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Abstract

In a double groupoid S, we show that there is a canonical groupoid structure on the
set of those squares of S for which the two source edges are identities; we call this the core
groupoid of S. The target maps from the core groupoid to the groupoids of horizontal
and vertical edges of S are now base—preserving morphisms whose kernels commute, and
we call the diagram consisting of the core groupoid and these two morphisms the core
diagram of S. If S is a double Lie groupoid, and each groupoid structure on S satisfies
a natural double form of local triviality, we show that the core diagram determines S
and, conversely, that a locally trivial double Lie groupoid may be constructed from an
abstractly given core diagram satisfying some natural additional conditions.

In the algebraic case, the corresponding result includes the known equivalences between
crossed modules, special double groupoids with special connection (Brown and Spencer),
and cat!-groups (Loday). These cases correspond to core diagrams for which both target
morphisms are (compatibly) split surjections.

A double groupoid is a groupoid object in the category of groupoids; that is, a double
groupoid consists of a set S with two groupoid structures upon (generally distinct) bases H
and V', which are themselves groupoids on a common base B, all subject to the compatibility
condition that the structure maps of each structure on 5 are morphisms with respect to the
other. We call H and V the side groupoids of S, and B the double base. Elements of S are
pictured as squares

hy

()] S (25} (1)

hy

in which v, vy € V are the source and target of s with respect to the horizontal structure
on S, and hy, hy € H are the source and target with respect to the vertical structure. The
compatibility condition ensures that a diagram of four squares of 5,

in which each pair of parallel inner edges matches, has a unique composition; one obtains
the same answer whether one composes first horizontally and then vertically, or first vertic-
ally and then horizontally. This is known as the interchange law. Double groupoids (and
double categories) should be distinguished from 2-categories, where multiple compositions
present complicated “pasting” problems, and from bicategories, where the basic laws (such
as associativity, and the existence of identities) hold only up to equivalence.



Double groupoids were introduced by Ehresmann in the early 1960’s (see for example
[9], [7]), but primarily as instances of double categories, and as a part of a general explor-
ation of categories with structure. Since that time their main use has been in homotopy
theory. Brown and Higgins [2] gave the earliest example of a “higher homotopy groupoid”,
by associating to a pointed pair of spaces (X, A) a special double groupoid with special con-
nection, p(X, A). Such double groupoids have identical side groupoids, and the two groupoid
structures on squares are isomorphic under a rotation operator. In terms of this functor p,
[2] proved a Generalized Van Kampen Theorem, and deduced from it a Van Kampen The-
orem for the second relative homotopy group m5( X, A), viewed as a crossed module over the
fundamental group m;(A).

In differential geometry, double Lie groupoids, but usually with one of the structures
totally intransitive, have been considered in passing by Pradines ([19], [20] and elsewhere).
Very recently double Lie groups have been studied by several authors in connection with
Poisson Lie groups and related structures (see Lu and Weinstein [13] and references given
there); these may be regarded as double Lie groupoids in which the double base is a singleton,
so that the side groupoids are in fact groups, and which satisfy a further strong condition.
Also quite recently, Weinstein [24] has introduced a notion of symplectic double groupoid.

The double groupoids which arise in homotopy theory are of a particularly special type,
and admit several equivalent descriptions. The special double groupoids with special con-
nection, which were shown in [2] to model 2-dimensional homotopy theory, have identical
side groupoids H =V, and for each h € H a special kind of “degenerate”, or thin, square,

h
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1

The map I': H — S has the property that I'(hh’) is equal to the double composite of

h X
h I'(h) | 1 1Y 1

1 X @)
h! 12 ROl TR |1
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for all composable h,h' € H (where Iﬂ, TZ, denote identities for the horizontal and vertical
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structures on S; see §1). Such maps I' had already been studied by Brown and Spencer
[6] under the name of “special connections”; condition (2) is called the transport law. The
special connection encodes the basic properties characteristic of the homotopy double group-
oid p(X,A) [2]; in particular, the rotation operator referred to above may be defined in
terms of the special connection [6, §4]. The main result of [6] showed that a special double
groupoid with special connection whose double base is singleton is entirely determined by
a certain crossed module; crossed modules had arisen much earlier in the work of J. H. C.
Whitehead on 2-dimensional homotopy. This result is easily extended to give an equivalence
between arbitrary special double groupoids with special connection and crossed modules over
groupoids; this is included in the results of [3]. We recall these results in more detail in §3
below.

Special double groupoids with special connection and a singleton double base are also
equivalent to the cat'-groups of Loday. Cat"-groups, for any positive integer n, were in-
troduced in [12] as algebraic models of homotopy (n + 1)-types; a cat'-group is a group G
together with endomorphisms s,?: G — G such that st = ¢, ts = s and such that ker(s) and
ker(¢) commute elementwise. It was noted in [12] that cat'-groups are equivalent to crossed
modules (over groups) and to group objects in the category of groupoids. That group objects
in the category of groupoids are equivalent to crossed modules had been shown much earlier
by Brown and Spencer [5], in a result there attributed to Verdier.

There is thus a commuting square of equivalences between the concepts of special double
groupoid with special connection and a singleton base, group object in the category of group-
oids, cat'-group, and crossed module. Each of these concepts has its particular advantages,
but that of double groupoid is perhaps closest to the underlying intuition that 2-dimensional
homotopy refers to the study of squares in a topological space.

The purpose of the present paper is to show that a far wider class of double groupoids is
completely determined by a simple diagram of ordinary groupoids and morphisms, the core
diagram. This result, 2.7 below, is a considerable extension of the equivalence [6] between
special double groupoids with special connection and crossed modules. Given a double
groupoid S as above, the core groupoid K consists of those squares k in .5 of the form

h
v k 1Y
1H
where 1%, 1V are suitable identity elements of H and V; the groupoid composition in K

combines the horizontal and vertical compositions in S (see §2). The core diagram of S
consists of K together with two maps 0g: K — H, dy: K — V defined for the square above
by Ou(k) = h, Ov(k) = v; these are groupoid morphisms over B, the double base of S.
Under suitable conditions we show that K, H and V', and the morphisms dg, 0v, determine
S up to isomorphisms preserving H and V.

It may not be clear how this generalizes the equivalence of [6]. For a general double
groupoid S satisfying the conditions of 2.7, the morphisms dg, Jy in the core diagram are
surjective and we will usually display the core diagram as
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where M# = ker(dv), MV = ker(dy). Now the composite map MY — V is a crossed
module (over the groupoid V) with respect to the action of V on MY obtained by lifting
elements of V to K and conjugating. Crucial here is the fact that M# and MV commute in
K. Similarly M# — H is a crossed module. If S is a special double groupoid with special
connection then these two crossed modules can be canonically identified, and either may be
taken as the crossed module associated by [6] to S. The fact that a special double groupoid
with special connection is determined by this crossed module is reflected in the fact that
in this case the two exact sequences in the core diagram are split. Conversely, any crossed
module over a groupoid determines a core diagram in which both exact sequences are split
(3.5).

In fact, for a special double groupoid with special connection and singleton base, 5, the
core group(oid) K is precisely the cat'-group corresponding to S. Because the two exact
sequences are split, H and V may be regarded as subgroups of K, and 0y and Oy then
correspond to the endomorphisms denoted s and ¢ above. This viewpoint may be easily
extended to any special double groupoid with special connection. Thus, while 2.7 gener-
alizes the equivalence between crossed modules and special double groupoids with special
connection, the concept of core diagram may also be regarded as generalizing the notion of
cat!-group.

Theorem 2.7 also establishes that any abstractly given diagram of the form (3), where
both sequences are short exact and M# and MY commute in K, is the core diagram of
a double groupoid, unique up to isomorphism. This, and the more general results of §4,
delineate additional structure which a pair of crossed modules over groupoids must possess
if they are to be contained within a double groupoid.

We have so far described this result in purely algebraic terms. However our chief concern
is with a differentiable form of the results, giving an equivalence between locally trivial double
Lie groupoids and locally trivial core diagrams. We should first explain that we are using the
term “Lie groupoid” in a sense different to that in which it was used in [14] and elsewhere in
the work of the second-named author. In [14] a Lie groupoid was taken to be a differentiable
groupoid satisfying a local triviality condition, and Lie groupoids were accordingly essentially
equivalent to principal bundles. In this paper, by a “Lie groupoid” we mean what in [14]



was called a differentiable groupoid, and when local triviality conditions are used they will
be explicitly stated. This change in usage seems consonant with the growing importance of
symplectic groupoids [24].

