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0. Introduction

Letq:Y— B, r: Z— B be maps of topological spaces. In a previous paper [6]
we described a fibred mapping space over B -

(gr):(YZ)-B

and established some basic properties including “fibred exponential laws” (i.e.
exponential laws in the category Tops of spaces over B).

The aim of this paper is to introducc some new fibred exponential laws, for
example in the category of ex-spaces of James [13] and others, and in other
categories derived from Top. We shall also see that the corresponding fibred
mapping spaces include many cases which are scattered in the literature and have
been constructed in an ad hoc manner, sometimes only for the locally trivial case.

In Section 1 we consider the projection s*(gr): A N(YZ)— A induced from
(gr) by map s : A — B, and also the projection (s*qs*r): (AN YA MNZ)—> A;we
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‘prove these projections are eqmvalent if A s locally compact and Y,A,B are
Hausdorif, and apply this in Section 2 to relaie (gr) to known construc,tlons for
locally trivial maps (in particular to the vector bundle Hom(g,r) when g,r are
vector bundles [2, p 8], and to the functlonai principal G-hundles of [7, pp.
249-250)).

In Section 2 we consider ¢ to be a projection F X B — B, and find condmons for
(F X B Z) to be imbedded in the space M(F, Z) of maps F— Z with the compact
open topology. This enables us to relate (gqr) to the fibration prinr :PrineZ— B
associated with a fibration r : Z -> B with fibre F (see [1, p. 120; 15, p. 241; 9, p.
434]) and to the associated principal bundle from the Ehresmann-Feldbau point c{
view [16, p. 39].

In Section 4 we develop the =x-exponential law for ex-spaces and relate this to
the ex-space projection (M/x){{:, &) of [3, p. 372]. In Section 5§ we prove an
exponential law for *fibred section spaces’ and relate this to a map pe : E — C of
[12, p. 461] (misprintec! there as pg : E — B), and to the fundamental theorem of
topoi, which gives in the category of sets a right adjoint to a pull back functor g*
(see [10, p. 24)).

All the above examples are special cases of the “fibred relative lifting space”
YM Z of Section 6, which also has its exponential law.

In Section 7 we develop homotopy versions of the fibred exponential laws of our
previous paper [5]. The outline of arguments in the convenient category of ¥-spaces
analogous to the rest of our discussion is given in Section 8. Such versions of Section
7 have aiready teen applied in [4, 5] to problems in homotopy theory.

A sequal to this paper will discuss conditions for our fibred mapping spaces to be
fibratiors over B.

The terminology and notavion of [6] will be used throughout.

1. Induced fibred mapping spaces

Let s:A— B be 2 map of topological spaces. Then s induces a functor

s* : Tops — Top.. In this section we determine the effect of s* on fibred mapping.
spacs.

Suppose then given a diagram
ANY ANZ

Y YA
s'q /sll’ q\ /
—3> B /

A

where AB are I Then s*(ar): AN(YZ ) = A and
(s*qs*r):(ANYANZ;-> A are well-defined. Also there is a map
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a:s*gry->(s*qs*r),

a(a,f){(a,y)=(a f(y)) if s(a)=(gr)(f)=q(y} (if Y.wy=0, then f is the empty
map with range Z,, and a(a, f) is the empty map with range {a} X Z,,;). Clearly a
is a well-defined bijection.

Theorem 1.1. In the above situction, if Y, A, B are Hausdorff, then a is continuous.
If A is locally compact and B is Hausdorff, then a™ is coniinious.

The proof depends on the following zesult. i

Lemma 1.2. Let p: X—B, q:Y—B, r:Z—> B be maps, let X, Y be Hausdorff
and let U be a sub-basis for the open sets of Z. Then as sub-basis sets of the first kind
for (X M Y Z) we may take W(C M D, U) for C, D compact in 3., Y respectively and
Uel.

Proof of Lemma 1.2. The sets U™, U € U, form a sub-basis for the topology of Z~
and hence by [8, p. 264] the sets W (C x D, U~) form a sub-basis for the open sets of
M(X X Y, Z~). Hence a sub-basis for the open sets of P(X X Y, Z) is formed by th>
sets W(C x D, U), which intersect (X 1 Y Z) in the sets W(C M D, U).

