x"yu(a’)
=p~'(xx)pp~(aa)p
= (d(x, a))
so that ¢’ is a P-morphism.

(i) Since (x, a) = (x, 1)(1, a), if h exists, it must be given by A(x, a) = (fx)(ga). With
this formula

h(x, a) h(y, b) = (fx)(ga)(fy )(gb)
= (fx)(fy Nga)*(gb) by CM (2)
=/ (xy)ga’)(gh)
= h(xy, a’bh).

So h is the unique morphism of groups such that hi =f, hj =g.

Further .
yh(x, a) = (/x)(yga) = 0'(x, a),

and
h(x?, a’) = f(xP)g(a’)

=(fxY(gay
= (h(x, a)y.
So his a P-morphism. []

The Peiffer group of the precrossed P-module (XA, ') is the subgroup generated
by the Peiffer elements

h= k= 1hk*, h ke XA. (2.2)
It is a normal, P-invariant subgroup ([5] Proposition 2).

2.3. PROPOSITION. The Peiffer group of the precrossed module (XA, 3') is generated by
the elements

{x,a}=(x""x%a"'a"), xeX, aeA

Proof. Let V be the subset of XA4 of elements (x, 1) or (1,a) forx € V,a € A. Then V
generates XA4 and is P-invariant. By [5] Proposition 3, the Peiffer group of XA is normally
generated by the Peiffer elements (2.2) but with A, k € V. The only non-trivial such elements
are of the form

a,a) "(x, D', a)x, 1) xeX,ac€ A
= (X, a*)(x*%, a™) where x =x",d=a""'
= (Xx*, a*a*) *)

= {x.a}
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since the second component of (*) is

&i&madxa — (d'x'dxax)a as ad =g,
= (a"a)’ by CM (2),
= aa”.

Also these elements {x, a} generate the Peiffer group, since their conjugates are of the same
form, as is shown by the equations (which the reader may verify)

(1,6)"x, a}(1, b) = {x, a}
(v, D"Yx,a}(y, D={x",a’}. O

We write {X, 4} for the Peiffer subgroup of (XA, J°), and write (X o A, d) for the
induced crossed P-module with X o 4 = (XA)/{X, A}. Let i X — XoA,j: A— X o A be
induced by the inclusions it X — X4, j: A — XA, respectively.

2.4. THEOREM. The crossed P-module (X - A, 0) with the two morphisms i, j above is the
coproduct of the crossed P-modules (X, x) and (A, o).

Proof. This is immediate from Propositions 2.1, 2.3. J

Our next aim is to identify Ker(d: X4 —P). To this end, form the pull-back square

XxpAd— 4

X —— P
4

sothat X xp, 4 = {(x,a) € X x A: xx = aa)}. Let P operate diagonally on X x, 4, and let X,
A operate on X xp A via x and «, respectivély. For (x, a), (y,b) € X x, A

(x,a)(y,b) =(xy, ab)
= (yx’, ba®)

=(y,b)(x,a))  xince yy = ab.

Hence X x, A is a crossed module over each of X, 4 and P (the latter via «x = xx' = ac’).
Define the function

hXxA—XxpA

(x,a)—(x"'x% (a~Ya),

and write (x, a) for h(x, a). We write (X, A4) for the subgroup of X x, 4 generated by the
elements (x, a) for xe X, a € A.

2.5. PROPOSITION. There is an exact sequence of P-groups

@’ a’
| — X xpA— XA>P (2.6)
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in which ¢': (x, a)— (x,a~"). Further
e {X,Ay=1{X, A4}

50 that there is an induced exact sequence
1— (X xpA)/(X, A) % XoA4-% P. 2.7

Also (X, A) contains the commutator subgroup of X xp A.