For an ordinary Lie groupoid G on base B, local triviality is the condition that the anchor
map G — B x B, which maps arrows in GG to their 0-skeleton, is a surjective submersion.
A locally trivial Lie groupoid is determined by the principal bundle G4(B,G?%) where G,
consists of all arrows radiating from a fixed b € B, and G? is the group of arrows whose
source and target are both b; for different choices of b these principal bundles are isomorphic
(a detailed account is given in [14]). In considering analogous conditions for a double Lie
groupoid 5, one could require the two Lie groupoid structures on S to be locally trivial,
and one would then obtain an equivalence with “principal bundles in the category of Lie
groupoids”. However, a far more interesting result arises if one takes account of the double
structure, and imposes the stronger condition that the maps which to each square in 5 assign
three sides of its 1-skeleton, be surjective submersions. This may also be expressed as the
requirement that each anchor on S be not only a surjective submersion with respect to its
own structure, but a fibration of groupoids with respect to the other (see 2.3). Our main
theorem 2.7 then proves that a double Lie groupoid which is locally trivial in this sense is
determined by its core diagram, and conversely, any locally trivial core diagram determines
a locally trivial Lie groupoid.

For ordinary Lie groupoids, and principal bundles, local triviality is the condition which
ensures the existence of a connection theory. In the same way it seems reasonable to expect
that the connection theory of a locally trivial double Lie groupoid can be studied in terms of
connections (in the slightly extended sense of [16]) in the exact sequences of its core diagram.
The correspondence given in §3 between special connections in the sense of [6] and splittings
in the core diagram may be regarded as the flat case of this result. The general case will be
taken up elsewhere.

The concept of core groupoid may also be regarded as a generalization of Pradines’
concept of the core (French: ceeur) of a double vector bundle [20], [21], [22]; this is, of
course, the origin of our terminology. The core of a double vector bundle is the intersection
of the kernels of the two bundle projections; it inherits a unique vector bundle structure and
plays a crucial role in the connection theory of the double vector bundle. Vector bundles,
however, are totally intransitive and so the other elements of our core diagram are absent;
there is accordingly no possibility of reconstructing a double vector bundle from its core, and
there is no antecedent in the vector bundle theory for our main result.

We begin in §1 by considering actions and fibrations of double (Lie) groupoids. These
are technical results which facilitate the proof of 2.7 in the differentiable setting. One of the
key algebraic ingredients of 2.7 is a representation, in a double groupoid satisfying suitable
local triviality conditions, of an arbitrary element, as in (1) above, as a vertical composition
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where the middle element is an identity for the horizontal structure on 5, and k; and k, are
elements of the core groupoid; here k7Y denotes the inverse of k; in the vertical structure.
This representation generalizes the relationship between thin elements and special connec-
tions given in [2]. In the differentiable setting we formulate this representation in terms of a
concept of comma double groupoid (1.8).

§2 contains the main results of the paper. In §3 we recover the original Brown-Spencer
correspondence in its differentiable form, and in the final section we indicate some general-
izations valid in the algebraic case.

Throughout the paper we refer to [14] for basic facts on Lie groupoids. Our conventions
follow [14], except as noted above and at the start of §1. Manifolds are C'*, second-countable
and HausdorfT.

1 CLASSES OF MORPHISMS OF DOUBLE GROUPOIDS

This section gives necessary preliminaries on double groupoids, with particular attention
to actions and fibrations. The apparatus we develop here allows an efficent treatment of
the differentiability aspects of the Lie case, and a reader who is primarily interested in the
underlying algebra may prefer to read only to 1.2 and then proceed to §2, referring back to
the examples as necessary.

We begin by recalling the main classes of morphisms of (ordinary) Lie groupoids; the
terminology which follows is an amalgam of that of [10] with that of Pradines [23].

We will often use the notation G == B to indicate briefly that G is a groupoid on base
B. Here the two arrows should be thought of as the source a: G — B and target 3:G — B
maps. The anchor map G — B x B, g — (8¢, ag) we generically denote by X. The identity
element corresponding to b € B we denote by 1;, not, as in [14], by b. The multiplication, or
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composition, map we denote by x; it is defined on GxG = {(g2,91) € GX G | a(g2) = B(g1)}-
Lastly, the division map of G we take to be 6:G x G — G, (¢',9) — ¢'g™', where G x G
denotes the pullback of a over itself. Notice that we are composing from right to lefti S0
that gog; has source a(g;) and target 5(g2). A groupoid G == B is a Lie groupoid on B
if G and B have manifold structures such that a:G — B and g:G — B are surjective
submersions and 6: G X G — G is smooth. As noted in the introduction, this is the concept
called differentiable grgupoz'd in [14].

Consider a morphism of Lie groupoids ¢: G' — G, f: B' — B, and form the pullback
manifold

rfqd — G
| | e
B —— B
/

Let ¢*:G" — f*G be the induced map ¢’ — (&'¢’,¢(g’)). Then (¢, f) is defined to
be a fibration if ¢* is a surjective submersion, and to be an action morphism if ¢* is a
diffeomorphism. If f: B’ — B is also a surjective submersion then we speak of an s-fibration
or an s-action morphism. This concept of fibration, introduced by Pradines [23] under the
name “exacteur”, is a smooth form of the algebraic notion of fibration of groupoids [1].
See also [10], [11]. In the algebraic setting, action morphisms were formerly often called
“coverings” (for example [1]).

When f is a surjective submersion one can also form the pullback (which is in fact the
pullback groupoid),

e . G
| [x
B'xB —— BxB.
Ixf

There is now an induced map ¢**: G' — f*G, ¢’ — (§'¢',¢(g’'),a'g"). In this case, (¢, f)is a
reqular fibration if ¢** is a surjective submersion, and is an inductor if ¢** is a diffeomorphism.

Turning now to double groupoids, we use the following conventions and notations. A
double groupoid consists of a quadruple of sets (S; H, V; B), together with groupoid structures
on H and V, both with base B, and two groupoid structures on 5, a horizontal structure
with base V', amd a wvertical structure with base H, such that the structure maps (source,
target, division and identity maps) of each groupoid structure on S are morphisms with
respect to the other.

Within H and V' we use the multiplicative notation of [14]. It will normally be clear
from the notation for elements which groupoid is under consideration. The identity ele-
ments however we denote by 1# € H and 1) € V for b € B. The source, target, anchor,
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multiplication and division maps of H are denoted ag:H — B, fg:H — B, Xg:H —
BxB, kg:H*H — H and éy: H X H — H, and similarly for V, but we will omit the
subscripts H and V whenever the megning is clear.

The two groupoid structures on S we will also write multiplicatively. The horizontal
structure with base V', denoted Sy, will have source and target maps ag: S — V, EH: S =V,
anchor Xg: 5 — V xV, composition Ky : S;t S — 5, division 6 S X S — §, and identities TUH
for v € V.. The multiplication Kg(s2,s,) we denote by s; o, s;, and the horizontal inverse of
s we denote by s™#. For the vertical structure with base H, denoted Sy, we correspondingly
write ay:S — H, EV: S — H for the source and target projections, Xy: S5 — H x H for
the anchor, Ky: .S * S — 5 for the composition, gV:S 1>L<I S — 5 for the division, and IX
for h € H for the identities. The multiplication Ky (ss,s;) we denote by s, o, s;, and the
vertical inverse of s we denote by s™V. For b € B, the double identity IY? = Iiv
12.

We have used multiplicative notation for all four groupoid structures here in order to
reserve additive notation for the associated Lie algebroids. It may well be that future work
will need to consider expressions involving a groupoid multiplication in one structure and a
Lie algebroid addition in the other.

is denoted

Definition 1.1 A double Lie groupoid is a double groupoid (S; H,V; B) together with differ-
entiable structures on S, H, V and B, such that all four groupoid structures are Lie groupoids
and such that the double source map s — (av(s),au(s)), S — H x V = {(h,v)|ag(h) =
ay(v)} is a surjective submersion. ’

A morphism of double Lie groupoids (¢; ¢u, ¢v;op): (S H',V'; B") — (S;H,V; B) is
a quadruple of smooth maps, ¢: 5" — S, ¢g:H — H, ¢v:V' — V. ¢g: B' — B such that
(¢, 0u), (¢,0v),(¢u,Pn) and (¢pv,¢p) are morphisms of their respective groupoids.