Proof of Theorem 1.1. To prove the continuity of «, suppose that (a,f)€E
ATI(YZ). If W(N) is a sub-basic neighbourhcod of a (4, f), where N is an open
neighbourhood of a, then (N M(YZ))C W(N).Let S=W(C D, UM V)kea
sub-basic neighbourhood of the other kind of a(a, f), where C, D are compact ir
A, Y respectively and U, V are open in A, Z respectively. Now a(a’,g)(CIMD)C
UMV is equivalent to {a}MMCCU and g(D)CV. It follows that
a(UNW(D, V))CS, and so a is continuous at (a, f).
We now define an inverse to a

B:(s*qs*r)—s*(qr)

by B(f)=(a,f') where a € A, fE (s*qs*r)'(a) and f': Y,.)~> Z.(a) is the map
such that f(a,y) = (a,f'(y)) for all y € Y,(,. It is easily seen that B =a". If we
write B = (B, B>) then B, =s*(qr) which is continuous, so it is enough for
continuity of B to prove 3. continuous.

Let W(V) be a sub-basic neighbourheod of f’, where V' is an open neighbour-
hood of s{a). Then there is a neighbourhood N of a sich that s(N)C V and
BAW(N))Z W(V). Let T = W(C, U) be a sub-basic neighbourhood of f’ of the
other kind, so that C is compact, U is open and f'(C)C U. L¢* 17 ve 2 compact
neighbourkood of a; then R = W(D N C, D N U)N W(D) s a neigibenrhood of
f such that 8:(R)C T. So B, is continuous.

Example 1.3, Let g:GXA— A, r:HXA—-A, p. M(GH)XA—A denote
the projections of the products. (i) If A is 77, there is a bijection & : p - (gr) such
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that a(f,a)=f X 1,;: G x{a}—> H x{a}. (i) If G,A are Huudorff, then « is
continuous. (iii) If A is focally compact, then a™ is continuous.

Procf. This follows from Theorem 1.1 on taking B to be a point.

Remark 1.4. The locally compact condition in Theorem 1.1 cannot be dropped
since by [6, Example 5.5] if G is Hausdorff with more than one point and A is
Hausdorff but not locally compact, then M(G,G)x A is Hausderff but
(CxA,G xA)is not.

However, there are other circumstances where a of Theorem 1.1 is a
homeomorphism, and a particular useful case for many applications is when
s : A —» B is the inclusicn of a subspace. We then write Y | A for g'(A)andq | A
for the restriction i 4 mapping Y | A — A. To within an obvious homeomorphism
we can identify s*(gr) and (s*qs®*r) with (¢r)]A:(YZ)|A—A and
(q IA r {A‘,‘:(Y]A Z ,A)—»A respectively.

Theorem 1.5. Letq: Y — B, r: Z — B be maps aid le: A be a subspace of B. Then
the identity bijection

v:(YZ)|A—>(¥|A Z|A)

is continuous, and is a homeormorphism if (i) A is closed, or (ii) A is open and B is
regular.

Prooi. We will show that the sub-basic setsin (Y |A Z | A)are restrictions of open
sets of (YZ). This is clear for sub-basic seis W(U). Let § = W(K, V) be a sub-basic
set where K is compactin Y|A and V isopenin Z |A. Then V=V'N(Z|A)
where V' is open ir Z, and if T = W(K, V'), a sub-basic neighbourhood in (YZ),
then TN(Y|A Z!A)=3.

The proof of (i), that y is a homeomorphism if A is closed, follows easily from [o,
Proposicion 1.2(li1); and the initial topology description of the open sets of (YZ)
and (Y|A Z|A).

For the proof of (ii), iet 6:(Y|A Z|A)—(YZ) denote the inclusion. Let
f:Y.—= Z, a € A. That 87 (W(L))) is sub-basic for U open in B is clear. Let
W(C, V) be the other kind of sub-basic neighbourhood in (YZ) of 8(f). S'nce B is
regular there is an open set U/ and a closed set D suchthat a€c UC D C A CB.
Let N=W(C|D, V|U)Nn W(U). Then &N)C W(C, U). This completes the
proof.

The following corollary wa« stated without proof as part (f) of the fibred
exponentiai law [6, Theorem 3.5].

Corollary 1.6. Suppose that B is a regular Ty-space, p: X — B is a map with X
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Hausdorff, q : Y — B is a locally trivial map with Hausdorff fibre G such that G X X,
G xB are k-spaces. If r:Z—>B is a map, then the exponential function
6 :M(p n g, r)— M{p,(qr)) is surjective.