Proof. The check that ¢’ is a P-morphism is easy. It is clear that ¢’ is injective and
has image equal to Ker 8. Also ¢'(x,a)={x,a},xeX,aeA. Hence ¢'(X, 4)={X, 4},
and it follows that (X, 4) is normal in X x, A. The exact sequence (2.7) is immediate. The
last statement of the Proposition follows from the fact that (X o A4, d) is a crossed module,
and so Ker 8 is abelian. (A direct verification is easy.) ]

Let M = xX, N = aA. Then «: X xp, A— P satisfies

k(X xpA) = MNON,
k(X,A)=[M,N]

2.8. PROPOSITION. Let U = Ker x @ Ker a. Then there is an exact sequence of P-groups
1= U—=XxpA->MNN—] 2.9

and an induced exact sequence of P-modules
0—=UN(X,A) > U— (X xp4)/(X, A) = (M 1 N)/[M, N] — 0, (2.10)

Proof. This is immediate. [J

2.11. COROLLARY. The morphism d: X o A— P is injective if and only if
(i) Kerxy @ Kerac (X, A), and
(i) [M,N]l=MNN. O

2.12. EXAMPLE. Let X = P, x = 1, and let o = 0, so that 4 is a P-module. Then
MNN=[M,N]= {1}
If peP, ae A4, then

(p,a)=(p~'p" (a”'ya)
= (1, (a""Ya),

and Ker y @ Ker a = A. So the conditions of (2.11) for &: Po A — P to be injective are here
satisfied if and only if A4 is generated by the elements (a~')?a, a € A4, p € P. Note also that the
composite dj: 4 — Po A — Pis just @, which is zero. So if 9: Po 4 — P is injective then j = 0:
A— Po A.

We now write 4 additively. An example where A is generated by the elements a — a”,



342 RONALD BROWN

acA, peP is when A4 is obtained from a P-module B by factoring out the submodule
generated by elements 25 — 5"® where b ranges over a set of generators of B as P-module,
and t(b)€ P. In particular, if P is the infinite (multiplicative) cyclic group on a generator
t, and B = ZP is the group-ring of P considered as P-module, we can factor B by the
submodule generated by 2 — t(=2b — b’ where b = 1) to obtain a P-module A. Then 4
is isomorphic to the additive group of rational numbers m /2", meZ, n >0, so that A4 is
non-zero (This special case is essentially due to Adams[1] p. 483.)

2.13. Remark. The pull-back diagram for X x, 4 together with the map
h X x A— X xpA, (x, a) —(x, a), is (with due allowance for the change from left to right
actions) a crossed square in the sense of [7] §5.

2.14. Remark. The construction of the coproduct X ¢ 4 as a quotient of X * A may be
found in [9], p. 428.

§3. APPLICATIONS

Let (X, K;) be a pair of pointed spaces. It is standard that the second relative homotopy
group n,(X, K;), with the usual action of =K, and the usual boundary =,(K, K;)—n,K,, is
a crossed mn, Ky-module. Further, we have the following special case of the pushout theorem
for crossed modules in [3].

3.1. THEOREM (Brown-Higgins). If the connected CW-complex K is the union of
connected subcomplexes K, K, with connected intersection K,, and (K, K;), (K, K;) are
l-connected, then there is an isomorphism of crossed n,K,-modules

(K, Kp) = my(K, Kp) o (K, Kp).
Proof. Apply Theorem C of [3] to the diagram of inclusions

(Ko» Ko)—> (K., Ky)

Ll

(K, K))— (K, Ky). O
3.2. COROLLARY. Suppose, in addition to the assumptions of (3.1), that n,K,=0. Let
P =n,K,, and let X, A denote the crossed P-modules 1,(K,, K,), (K, K;), respectively. Then
there is an isomorphism of P-modules
K= (X xp,A)/(X, A)
and hence an exact sequence:
0—(mK, ® mK,) n (X, A)—mK, ® nK;—mK—(M 0 N)/[M, N]—0
where M, N are the kernels of n,K,—n K|, 7, Ky—n K, respectively.
Proof. The assumption that n,K, =0 implies that
nK; = Ker(m(K;, Ky) — mK,) for i=1,2,—. O

3.3. Remark. The exact sequence of (3.2) strengthens and generalises Theorem 1 of [6},
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which assumes that K is 2-dimensional and K, is the l-skeleton of K, and does not
determine the kernel of n,K| @ n,K,—m,K.
We now give an application to the homology of groups.