We will often indicate the spaces in a double groupoid and a typical element of it by the
diagrams

avaH ~
S _ VvV ﬁV(S)
awﬁv H H av, Py B ls) ’ ()
H _ B av(S)
am, Br

Throughout the paper, diagrams of the latter type are oriented so that the horizontal
sides point leftwards and the vertical sides upwards. The various algebraic conditions on
the groupoid structures of S are written out in detail in, for example, [6]. The surjectivity
condition on the double source map in 1.1 ensures that given h € H and v € V with matching
sources, as in
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h

there exists an s € 5 having these sides. Conditions of this type are often called “filling
conditions” (for example, Brown and Higgins [4]).

The importance of the submersion condition on the double source map is shown by the
following proposition. It guarantees that the domain of each division (and multiplication)
map in § is a Lie subgroupoid of the Cartesian square 5 x S of the other structure, so that
one may legitimately speak of 5" as a “Lie groupoid in the category of Lie groupoids”. This
condition also ensures, as will be shown elsewhere, that there is a natural construction of a
double Lie algebroid associated to 5. In the present paper we make use of this condition
only in the definition 2.1 of the core groupoid.

Proposition 1.2 Let ¢.: G, — G, fi: By — B and ¢5: Gy — G, fo: By — B be fibrations
of Lie groupoids such that the pullback manifold B of fi and f, exists. Then the pullback
manifold G of ¢, and ¢, exists and is an embedded Lie subgroupoid of the product groupoid
G X G4. Further, it is the pullback of ¢, and ¢ in the calegory of Lie groupoids.

PROOF: It suffices to show that the source map G — B is a surjective submersion. Let
d denote the diagonal map B — B, (by,by) — f(b1) = f(by), and observe that d*G —
fiG x f3G, ((b1,b2),9) — ((b1,9),(b2,g)) represents d*G as an embedded submanifold of
FiG X f3G. Let ¢ be the map ¢} x ¢3: Gy x Gy — ffG x f;G. Then G is precisely ¢~ !(d*G)
and since ¢ is a surjective submersion, it follows that G is an embedded submanifold of
(1 X (G4, and that the restriction

G — d*G, (g1,92) — ((a161, @292), $1(g1))

is still a surjective submersion. Now the obvious map d*G — B is the left-hand side of the

pullback

d*G - G
| |
B — B

d

and is therefore a surjective submersion also. g

Example 1.3 (Compare Weinstein [24, 4.5].) For any manifold M, the product manifold
M x M has a natural Lie groupoid structure, where (ms,, m;) has source m,, target ms,, and
the composition is (mg, my)(me.my) = (ms, my), defined if my, = my. This is known as the
pair or coarse groupoid on M. If G = B is a Lie groupoid, then G x G can be considered

10
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both as the Cartesian product groupoid on base B x B, and as the pair groupoid on base
G. These two structures constitute a double Lie groupoid

GxGE =—— = BxB g2

H H (ﬁg%ﬁgl) (92791) (049270491)

G _ B g

Given any double Lie groupoid (S; H,V; B), the anchor Xy:S — H x H together with
id:H — H, Xy:V — Bx B, id: B— B is a morphism of double groupoids (5; H,V; B) —
(Hx H; H,BxB;B). Similarly (Xg; xz,idy;idp) is a morphism (S; H,V; B) — (V xV; B x
B,V;B).

Example 1.4 Let H and V be Lie groupoids on the same base B, and suppose that the two
anchors Xg: H — B X B and Xy:V — B X B are transversal as smooth maps; that is, the
tangent bundle of B x B is generated, at each point, by the images of the tangent maps to
Xy and Xy. (This condition is satisfied, for example, if one or both of H and V are locally
trivial.) Then the pullback of

VxV
J, Xv X Xy

HxH —— B*
Xg X Xmg

may be regarded as defining either the pullback groupoid X3 (V x V) on base H or the
pullback groupoid Xj*(H X H) on V. These two structures constitute a double Lie groupoid
which we denote [J (H, V), and whose elements are squares

hs

Vg U1

hy
with hy,hy € H, vy,v, € V and sources and targets matching as shown. If H = V we
write (1H for (] (H, H). Taking H = B X B, the pair groupoid on B, we obtain the double
groupoid (B*; B?, B*; B) in which all four groupoid structures are pair groupoids.
Note that in most of the Ehresmann literature on double groupoids, the notation [] G p.248
refers to the double groupoid of commuting squares in G.
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There are several possible concepts of action for double groupoids. For our purposes the
appropriate concept arises from regarding a double groupoid as a groupoid in the category
of groupoids. So, since ordinary groupoids act on maps, we are lead to actions of double
groupoids on maps in the category of groupoids, that is, to actions on morphisms of ordinary
groupoids. For the standard concept of an action of an ordinary groupoid which underlies
the following, see, for example, [10, §2].

Definition 1.5 Let (S;H,V;B) be a double Lie groupoid, and suppose that G is a Lie
groupoid on base M and that p:G — V, p,: M — B is a morphism. Then a horizontal
action of S on (p,p,) consists of actions of the horizontal groupoid Sy on p:G — V and of
H on p,: M — B in the standard sense (both denoted by juxtaposition), such that

(i) Be(sg) = Pv(s)Be(g) and ag(sg) = av(s)ag(g) for all s € S, g € G with ay(s) =

p(g);
(ii) given sy, s1 € S and go,91 € G such that the two vertical compositions and the two

actions in

Sa 9>

S1 g1

are defined, we have (s392) (5191) = (S2 0y s1)(g291) , where juxtaposition denotes the product

in G, as well as the aclion; N
(iii) for allh € H and m € M with ag(h) = p,(m) we have 1} (1,,) = 1pm.

There is of course a corresponding concept of vertical action of § on a morphism p: G —
H, p,- M — B.

Given a horizontal action of S on p:G — V., p,: M — B, there are action groupoids
Sy X p on base G and H X p, on base M, and one can check that there is a double Lie
groupoid (Sy x p; H X p,,G; M) and a morphism of double Lie groupoids

12
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Spxp ——————= G

H X p, = M

M EeE— W
———

where (¢, p) and (¢,, p,) are action morphisms of ordinary groupoids. We denote the double
groupoid (S X p; H X p,,G; M) by S x (p,p,) and call it the action double groupoid corres-
ponding to the horizontal action of S on (p,p,). Elements of S x (p, p,) have the form

(ﬁv(s), Bal(g))

with compositions

(82,02) om (81,01) = (82 ou $1,01); (82,92) ov (81,01) = (82 ov  81,9201) -
Definition 1.6 A morphism of double Lie groupoids (¢; ¢u, ¢v; ¢g) from (S'; H',V'; B') to
(S;H,V; B) is a horizontal action morphism if (¢, ¢v) and (¢, ¢p) are action morphisms
of ordinary Lie groupoids.

Theorem 1.7 Let (¢;¢0u, ¢v;¢p): (S H',V';B') — (S;H,V;B) be a horizontal action
morphism of double Lie groupoids. Then the induced actions of Sy on ¢v: V' — V and

13



of H on ¢5: B' — B constitute a horizontal action of S on (¢v,¢p). This construction, and
the construction of (4) from a horizontal action, yield mutually inverse equivalences between
the category of horizontal actions of the double Lie groupoid S, and the category of horizontal
action morphisms into 5.

The proof is a routine extension of the corresponding result for ordinary groupoids.

Example 1.8 Let ¢: H — V be a morphism of Lie groupoids over a fixed base B. Then
there is a horizontal action p of the double groupoid H = (H x H; H,Bx B; B) on (Xy:V —
B x B,id: B — B) given by

p(hz, hi) (v) = ¢(ha)vd(hy) ™"

The resulting action double groupoid H x Xy consists of triples (hq,v,hy) € H x V x H with
sources and targets

by

¢(ha)vd(hy)™t |(ha,v,hy) | ©

hy

and compositions

(hY, 0" RY) o (ha,v,hy) = (hYha, v, hihy); (R4, 0" RBY) oy (ho,v,hy) = (hY,v'v, hy).

We call H x Xy the comma double groupoid of ¢: H — V and denote it O(H, ¢, V). In the
case H =V, ¢ =id, we write O(H) and call it the comma double groupoid of H.

The horizontal structure of O(H, ¢, V) is precisely the comma category, in the sense of
Mac Lane [18], arising from the diagram H — V «— H. In the differentiable setting, this
construction arose from the study of extensions of principal bundles [15, §2].