Proof. Le! f : p— (gr) be a map; we have to prove 8 7'(f) : p ' ¢ — r continuous.

Let U be an open set of B such that q I U is trivial, and so equivalent to the
projection G X U — U. Since G X X, G X B are k-spaces, $0 also are G X (X | U)
and G X U (see (11, 1.5.3, p. 10]). It follows from (d) of [6, Theorem 3.5] that
\(H|U =07 | U) is continuous. Hence 6~(f) is continuous.

2. Fibred mapping spaces as bundles

ifg:Y—>B,vr:Z->D are locally trivial with fibres G, H resy.ectively (see [6,
Section 3]) then there is what we call the classical topology o:: the set (YZ) making
(qr):(YZ)— B locally trivial with fibre M(G, H). This topology i: the final
topology with respect to the injections M(G, H) X U — (YZ); these injections exist
whenever U is an open set over which borh g, r are trivial and are defined using the
locally trivial siructures for g, r.

In order to relate this classical topology to the modified campact-open topology
we first prove the following resuit.

Theorem 2.1. Let q:Y— B, r:Z->B be locally trivial maps with fibres G, H
respectively, and let Y, B be Hausdorff and B locally compact. Then the classica’ and
modified compact open topologies on {YZ) coincide.

Proof. It is sufficient to prove that the two topologies agree over the open sets of an
open cover of B. However, if g, r are both locally trivial over the open set U of B,
then by Example 1.3, Theorem 1.1 and the fact that U is locally compact, we have

MG H)xU=(GXxUHXxU)=(Y|U Z|U)=(YZ)|U

and the resuit follows.

Example 2.2. If ¢ : Y — B, r: .Z — B are vector bundles of finite dimension, then
the vector bundle Hom(g, r) : Hom(Y, Z)— B is well-defined /2, p. 8], and has fibre
over b the vector space L(Ys, Z,) of linear mappings Y, — Z,. This vector space is
of finitc dimension and so has a unique Hausdorff topology making it a topelogical
vector space. It follows from Theorem 2.1 that if B is locally compact Hausdorff
then the vector bundle Hom(q, r) is a restriction of our fibred mapping space
projection (qr):(YZ)— B.

Example 2.3. A similar result :0 Example 2.2 holds for principal bundles
q:Y—B, r:Z—B with grcup a topological group (. Let us write
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A(q.7): A(Y,Z)— B for the set over B whose fibre over b € B is the set
A(Y, Z,) of admissible maps Y, — Z,. Now A(G,G) with the compact-open
t-iviality tc give A(Y.Z) the classical topology making it a locally trivial map
A(g,r):A(Y,Z)—>B. If G is abelian then the action of G on A(YZ) is well
definzd and A (q, r) is a principle G-bundle. Then 4 (¢ r) is the functional bundle
{g. 1, 13) v [7, p. 250]. It follows from Theorem 2.1 tha. :¢ G, B are Hausdorff and B
is localiy compact then A(q,r) is a subspace of our fibred mapping space
(qr):(YZ)— B. (On |7, p. 250] a more general bundle (q,r,f) is defined where
q:Y->B,r:Z—C and f:B->C is a map. However, (g,r, f) can be identified
with (g, f*(r), 1s) where f*(r) is the induced bundle.)

3. The map prin r and associated principal bundles

Let r : Z—'B be a map and let F be a non-empty space. We define Qr(Z) to be
the subspace of M(F,Z) of maps f:F-»Z such that r’ is constant. Let
q=(r): Qs (.Z3— B be the projection ft» rf(x) (for some x €: F). Then q=(r) is
continuous.

Proposition 3.1. Let F X B -> B be the projection, and let r : Z — B be a map. The
function

£:0:(Z)—>(FXBZ)

E(P)(x,b) = f(x), f = Qe (Z), (x,b) € F x B is a bijection such that (i) £ is continu-
ous if F is Hausdorjj and (ii) £' is continuous if B is locally compact.

Proof. That £ is a bijection is clear.

(i) Suppcse that £(f) = g, and W(U) is a sub-basic neighbourhood of 3. Let
x € F. Then §&(W({x}, r"'(U))) € W(U). For the sub-basic sets of the other kind,
we note that since B,F are Hausdorff, these can be taken to be of the form
W(C <D, V) for C,D compact in F, B respectively and V open in Z. Then
E(W(C, V)1iC W(C x D, V). Thus ¢ is continuous.