3.4. THEOREM. Let M, N be normal subgroups of a group and let L = M N\N. Then there
is an exact sequence

H(MN)-HM|L)® H(N/L)-L/[M,Nl-H,(MN)-H(M/|L)® H,(N/L)—0.

Proof. Let P=MN, Q =P/M=N/L, R=P/N=M|L.

Let K,=K(P, 1), K, = K(Q, 1), K, = K(R, 1) be Eilenberg-MacLane CW-complexes,
and let the maps i: K,—» K], i,: K,— K, realise the morphisms P—Q, P— R, respectively.
By homotopies and use of mapping cylinders, we may assume i, i, are cellular inclusions.
Let K be the pushout of i, i, Part of the Mayer-Vietoris homology sequence for
K=K UK, is

TN r T Ir . Ir I N
H,Ky— H,K{ @ K, LK~ 1)\ Ko~ M K| D 0 K;— ) K —U.

Now HK,= HP, HK, = HQ, HK, = HR. Also K = P/MN = 0. Hence H,K =0 and
HzK = ﬂ'QK. By Corollary 32, HzK = (M N N)/[M, N] (Since 7l'2Kl = 7rzK2 =T Ko - 0). O

3.5. Remark. The exact sequence of Theorem 3.4 reduces to a well-known exact
sequence of Stallings in the case M =N, so that L = M ([2] p. 47). This latter sequence
was deduced in [3] by a similar method to the above.

3.6. Remark. Let M, N be normal subgroups of a group P, and let Q =P/M,
R =P/N,G = P/MN. The method of proof of Theorem 3.4 yields an exact sequence

H,P-H,Q ® H,R—-H,K—-HP—-H,Q ® HR-HG-0
(where X is as in the proof). By Exercise 6 on p. 175 of [2], there is an exact sequence
H,K — H;G — (m,K) ®3cZ — H,K — H,G — 0,
and by Corollary 3.2, n,K = (M NN)/[M, N].
3.7. Remark. A subsequent paper with Loday will extend the sequence (3.4) to the left,
by identifying H,K (where K 1s as in the proof) in terms of M, N, P as a kind of “Ganea

term” [10].

3.8. Remark. Theorem 3.4 has applications to presentations of the trivial group, for
example the presentation (in which [a, b] =a~'b~'ab)

P= (x,y: x—l[xm,yn]’y—l[yp’ xq])

where m, n, p, g € Z. (This presentation was found by Gordon, and was communicated
to me by Lickorish. I am grateful to Professor Gordon for permission to include it here.)
Let P be the free group {x,y} and let M, N be the normal closures in P of each of the
relators. Then P = MN, since P presents the trivial group (see 3.9 below). Now Q = P/M,
R = P/N are one-relator groups whose relators are not proper powers, so that H,Q, H,R
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are trivial,by Lyndon’s Identity Theorem. Also one verifies easily that H,P—-H,Q @ H,R
is an isomorphism. It follows from Theorem 3.4 that M NN =[M, N].

3.9. Remark. For completeness we include a proof (due to Holt but similar to Gordon’s
proof) that P of 3.8 presents the trivial group. We work in P/MN, first by a change of
convention, writing the relations as

x = xTymEny (1)
y=x7ryixty 4. (2)
Then (1) implies

-_m

xn+ ymxny

whence
XD yyma P 3)
Also (2) implies
xfy = yixfy =1
whence
XPy™ = ymaxPy —"
and

(2 Y =y Xy, @

From (3) and (4) we deduce x"*""” commutes with x’y™ and hence with y™. But y"
conjugates x"* % to x*"""" and so x"*'"? — 1. Conjugating repeatedly by y~™ gives
x? = 1,and then y = 1 from (2) and x = 1 from (1).

3.10. Remark. Special cases (e.g. m=p =2, n =g = 1) of the example have been
considered as possible counter examples to the Andrews—Curtis conjecture(8], and this is
one of the reasons for presenting the example in detail.

Acknowledgements—I1 am indebted to P. J. Higgins and J.-L. Loday for conversations on matters related to this
paper, and to M. Dunwoody for helpful comments.
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