This construction is less special than it may appear: there are in fact no other actions of
double groupoids of this type on anchors. The proof of this result is straightforward:

Proposition 1.9 Let H and V be Lie groupoids on the same base B, and suppose p is an

action of (H x H;H,B x B;B) on Xy:V — Bx B, id: B — B. Then ¢: H — V defined by
¢(h) = p(h,1;)(1;), where b = a(h), is a morphism over B, and

p(ha, ha) (v) = ¢(ha)vd(hi) ™
for all compatible (hy,hy) € H X H, ve V.

Example 1.10 Consider an exact sequence of locally trivial Lie groupoids over base B,

M>—> o150, (5)

14
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Choose b € B and write P = Q,,G = Q. p=,,Q = &), N = M. Let T = dx p= Q;\(,—Q be
the associated PBG-groupoid in the sense of [13]. This is both a locally trivial Lie groupoid
over P and a principal bundle Y(®,G) over . Form the Lie groupoid @ = %
® associated to T(®,G). Since T is also a Lie groupoid on base P, the Cartesian square
T x T is a Lie groupoid on P x P, and since G acts on T by Lie groupoid automorphisms,
it follows that XL is a Lie groupoid over £22£ = Q (compare [12,§2]). These two structures
make © a double groupoid (Q; ®,Q; B), and one may now easily see that this is precisely the
comma double groupoid corresponding to 7: ® — Q. Further, there is a morphism of double
groupoids (Y x T; T, P X P; P) — (0;®,Q; B) in which each of the four maps is the quotient
projection for a principal action of G.

on base

The philosophy underlying 1.5 and 1.6 may be extended: given any class of morphisms
of ordinary groupoids, one may consider morphisms of double groupoids for which the two
“horizontal” morphisms lie in this class. In §3 we will need the following further instance of
this process.

Definition 1.11 [10, 3.2(iii)] A split fibration of Lie groupoids is an s-fibration ¢:G' —
G, f: B' — B together with an action of G on f: B — B and a morphism s:GX f — G’ of
groupoids over B' which is right-inverse to ¢*: G — [*G.

See [10, 3.3] for the equivalence between split fibrations and general semi-direct products.

Definition 1.12 A morphism (¢; ¢u, ¢v;¢p): (S H,V'; B') — (5; H,V; B) of double Lie
groupoids is a horizontally split fibration of double Lie groupoids if there is given a horizontal
action of S on (¢v,¢p) such that the induced map

S’ _ V!
H' = B

Sx by =
H X ¢p _ B
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has a right-inverse (0;0,,idy/;tdp): (S X ¢v; H X ¢, V'; B') — (83 H',V'; B') which is a
morphism of double differentiable groupoids.

We leave the reader to work out the equivalence between split fibrations and general
semi-direct products in the category of double groupoids.

2 THE CORE DIAGRAM OF A DOUBLE GROUPOID

Until 2.4 we consider a fixed double Lie groupoid (5; H,V; B). Let K be the preimage of
{1, 13)[b € B} C H x V under the double source map; that is, the set of all elements of
S of the form

c h
1H

b

Since the double source map is a surjective submersion, it follows that K is a closed

embedded submanifold of 5. Now we define a groupoid structure on K with base B as

follows: in terms of (7), the source and target maps are ax (k) = b, Bx(k) = ¢ = Bu(Bv (k)),
and composition, denoted o,, is defined by

kyog by = (k2 Oy I}{) oy k1= (kz Om Txl) oy k4

v

where v; = EH(kl), hy = ﬁv(kl). It is easy to check the algebraic conditions that K is a
groupoid on B, and the differentiability properties follow because K is a closed embedded
submanifold of 5. The identity of K at b € B is 1;* = 17 and the inverse of k € K is

k‘_K = k‘_H Oy IvH_l = k‘_v Oy IZ—l,
where v and h are as in (7). Further, the restrictions of the two target maps
8H:§V:K—>H; 3V:ﬁ~H:K—>V,

are morphisms of groupoids over B. Lastly, note that if m,n € K have dg(m) = 1¥, dy(n) =
1} forsome b € B, then moxn = mo,n = (12 0, m) o, (no, 1) = (120, n) oy, (moy 17) =
n 0, M = N o, m.

Definition 2.1 K is the core groupoid of (5; H,V; B), and K together with 0y : K — H
and Oy : K — V is the core diagram of (5; H,V; B).

Let (¢; ¢u, ov;op): (S H',V'; B') — (S; H,V; B) be a morphism of double Lie group-

oids. Then the restriction of ¢ to the core K’ of 5’ is a morphism of the core groupoids
¢ : K' — K over ¢p: B' — B, and dy o ¢ox = ¢v 005, Oy 0 ¢ = ¢y 0 0.

16
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Example 2.2 Given a Lie groupoid G == B, the core groupoid of (G x G;G, B x B; B) is
G itself, with 0y : G — G the identity and 0y : G — B X B the anchor of G.

Given locally trivial Lie groupoids H and V on the same base B, the core groupoid of
(I (H,V) is the Cartesian product H BXB V in the category of locally trivial Lie groupoids

over B (see, for example, [14, I §3]) Witﬁ Or and 0y the natural projections.

Given a morphism ¢ : H — V of Lie groupoids over B, the comma double groupoid
O(H, ¢,V) has core groupoid H, with 0y = ¢ : H — V and 0y : H — H the identity.

If a double vector bundle is considered to be a double Lie groupoid (with all four groupoid
structures totally intransitive), then the core groupoid is precisely the ceeur vector bundle
in the sense of Pradines [20, C §2]) and the two projections dy and dy are zero morphisms.

Certain interesting double groupoids have core diagrams which give no information at
all. For example, the double Lie groups of Lu and Weinstein [13], considered as double
groupoids, have core groupoids which consist only of identity elements.

We now show that a large class of double Lie groupoids, defined in terms of local triviality
conditions, can be reconstructed from their core diagrams. Recall that an ordinary Lie
groupoid G == B is locally trivial, if its anchor X: G — B X B is a surjective submersion [14];
this is the smooth form of the algebraic condition of transitivity. For a double Lie groupoid
(S; H,V; B) one might therefore define S to be “horizontally locally trivial” if both Sy ==V
and H == B are locally trivial. However for our purposes the following stronger definition
is more appropriate.

Definition 2.3 A double Lie groupoid (S; H,V; B) is horizontally locally trivial if

XH

Sy —— VxV
XH

H —— - BxB

is an s-fibration; it is vertically locally trivial if Xy: Sy — H X H, Xyv:V — B x B is an
s-fibration; il is a locally trivial double Lie groupoid if it is both horizontally and vertically
locally trivial.

So if (S; H,V; B) is horizontally locally trivial, both H == B and Sy ==V are locally
trivial Lie groupoids, but X also satisfies the further condition that it be a fibration with
respect to the vertical structure on 5. For a set-theoretic double groupoid (5; H,V; B), the
corresponding condition of horizontal transitivity is equivalent to the filling condition that
every configuration of matching sides

Vg U1
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are the sides of some element of 5. In the differentiable case, the horizontal and vertical local
triviality conditions may be regarded as smooth filling conditions. In the set-theoretic case,
horizontal transitivity is also equivalent to the condition that dy: K — V is a surjection. For
if all such fillers exist then certainly each

where b = a(v), has a filler, and so dy is surjective. Conversely, if dy is surjective, then a
filler of (8) is given by a horizontal composition

vy ks 1 1 1 11 ETe | o

1 h 1

for appropriate ki, ks € K. In the smooth case, the corresponding result is the following.

Proposition 2.4 Continuing the above notation, dy : K — V is a surjective submersion if p.255
and only if Xg: Sy — V xV, Xg: H — B x B is a fibration of Lie groupoids. In particular, S
is horizontally locally trivial iff H is locally trivial and Ov: K — V is a surjective submersion.

PROOF: Tf (Xy,Xy) is a fibration, then Xy : § — X3 (V x V) is a surjective submersion.
Within X3 (VX V) = {(h, v, v1)|Xu(h) = avxv(vs, v1)}, consider the embedded submanifold
E={(17,v,1V)|v € V, b = a(v)}. Now K is the complete inverse image of £ under X}, and
so it follows that the restriction of X;I to K — F, which may be identified with dy : K — V,
is a surjective submersion.