(ii) Let £7'(g) = f, and let W(C, V) be: a sub-basic neighbourhood of f. Let D be

a compact neighbourhood of b = rf(x), x € F. Then £§ Y(W(C x D, V)N W(D))C
w(C, V).

Example 3.2. Let PrinsZ be the subspace oi' Qr(Z) of maps which are homotopy
equivalences of F to some fibre Z, of r : Z — B. Let prin r : PrinsZ — B denote the
restriction of qr(r). This map bhas been used by a number of authors (e.g. [1, p. 120;
15, p. 191]}. Proposition 3.1 siiows that if B is locally compact and F is Eaudorff,

then PrincZ can be identified with a subspace of the fbred mapping space
(FxXBZ).
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Example 3.3. Let r: Z— B be the projection of 2 fibre bundl: with group G and
fibre F. One constraction of the associated principal bundle [16, p. 39] bas total
space r":Z"— B the set of admissibie maps F— Z with the compact-open
topology. Again, if B is locally compact and F is Hausdorff then Z* can be
identificd with & subspace of (F X B Z).

4. The ex-expenential law

An ex-space p = (p,u) over the space B consists of the pair of maps p : X — B,
u:B— X satisfying pu = 15. If § =(q,v), 7 = (r, w) are ex-spaces over B, where
q:Y—>B,r:Z-»E, then an ex-map -»¥ is a map f:q — r such that fo = w.
The set of ex-mags § — 7 will be written Ex(g, 7); the space Ex(], 7) will be Ex(g, 7}
with the compac:-open topology. So we have a category of ez-spaces.

We now follow [13] in defining the smash product of the ex-spaces p, G as the pair
(p A q, w°(u, v)), where

XaY = U {(X%xYa)l((u(b)x V) U (X X o(b)))},

with the identification topclogy with 1espect to tre projection n : X 1Y > X A Y,
the map paq:X AY~— B is induced by XM Y—B; and (4,v) is the map
B->X MY defined by u,v.

Le. g =(q,v), ¥ =(x,w) be ex-spazes as above, where B is Hausdorff. The
furctional ex-space (gr) is the pair (q!r,w') defined as follows. The map
gir:Y!Z — B is the restriction of (gr) to the subspace Y!Z of (YZ) of maps
f:Yy—Z, such that fo(b) = w(b), some b € B. To define w’' we note that the
right-adjoint of BM Y — Z, (b, y)» w(d), is a map B — (YZ) whose image lies in
Y!Z and so restricts to a section w': B—>Y!Z of q!r.

Theorem 4.1 (The ex-exponential law). The exponential correspondence determines
a natural injection

9 :Ex(p A g, 7)—Ex(P, (g, F)).

Also (i) if p, q satisfy any one of the conditions (a) . .. (f) in {6, Theorem 3.5), then 6
is surjective.
Gi} if X is Hausdorff, then 8 is continucus.

Proof. The map pMq-—>p Aq indeces a continuocus injection M(p Aq,rj->
M(p M g, r) which maps the subspace Ex(3 A §, F) of M(r » g,r) to the snace P of
maps f:p Mq->r such that

fx.v(b))= f(u(b),y)=w(d), bEB,XxEX, yEY,

The inclusion q!r-»(qr) induces a continuous injection M(p, q!r)— M(p, (¢7))
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which maps the subspace Ex(p, (§7)) of M(p, q! r} homeomorphically to the spacz Q
of maps g :p ~»(qr) such that

g3 v(d)=gu®d)(y)=w(b) bEB xEX, yEY,

The exponential function @ of [6, Theorem 3.1] clearly maps P into Q, and this
proves the first part. Also if g lies in Q, then 6 7(g), if it is continuous, clearly lies in
P, and this proves (i).

Finally, (ii) follows from [6, Theorem 3.2(i)].

Example 4.2. If B is a point, then the ex-exponential law reduces to the usual

exponential law for pointed spaces. We know of only one circumstance when this

latter exponental function is a homeomorphism, namely when X, Y are compact
Hausdorff.