Conversely, if dv is a surjective submersion, let the Cartesian square groupoid K x K on
base B x B acton Xy : H — B x B asin 1.8, and let G = (K x K)x Xy be the (ordinary)
action groupoid on base H. Then there is a commutative diagram

G —— X(VxV), (h, ko, k) ———— (B, 0v(k2),0v (k1))
. |
s " ky oy 1V oy kIF

and since the horizontal arrow is a surjective submersion, it follows that XV;I is also. The
second statement follows immediately. g

18



The core diagram of a locally trivial double Lie groupoid may therefore be represented
in the form

MH H
\ /aH/ '
K 9
. / .

where M# = ker(dv) and MY = ker(9dy). Note that M# and MY are Lie group bundles,
since dy and Oy are surjective submersions, and morphisms of Lie groupoids over the fixed
base B. Further, M and MY commute elementwise in K, though neither need itself be
commutative.

The following are locally trivial double Lie groupoids: double groupoids of the form
(G xG; G, Bx B; B) where G == B is a locally trivial Lie groupoid; double groupoids of the
form [ (H,V) where H and V are locally trivial, and comma double groupoids O(H, ¢, V)
where H and V are locally trivial and ¢ : H — V is a surjective submersion.

To express the main result, we need the following terminology.

Definition 2.5 Let H and V be locally trivial Lie groupoids on B. Then a locally trivial
core diagram for H and V s a locally trivial Lie groupoid K on B logether with surjective
submersions &y : K —> V, 0y : K —> H whose kernels M¥ = ker(dyv), MV =
ker(0y) commute elementwise in K. If H' and V' are locally trivial Lie groupoids on B,
and (K', 0%, 0y) is a locally trivial core diagram for H' and V', then a morphism of locally
trivial core diagrams is a triple of Lie groupoid morphisms ¢y : K' — K, ¢y : H' — H, ¢y :
V' =V, all over a map ¢p : B' — B, such that Oy o ¢ = ¢y 004, and Ogop = ¢y ody. If
B'=B,H' = H andV' =V, and if ¢, v and ¢p are all identilies, then ¢ s a morphism
of locally trivial core diagrams over H and V.

We now begin the proof of our main result, 2.7, which gives an equivalence between
locally trivial double Lie groupoids and locally trivial core diagrams. As the first step we
construct a locally trivial double Lie groupoid from a locally trivial core diagram as in (9).
Let 9, : M7 — H and 9, : MYV — V be the restrictions of dy and Jy. Define actions
pu,pv of Hy V on M¥ MV by pg(h)(m) = kmk=', where k is any element of K with
(k) = h, and py(v)(m) = kmk™", where now 9y (k) = v. That these actions are well-
defined follows from the commutativity condition on M# and MY, and that they are smooth
follows because dy and 0y are surjective submersions. It is easy to see that (M*#,0,, H, py)
and (M",d,,V,py) are in fact crossed modules over groupoids (see 3.1 for the definition).
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Form the comma double groupoid ©® = O(K, dy, V). Elements of © are of the form (k2, v, k;),
where a(k;) = #(v) and a(v) = a(k;). The double groupoid structure is given by

® e— Vv ks

H H Ov (k) vOv(ki)™t | (kgyv,ky)| v

K = B k 1

with compositions

(K5, o', k) on (Ko, v, k1) = (kbka, v, Kk ; (ky, o', K)) oy (koyv, k1) = (ky,v'v, k)

and identities 1V = (k,1V, k), 17 = (15, v,1K) where b = a(k) = a(v), ¢ = f(v).
Within the horizontal structure @y ==V consider the inner group bundle (or gauge
group bundle, or union of vertex groups)

IHG) = {(k27 v, kl)l aV(kz) v 8;;(]{,‘1)_1 = v}7
and within this consider the subgroup bundle 0.257

N ={(maq,v,my)| mq, my € MYV, pv(v)(my) = ma};

it is straightforward to check that N is a normal (and totally intransitive) subgroupoid of
O, and that it is a closed embedded submanifold. One can therefore form the quotient Lie
groupoid @ = O/N ==V, whose elements are orbits (ks, v, k1), subject to (kams, v, kymy) =
(ka,v, k1) whenever mq, m; € MV have py(v)(my) = ms.

We claim that ¢) also has a groupoid structure on base H given by source and target
maps

aV(<k27v7kl>) = aH(k1)7 ﬁV(<k27v7kl>) = aH(kZ)y

and composition

<kl27”lvk/1> Ov <k27’vak1> = <k’2,v’v,k1pv(v_1)(m)>

where m € MV is determined uniquely by k) = kym. It is routine to check that this com-
position is well-defined and makes ¢ a locally trivial Lie groupoid on H. For example,
suppose that (k,v" kY) = (kb,v',k}). Then v” = v’ and there exist mq,m; € MY such
that kY = kims, kY = kimy and py(v')(my) = ms. Using (k%,v”,kY) in the formula for
the composition produces (k%,v'v, kipy(v™)(mm,;)) and it is only necessary to observe that
pv(v'0)(py(v™1)(ma1)) = py (v')(ma) = my.

With respect to these two structures, ¢} is a double Lie groupoid with sources and targets
given by
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Q _ VvV On (kQ )

H H v (ka) vy (k)™ ko, v, k1) | ©

H ——— B Ou (k1)

The interchange law for @) is no more difficult to verify than that for a comma double
groupoid. Indeed, the natural map

) _ VvV

K

(10)

Q = Vv
H = B

p.258
where ¢ : © — Q is (kq,v,k1) — (ka,v,k1), is a morphism of double groupoids, a base-
preserving surjective submersion over V', and a (non-regular) s-fibration over dy : K —> H.

Next, observe that the core groupoid of @ consists of all elements of the form (k,, 1}, m),
where m € MY, and that these can be represented uniquely as (k}, 1}, 1), where &} =
kym~1. There is thus an identification k& < (k,1},15), b = a(k), of K with the core groupoid
of @) and this gives an equivalence of the core diagram of (Q; H,V; B) with the given core
diagram (9); further, this equivalence preserves H and V. This completes the construction
of a locally trivial double Lie groupoid with a preassigned locally trivial core diagram.

Suppose that (9) is the core diagram of a locally trivial double Lie groupoid (5; H,V; B).
Then there is a map 6:0 — 5, (kq, v, k1) — ko oy LH o, kiV which is a morphism of
double groupoids with respect to dg: K — H and id: V — V. That 8 preserves the vertical
composition is trivial; that it preserves the horizontal composition follows from interpreting
in two ways the following diagram:
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v} K, 1 1 1
1 hy
Uy IUH2 U ko 1
1 1
v IUH v IUH v
1 1
vr! T, | ot kv |1
1 hq
,Ull—l kll_v 1 TZI 1
h hq
p.259
where (Kb, v', k1), (ko,v,k1) € @ and v’ = Oy (ka)vdy (ki)' = vovv] '
To prove that € is surjective, take any
hy
Vo S (%5}
hy

in S. Choose ki, ky € K such that dy (k1) = hy, Ou(k2) = ha. Define m = k3V oy, soy ky oy

IUH_I; it is easily verified that m € MY, and so ky o, m € K. Now (kam, vy, k) € © maps to
s.

We now need the following lemma, which is a purely algebraic result.

Lemma 2.6 The actions associated to the core diagram are also given by py(v)(m) =17 o,
m oy, 12, wherem € MV, v €V, and py(h)(m) =1} o, mo, 1) ,, wherem € M¥ he H.
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The lemma implies that for any (k2,v,k;) € O and any (ms, v, m;) € N with which it is
compatible, (ks,v, k1) and (kama, v, kymy) map under 6 to the same element of S. To verify
that 8: ) — 5 is an isomorphism of double groupoids, we must first determine the kernel of
© — 5, considered as a morphism of groupoids over V.

Take (kq,v, k1) € © and suppose that it maps to an identity of Sy == V; that is, k; oy,
1 o, k7 = 1. Then 9gy(ky) = 0x(17) and dx(k,) = @y (1) are both identities, so
ki, ks € MY and (again using 2.6), ks = py(v)(k1). So (ks,v,k;) € N. It follows that the
induced map ®/N — S is an isomorphism of groupoids over V. Since it is known to be a
morphism of groupoids over H, it follows that it is also an isomorphism of groupoids over
H, and thus an isomorphism of double groupoids. That it is a diffeomorphism is proved by
standard methods.

Finally, let ¢ : K/ — K, ¢y : H — H, ¢y : V' — V,¢pp : B' — B be a morphism
of locally trivial core diagrams. Then there is a morphism of the comma double groupoids
O(K'",0y,V') — O(K,0v,V) defined by (ky, v, k) — (¢x(kS), ov(v'), o (k))) and it is
immediate that this maps the corresponding normal subgroup bundle N’ to N and therefore
induces a morphism of locally trivial double Lie groupoids ¢ : @' — @ over ¢g, v, dp.
Further, if B' = B, H' = H, V' =V and ¢k is a morphism of locally trivial core diagrams
over H and V, then ¢ : @)’ — (@ is a morphism of locally trivial double Lie groupoids
preserving H and V (and B).

To summarize, we now have a category DLG of locally trivial double Lie groupoids and
a category LCD of locally trivial core diagrams, and we have functors K : DLG — LCD and
D : LCD — DLG, where K assigns to a locally trivial double Lie groupoid its core diagram
and D assigns to a locally trivial core diagram (K, dy,0v) the locally trivial double Lie
groupoid ) just constructed. We have proved the following theorem.

Theorem 2.7 The functors K : DLG — LCD and D : LCD — DLG defined above are mu-
tually inverse natural equivalences. Further, the adjunclions KD 2 id and DK = id given
above preserve the side groupoids H and V. g

Remarks: (i) As was said in the introduction, this correspondence may usefully be thought
of as a double groupoid analogue of the correspondence between locally trivial groupoids and
principal bundles. Indeed, if one prefers, one may replace a locally trivial core diagram by
the corresponding diagram of principal bundles, by taking the vertex bundles of K, H, and
V' at any chosen point of B.

It should be noted however that there are two other descriptions of classes of locally trivial
double Lie groupoids of which this could be said: there is a literal transcription of the locally
trivial groupoid—principal bundle correspondence which gives a correspondence between
locally trivial double Lie groupoids and principal bundle objects in the category of locally
trivial groupoids, and for double Lie groupoids in which both anchors are regular fibrations,
there is a description in terms of an exact sequence M* N MV >—> § —> [J(H,V).
The description given here seems the most powerful in that, unlike the first alternative, we
describe locally trivial double Lie groupoids in terms of ordinary groupoids, rather than
in terms of merely a different type of double object; and compared to the class of double
groupoids described by the second alternative, the locally trivial double Lie groupoids are
considerably more general.
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(ii) It is worth emphasizing the importance of the commutativity condition in 2.5. This
is crucial to 2.7, and corresponds to the interchange law in the resulting double groupoid.
Such commutativity conditions seem to have first been explicitly noted in Loday’s [12] defin-
ition of a cat'-group.

(iii) There is a three-fold version of 2.7 in which a suitable triple groupoid is determined
by a core groupoid and three morphisms from it to the core groupoids of the three face
groupoids: the kernels of these morphisms fit together into three crossed squares [12] over
groupoids, subject to several natural compatibility conditions. Presumably there is also an
n-fold version.

(iv) We have given a definition of an abstract core diagram only in the locally trivial
case, because the kernels of arbitrary morphisms dg : K — H, 0y : K — V may not be
Lie group bundles of locally constant rank, and consideration of such cases would introduce
inapposite complications. However in §4 we will indicate how more general adjunctions than
those in 2.7 can be obtained in the set-theoretic case.

(v) Thereis an alternative proof of 2.7, in which the comma double groupoid O( K, dy, V)
is replaced by the set of all quadruples of elements from K with common bottom right vertex.
One then uses two quotienting processes to obtain @), corresponding to passing elements of
M*H or MV horizontally or vertically between the constituent elements of K. This proof
is considerably more complicated, but has the virtue of preserving symmetry between the
horizontal and vertical structures.

(vi) This representation is in some sense dual to the result of A. and C. Ehresmann [7,
§D.3] that every double category is canonically embedded as a double subcategory of the
double category of squares of its 2-category of strings. There are many differences between
the Ehresmanns’ theorem and the one presented here, but the most important is probably
the fact that, since the 2-category of strings is an algebraic “free object” construction, it is
unlikely to admit a differentiable formulation. We are grateful to Madame Ehresmann for
this reference.

(vii) Consider again the abstract locally trivial core diagram (9). It is clear that the
two associated crossed modules (M*#,d,, H, py) and (M"Y, ,,V, py) have the same kernel,
namely M N MV. It is also true that the two cokernels are naturally isomorphic. Let Cy
and Cy be the quotients of H and V over the normal and totally intransitive subgroupoids
im(0y) and im(d,). (Note that Cy and Cy need not be Hausdorff.) Given a coset (h) € Cy,
choose k € K with 0y(k) = h and define ¥((h)) = (Ov(k)). Then ¢ : Cy — Cy is an
isomorphism of (nonHausdorff) Lie groupoids over B, and preserves the actions of C'y and
Cy on MEnMV.

Given locally trivial groupoids H and V on base B, and crossed modules (M#,0,, H, py)
and (MV,d,,V, py) which satisfy these kernel and cokernel conditions, it would be very inter-
esting to know what further conditions are necessary to ensure that there exists an abstract
locally trivial core diagram which induces them, and to have an effective classification of such
core diagrams. This is the analogue for double groupoids of the problem of describing all
locally trivial Lie groupoids with prescribed base and prescribed gauge group bundle (com-
pare [17]). In principal bundle terms, it is the problem solved by the concept of transition
function. We treat a very special case of the first part of this problem in the next section.
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3 SPLIT DOUBLE GROUPOIDS

By “split double groupoids” we mean the differentiable analogue of the “special double
groupoids with special connection” which were introduced by Brown and Spencer [6], and
whose generalization to arbitrary dimensions has been extensively developed by Brown and
Higgins ([3], [4] and elsewhere) for proving Generalized Van Kampen Theorems. Special
double groupoids with special connection differ from general double groupoids in that their
side groupoids are identical and in that they admit “special connections”. These special
connections encode aspects of the homotopy-theoretical examples with which these authors
were at the time chiefly concerned; algebraically, they provide a rotation operation in the
double groupoid [6, §4] under which the horizontal and vertical structures are isomorphic.

Special double groupoids with special connection correspond to crossed modules over
groupoids ([6] for the case where the double base of the double groupoid is singleton; the
general case is an easy extension and included in [3, 6.2]). In this section we deduce a
differentiable version of this result from our 2.7, and give a simple characterization of “special
double Lie groupoids with special connection” as those locally trivial double Lie groupoids
(S; H,V; B) for which H = V and for which both anchors are split fibrations, these splittings
being compatible in a natural way. We also consider locally trivial double Lie groupoids in
which the side groupoids are distinct and in which only one anchor is split, and show that
such double groupoids are characterized by the presence of a “one-sided” version of a special
connection. This frees the notion of special connection from the assumption that the side
groupoids are identical.

At the time when [6] was written, the notion of special connection was also motivated
by the differential-geometric concept of path-lifting. As part of our analysis here we show
that the one-sided version of a special connection in a locally trivial double Lie groupoid
(S; H,V; B) corresponds precisely to a right-splitting of the exact sequence of locally trivial

Lie groupoids MYV >—> Ki/>>V, or its companion. They may thus be regarded as
genuine differential-geometric connections which are subject to the additional requirements
that they be flat and without holonomy or, rather, as transverse connections in the sense of
[16] which are flat and without holonomy. The question as to whether flat connections with
holonomy, or general, not necessarily flat, transverse connections in MY >—> K —> V
induce connections in Sy ==V will be taken up elsewhere.

We begin by recalling the notion of crossed module.

Definition 3.1 (Compare [3], [17].) Let G be a locally trivial Lie groupoid on base B. A
crossed module over G is a quadruple (M,0,G, p), where p: M — B is a Lie group bundle
on B, where 0 : M — G is a morphism of Lie groupoids over B, and where p is an action
of G on M by Lie group isomorphisms such that

1. 9(p(&)(m)) = E(m)ET for all £ € G, m € M with a(€) = p(m);
2. p(d(m))(n) = mnm™=" for all m,n € M with p(m) = p(n).

We denote elements of G by £, 7,(,...in order to avoid confusion with earlier conventions.
We usually write p(&)(m) briefly as £ém, and refer to M as a crossed module over (G. Condition
(i) forces 0: M — G to be of locally constant rank and it therefore has a well-defined image
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and kernel, both of which are Lie group bundles. However, the image of @ need not be closed
in G.