Example 4.3. We saw in Section 2 that if q,r are locally trivial then there is a
classical topology on (YZ); a similar procedure has been used in [3, p. 372] to
topologise Y!Z when g, F are locally trivial ex-spaces so that, when the base B isa
finite C W-complex and the fibres are locally compact, Y!Z becomes an ex-space.
(The rotation (M/x)(Y, Z) is used in [3] for this space.) However, Theorem 2.1
shows that it is snough for B to be locally compact, Hausdorff and Y to be
Hausdorff for the topology defined in [3] to give an ex-space Y!Z whose topology
agrees with the modified compact open topology.

5. The exponential law for fibred section spsces

Suppose we have the following situation of spaces and maps

y4 X
t l '\\\‘I:
Y ————B

4

where r = gt and B is a Hausdorff space. It is well-known that there is a canonical
bijection

M(t,q*p) = M(qt, p).

We recall that Togs is the category whose objects are maps into B (e.g. p, ¢ above)
and morphisms f : p -» ¢ are maps f : X — Y such that gf = p. The existence of the
above bijection can a'so be expressed by saying that the functor g4* : Tops — Topy
has a left adjoint, i.c. compositior v ith ¢ (where the two functors have the obvious

effect on morphisms). We will sbtain a right adjoint to g*, at least for ' locally
compzt.
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Definition 5.1. We consider Y, Z as spaces over B via q,r and let Y, Z be the
subspace of (YZ) of maps f: Y, -> Z, which are partial sectionsto v : Z — Y. We
cail Y, Z the fibred section space of ¢, t and g .t (= the restriction of (gr) i0 Y . Z)
the fibred section projection for Y ,Z. The reader will notice that in cases where Y,
(and hence Z,) are empty, the fibre of q,.t over B consists of a single map, i.e. the
empty map.

We notice that if f:¢— u is a map iim Topy, then it induces a function
foiGet—=>q.u fols)=sf, s€Y,Z,;

this function is continuous because it is a restriction of one of the maps in [6,
Proposition 2.2(i)]. It is easily seen thai

G :bepy _)TopBe R q#tv j Hfo

is a functor.

Theorern 5.2. The exponential law for fibred section spaces. The exponential corre -
spondence defines an injection

8 :M{q*p,t)—>M(p,q.t),

natural in the variables p and t.

Furthermore (i) if p, q satisfy any one of the conditions (2) ... (f) of [6, Theorem
3.5), then 8 is surjective ;

(ii) if X is Hausdorff, then 0 is continuous;

(iii) if X, Y are Hausdorff, then 8 is a homeomorphism into.

Prcof. Clearly M(q*p,t) is a subspace of M(p 14, r), and is mapped by @ of [6,
Theorem 3.1] into the subspace M(p, q .t) of M(p, (qt)). Hence our present 8 is
weli-defined. Thus (i), (i) and (iii) follov/ fiom [6, Theorem 3.3 and Theorem 3.5].
The precise description of the naturality of 8 is left to the reader.

Corollary 5.3. If Y is locally compact then the functor q" : Tops — Topy is left
adjoint to q, : Topy — Tops.

Remark 5.4. (i) [12, p. 461] describes the analogue of the argument of this section
in the centext of the category of compactly generated spaces in which real vaiued
function separate points, though 1t is not clear if the definition given there enst res
either that ) q ¢ is continuous, or (b) Y ,Z is a ¢pace in the given category. The
corresponding result does however work in the convenient category K of -spacss,
assuming only that B is T-hausdorff (see Section 8 below).

(ii) The analogue of Corollary 5.3 for the category of sets is well-known. and the
existence of a right adjoint to g * in an arbitrary topos is known as the fundamzntal
theorem of topoi ([10, p. 24,, see also [17, p. 140};.
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6. The exponential law for fibred relative lifting spaces

The exponential law of Section 5 involved a projection whose fibres were spaces
of sections; there are similar constructions and iaws for projections whose fibres are
spaces of liftings and spaces of extensions. The concept of relative lifting [14, p. 415]
generalises the concepts of section, lifting, extension; hence the exponential law for
fibred relative lifting spaces (given below} generalises several other exponential
laws.

Suppose that we are given a commutative diagram

Y —a— Z

i l t"l
)

L-—a w

of maps of spaces. We define RL{s, t; 1, j) to be the space of maps f: Y — Z such
that fi = j, tf = s, with the compact-open topology. Suppose further given a map
u: W B; then by composition o: the given maps each of L, Y,Z, W can be
regarded as a space over B and for each b € B we have a commutative diagram

Iy

Lb B 4 Zp,
iy . &
Ve ——— W,

of maps of fibres over b. We define YM Z to be the sub-space of (‘Y£) of maps
fb Yb - Zb such that fblb = ]b, tbfb = S, b€ B.