We recall the usual construction of a double groupoid from a crossed module [3], at
the same time giving a differentiable version of it. Until 3.2, we consider a fixed crossed
module (M,d,G, p) over a locally trivial Lie groupoid G. Let IG = [J,.5 G} be the inner
group bundle of G (sometimes called the gauge group bundle). Form the semi-direct product
groupoid GX I'G on base Bj; this is not the semi-direct product used in §1, but rather consists
of all pairs (£, A) with a(§) = a()), and composition

(527 /\2)(517 /\1) = (52517 Igl—l(/\z)/\l)

defined if a(&) = B(&). Here I;()\) is the groupoid conjugation £Aé™'. Next, form the
pullback Lie groupoid X**(G x G) of the Cartesian square groupoid over its own anchor;
this admits the double groupoid structure [ ] G but we are here considering it merely as an
ordinary groupoid. Define a map

§:X™(GxG)—=GxIG, (¢, myw, &) — (w,w ' ("'nk)

where (,n,w, £ are arranged as

w

with our usual orientation; in particular, £ is the source and ( the target. Now ¢ is a regular
fibration over @ : G — B, and 0 is base-preserving, so we can take the pullback in the
category of differentiable groupoids of the diagram

X*(G x G)

l §
idix 0
Gx M —m Gx IG.

We obtain a groupoid C' = C(M, 0, G, p) whose elements are 5-tuples (m, (,n,w,§, ) such
that (¢,n,w,€) € X**(G x G) and m € M with p(m) = a(€) and d(m) = w= (" 'né. To keep
the notation clear, we rewrite (m,(,n,w,£,) as (m;¢ Z €). The source and target of this
element are £ and (, respectively, and the composition is

(ma; G 2}22 £) o (MG le &) = ((witma)my; G Zzzz}ll 1),

defined if & = {;. Now C becomes a double groupoid by defining a vertical structure, whose
source and target maps are the displayed horizontal edges and whose composition is

(ma; G 2}22 £) oy (MG le &) = (ma(&7Mms); GG 2,21 £:61),
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defined if wy = m;. The check that (C; G, G; B) is a double groupoid is straightforward. In
the terminology of [3] it is the special double groupoid with special connection corresponding
to the crossed module (M, d,G,p). The elements of the core groupoid of C' are of the form
(m; ¢ 717 1), where (9(m) = n, and the core composition is

(m2§Cz ?2 1) Ok (ml§Cl ?1 1) = ((7712§C2 ?2 1) Owm (1§ 1 Zi 1)) Oy (m1§C1 7171 1)

= (’Ufl(mz)QCZ 7751711) Ov (’m1;C1 7171 1)
= (my 7t (ma); GG 77217711)-

If we now denote (m;( ? 1) by (¢, m) this becomes

(Casma) ok (Cioma) = (G, ¢ H(ma)my)

and so the core groupoid is the semi-direct product G x M. In this notation dv({,m) = ¢
and 9y (¢,m) = ¢(d(m). Thus M* can be canonically identified with M via m < (1,m),
and MY can be canonically identified with M°P?, the opposite Lie group bundle to M, via
m < (d(m)~*, m). Thus the core diagram of (C';G,G; B) is

M=M"

G
\ /aH/v
Gx M
More = MV / e

Since both projections are surjective submersions, it follows that C' is a locally trivial double
Lie groupoid. Note that the horizontal crossed module (M, 9y, G, py) is the given (M, 0, G, p),
whilst the vertical crossed module (M?,9,,G, p,) has 9,(m) = d(m)~! but p, = p.

The most distinctive feature of (11) is that both the exact sequences are split, and by
the same map, { — (¢, 1).

Definition 3.2 Let H and V be locally trivial Lie groupoids on base B, and let (K, 0y, dv)
be a locally trivial core diagram for H and V. Then a horizontal splitting for (K, 0y, 0v)
is @ morphism 0:V — K of Lie groupoids over B such that 0y oo = id, and (K,0y,0v)
s horizontally split if it admils a horizontal splitting. Similarly, a vertical splitting for
(K,0u,0v) is a morphism o: H — K of Lie groupoids over B such that 0y o 0 = id, and
(K, 0u,0v) is vertically split if it admits a vertical splitting.
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Concerning splittings we have the following general result.

Theorem 3.3 Let (5; H,V; B) be a locally trivial double Lie groupoid with Lie core diagram p.265
(K,0y,0v). Then (K, 0y, 0yv) is vertically split if and only if (Xy;id, Xy;id) : (S; H,V; B) —
(HxH; H,BxB; B) is a horizontally split fibration of double Lie groupoids, and (K, 0y, 0v)

is horizontally split if and only if (Xg; Xg,id;id) : (S;H,V;B) — (VxV;Bx B,V;B) is a
vertically split fibration of double Lie groupoids.

PROOF: Suppose MV >—> Kﬁ>>H issplit byo : H — K,and write ¢ = dyoo: H — V.
Referring back to 1.12, we use ¢ to define a horizontal action of H = (H x H; H, B x B; B)
on (Xy,idg) as in 1.8, and the resulting double groupoid is @ = O(H,¢,V). So we have
to define a morphism of double groupoids ® — § which is right-inverse to the map S — O
induced by (Xy;idg, Xv;idg). We know from 2.7 that it is sufficent to define a morphism
of the corresponding core diagrams. The core diagram of © is (H,idg, ¢) (see 2.2) and we
are denoting the core diagram of 5 by the usual (K, 0y, dv ). Now it is easy to see that the
equations dy oo = idy, dv 0o = ¢ express precisely the fact that (o,idy,idy ) is a morphism
of abstract core diagrams (H,idy, ¢) — (K, dy, 0v) with the required property.

Conversely, suppose that (Xy;idg,Xy;idp) is a horizontally split fibration of double
groupoids. Then H acts on (Xy,idg) and, by 1.9, this must be the action induced by a
morphism ¢ : H — V. Forming the action double groupoid, namely © = O(H, ¢,V), there
is also, by assumption, a morphism of double groupoids s : ® — § (with respect to idg,idy
and idg) which is right-inverse to the map S — © induced by Xy. The values of s have the
form

hy

d(ha)vp(he)™t |s(hy, v, hy) ©

hy

Now s is a morphism of double groupoids, so it induces a morphism of the core groupoids
0 = sg : H— K, which assigns to h € H the element

h

o(h) = %
Wt | "

1

This 0 : H — K is a morphism of core diagrams (H,idy, ¢) — (K, Oy, Oy ) preserving H

B}
and V and so 9y o0 = idy and &y o 0 = ¢. In particular, MV >——> K—"s>H is split. p.266
The second statement is proved in the same way. g

28



Definition 3.4 A locally trivial double Lie groupoid (S; H,V; B) is vertically split if the
anchor (Xy;id, Xy;id) : (S; H,V; B) — (H x H; H, B x B; B) is a horizontally split fibration
of double Lie groupoids, and it is horizontally split if (Xg; X, id;id) : (S; H,V; B) — (V x
Vi B x B,V; B) is a vertically split fibration of double Lie groupoids.

Comma double groupoids O(H, ¢, V) with ¢ a surjective submersion, are vertically split,
and of course special double groupoids with special connection C(M,d,G, p) are both hori-
zontally and vertically split.

B

Theorem 3.3 gives a specific correspondence between splittings of MY >—> K—"sH
and splittings of (Xy;idg, Xy ;idg). Given o : H — K with 0y oo = id and writing ¢ = dy oc
as before, the right-inverse to Xy : § — X3 (H x H) is

hy

(vvh27h1) = U(h2) Oy IH

v

o, a(h)™v = [ ¢lha)vd(hn)™ v

hy

This includes the formulas given in [2, §1] which, for a special double groupoid with special
connection, express squares with commuting boundary in terms of the special connection
and identity elements (the thin elements).

We now give a complete description of horizontally split double Lie groupoids. Let
(S; H,V; B) be alocally trivial double Lie groupoid which is horizontally split by 0 : V — K.
Write ¢ = dgoo:V — Hand M = M¥, p=py, 0 =0, : M — H. Then the core diagram
of §'is

M H
\ a/v
Vix M (12)
ﬂ-\
MY ‘v

where 7 is the canonical projection, dg(v,m) = ¢(v)d(m), and the semi-direct product is
with respect to the action vm = p(¢(v))(m) for v € V, m € M such that a(v) = p(m). The
following result is a converse to this description.

29



Theorem 3.5 Let H and V' be locally trivial Lie groupoids on base B, let (M,0,H,p) be a
crossed module over H, and let ¢ :' V — H be a surjective submersion and a morphism over p.267
B. Let V act on M by vm = p(¢(v))(m), and define MV = {(v,m) eV x M | ¢(v)d(m) =

1y, 3b € B}, and 0yg:V x M — H by (v,m) — ¢(v)0(m). Then there is a locally trivial
double Lie groupoid S, necessarily horizontally split, whose core diagram is precisely (12)

above, and which possesses a horizontal splitting o:V — V x M such that 0g o 0 = ¢. This

S is unique, up lo isomorphisms which preserve H and V.

PROOF: It suffices to verify that the given conditions on H,V,M,d,p and ¢ permit an
abstract locally trivial core diagram (12). The main point is to verify that the kernels of
T:VXM— Mand dg : VX M — H commute in V x M. Take (1} ,m) € ker(n),
where b = p(m), and (v,n) € ker(dy), with p(n) = p(m). Now (v,n)(1;,m) = (v,nm) and
(L3, m) (0,1) = (v, p(B(v)")(m)n) = (v, p(O(n))(m)m) = (v, ), vsing ()" = O(n) and
(11) of 3.1. Thus (12) defines a locally trivial core diagram, and the rest follows from 2.7 and
33. m

Clearly by taking H = V and ¢ = id in 3.5, one recovers the construction given at the
start of this section. If one further assumes that B is a singleton, then (12)—or (11)—is
precisely the cat'-group (Loday [12]) corresponding to the given crossed module.

Definition 3.6 Let G be a locally trivial Lie groupoid on B, and let

M

~_ a/G
N

MY

be a locally trivial core diagram. Then (13) is a split core diagram if there exists 0: G — K
such that 0g oo = Oy oo = id.

Now (11) is a split core diagram, and it is easy to see that every split core diagram is of
the form (11). Thus there is a bijective correspondence between crossed modules and split
core diagrams, and this correspondence can be elaborated to an equivalence of categories
in a straightforward way. In the case where B is singleton, this is the equivalence between
cat'-groups and crossed modules [12].

Since locally trivial double Lie groupoids are determined by their core diagrams, we have
effectively characterized those locally trivial double Lie groupoids which arise from crossed
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modules; they are the split double groupoids in the following sense. For most purposes it is
easier to work in terms of the core diagram.

Definition 3.7 Let (5;G, G5 B) be a locally trivial double Lie groupoid with both side group-
oids G. Then S is a split double groupoid if there exist a horizontal splzttmg o X (GXG) —

Sv and a vertical splitting oy: X*(G X G) — SH such that Xy ooy and Xy ooy are both equal
to X*(GxG)— Gx G, (w,((,8)— (Cw&tw).

In a general locally trivial core diagram, splittings of MV >—> Kﬁ>>H may be
regarded as a very special kind of transverse connection in the sense of [16]. The question,
to what extent general transverse connections in the core diagram of a general locally trivial
double Lie groupoid S induce connections in the groupoid structures on §, will be taken up
elsewhere.

4 GENERALIZATIONS

The set-theoretic result underlying 2.7 gives an equivalence of categories between transitive
double groupoids and transitive core diagrams (the terminology should need no explanation).
In this section we consider generalizations of this result in which the transitivity conditions
are weakened.

Definition 4.1 An abstract core diagram consists of a commutative diagram of morphisms
of groupoids, each the identity on objects,

M . _ H

(14)

MY

where iy and iy are injections, and may be regarded as inclusions, logether with actions py
of H on M and py of V on MV, such that
(i) M® is the kernel of &y and MV is the kernel of Oy ;
(ii) if m € MV and k € K are such that kmk=" is defined, then kmk=' = py (v (k))(m);
(iii) if m € M¥ and k € K are such that kmk~" is defined, then kmk™' = py(9u(k))(m);
(iv) the morphism @, = Oy oty and the action py form a crossed module (MY ,0,,V, pv);
(v) the morphism 9, = Oy oty and the action py form a crossed module (M*™,0,, H, py)
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Because dg and dy are not assumed to be surjective in this definition, the actions pg and
pv cannot be deduced from conjugation by K, as in §2, but must be built into the structure.
Note, however, that each of (ii) and (iii) imply one of the crossed module conditions included
in (iv) and (v), namely that corresponding to (ii) in 3.1. That the images of MV and M*¥
commute in K is now not explicitly required, but follows from (ii) (or (iii)) and (i).

A semicore diagram is the part of (14) consisting of MY, K, V, the action py, and the
associated morphisms, iy, dy, and 8, = dy o iy, subject to (ii) and (iv). Thus MY is a
totally intransitive subgroupoid of K, and is normal in K by virtue of (ii). It follows that
any semicore diagram can be completed to an abstract core diagram in which H = K/MYV,
and M* = ker(dv).

Clearly there are categories ACD and SCD of abstract core diagrams and semicore dia-
grams, respectively. Let U: ACD — SCD be the forgetful functor. From the algebra underly-
ing 2.1 we have a functor K: DG — ACD, where DG is the category of (set-theoretic) double
groupoids.

We now extract the algebraic heart ( “le ceeur algébrigue”) of the arguments in §2.

Theorem 4.2 There is a functor D: SCD — DG such that D is left adjoint to UK.

Most of the proof has been carried out in the course of §2. We restrict ourselves to com-
menting on the features which are new.

Let (S; H,V; B) be a double groupoid and let K, dy and M" be as in 2.1. The action
pv cannot be defined in terms of conjugation by K, since dy may not be surjective. Instead
we define (compare 2.6)

py(v)(m) =17 o, mo, 1%,

for v € V, m € MY compatible. A suitable modification of 2.6 then establishes (ii) of 4.1,
but (iv) requires a new proof.

Take compatible m,n € M"Y, and let v = dy(m), w = dy(n). It has to be proved that
1 ! where the right hand side is calculated in K. In fact it is easy to
see that m™* = m™ and mo, no, m™% = mo, no, m~v. It now suffices to prove that
the composite of

1Ho,no, 1%, = mnm-
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1 m”HE| v TUH v
1 1

1 nH w n 1
1 1

1 |(m~v)y=# | o7} 17, | ot
1 1

reduces to a double identity. This follows because the middle terms cancel horizontally, and p.270
the two columns then collapse.

The construction of the functor D follows precisely the steps given in the proof of 2.7,
except that the action of V on MV is now built into the basic structure.

The adjointness rule,

DG(D(K,M",V), §) =2 SCD((K,M",V),UK(S)),

where (K, MY, V) is a semicore diagram and S is a double groupoid, is obtained as follows.
First, it is clear that /KD is naturally equivalent to the identity. Thus the forward map of
the adjunction is essentially restriction. For the reverse map, the crux is that every element
of D(K,MY,V) can be written as a vertical composition k5 o, If o, k", where ki, ky € K
and v € V. (Compare the argument immediately preceding 2.6.) It follows that a morphism
of semicore diagrams defined on (K, M",V) induces a map defined on D(K, MY V), and
the verification that this is a morphism of double groupoids with the required properties is
straightforward. This completes our comments on the proof of 4.2.

Remarks 4.3 (i) A double groupoid in the image of D, or isomorphic to one such, has the
two properties:

(4.3.1) 9y: K — H is surjective;

(4.3.2) Every element of S can be represented in the form ky o, 1
ki,ky € K and v € V.

Thus we find that the category of semicore diagrams is equivalent to that of double
groupoids with these two properties. Indeed the latter category is a reflective subcategory
of the category DG.

(ii) There do exist interesting double groupoids which do not satisfy (4.3.1) or (4.3.2). The
double Lie groups of [13], considered as double Lie groupoids, have already been mentioned.
Here is an example in which both dy and 0 may fail to be surjective while the core groupoid
does contain nonidentity elements. Let ¢: H — P and ©:V — P be morphisms of groups,

o, k1Y, where
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where H and V share a common normal subgroup M, and assume that ¢ and i agree on
M. Define a double groupoid (5; H, V;«) where S is the set of quintuples

(i B )

with ¢(m) = ¢(hy) " ¢ (v2) " p(ha)1o(v;y) and double groupoid structure defined by the evident
modification of the construction in §3. Then the core groupoid K will usually be nontrivial,
but dy: K — H will be surjective if and only if for each h € H there exists v € V such
that ¢¥(v)¢(h) € ¢(M). By taking H and V to be subgroups of P, with M = {1} but
HNV #{1}, an S with the specified properties can be found. g

In conclusion, it seems reasonable to expect that the classification of double groupoids will
be more difficult, and exhibit a wider range of possibilities, than that for ordinary groupoids.
Double groupoids are intrinsically complicated objects, as is already shown by the fact that
certain classes of double groupoids include complete information on all homotopy 2-types.
Perhaps we should not even expect there to be descriptions of all double groupoids in terms
of other more familiar structures, but rather regard double groupoids themselves as basic
objects in mathematics. On the other hand, where such descriptions are available, they can
be of considerable use.
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