Let g =us, r=ut, and let qMr: YM Z — E denote the restriction of (qr). We
call YN Z :he fibred relative lifting space for s, t,i, j, u, and we call gM r the fibred
relative lifting projection for YN Z.

If p: X — B is a map, then there is a commutative diagram

XNL ——2Z

iF2
IXXil ] t

XNY —-s W
ph

where p.: XML L, p;: XN Y — Y denote the projections.

Theorem 6.1 (The expaential law for fibred relative lifting sraces). If B is
Hausdorff then the exponential correspordence restricts to a natvral injection
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6 : RL(sp3, t; 1x X i, jp;)— M(p,qM r).

Further (i) if p, q satisfy any of the conditions (a), . . ., (f) of [6, Theorem 3.5], then
0 is surjective ;

(ii) if X is Hausdorjf, then 6 is continuous;

@iii} if X, Y are Hausdorff, then 0 is a homeomorphisin into.

Proof. The proof is a straightfcrward check that the exponential correspondence
maps the subspace appropriately.

The following examples show liow the exponential law of this section includes
various exponential laws discussed previously.

Example 6.2. (6.2.1) We recall that YM Z is a subspace of (YZ); on the other hand
ifL=0,W=B,u=1,then YMZ =(YZ) and qM r = (qr), so (gr) is a particular
case of qMr.

622) L= W=Y,s=1y,t"en YMZ =Y ,Z andqMr = q,r, hence q.r
is a particular case of gMr.

(6.2.3) If L = @, then the fibres of gM r become spaces of liftings and we cbiain
an exponential law for fibred lifting spaces (referred to above).

(6.2.4) If W = B, u = 15 and i is ihe inclusion of the subspace L in the space Y,
then the fibres of q M r are spaces of extensions and we cbtain an exponentiul law for
fibred extension spaces (referred to above).

(6.2.5) Given ex-maps § =(q,v) and F=(r,w), taking W =B, u=1g L=
v(B), i as the inclusion and j as the function taking v(5) over to w(b) for all b in
B (this is a particular case of (6.2.4)), thea qMM r: YM Z —» B is just the functional
ex-space projection q!r:Y!Z — B. In this case Theorem 6.1 concerns the
exponential map from the appropriate subset of M(p M g,r) to M(p,q!r), i.e. it is
an interinediate step in the proof of Theorem 4.1.

(6.2.6) Finally, if L =@ and B, W are singleton spaces then YMZ is just
M(Y, Z) and Theorem 6.1 reduces to the ordinary exponential law for topological
spaces.

7. The homotopy fibred exponential law

This is given in two parts, namely Proposition 7.1 and Theorem 7.2. We assume
that B is Hausdorff throughout this section. Given p : X - B, q : Y — B, the set of
all classes of maps p -> q under the relation “hcmotopic over B™ will be written

[p.4].
Proposition 7.1. Ifp: X — B,q: Y — B, Z — E arc maps then the natural function

[6):fp Dq.rl—Ip.(@)]. [flr[0(N], [fi€lrMq,r]

is well-defined (where 6 is the exponential functior of {6, Theorem 3.1)).



176 P.I. Booth, R. Brown

Proof. If f,g:pMNg-—>r, then a homotopy from f to g over B is a map
(XN Y)xI—Z over B, and this is essentially just a map p Mq Mt —>7, where ¢
denotes the projection BXI—>B. Now plgqnM¢=pltliq and our map
pTltq—r determines a map p M¢—>(qr) [6, Theorem 3.1}, i.e. 2 map X X
I—(YZ) over B. It is easily seen that this last map is a homotopy from 6(f) o0 6(g)
over B, and the result follows.

Theorem 7.2. Ifp:X-—>B,q:Y — B, r:Z — B are maps such that p and q satisfy
either

(@) (X, Y) is an exponential pair in the sense that either Y is locally compact or
X xY is a Hausdorff k-space, or one of (b)-(fy of [6, Theorem 3.5] then
{6]:[p Mg, r]—Ip,(qr)] is a bijection.

Proof. We have to prove that if f,g:p—>(qr) are such that f=gg then
07'(f)=s07'(g), for the result then follows from [6, Theorem 3.5]. The homotopy
from f to g is a map p Mi—>(gr), wh=re i : B X I = B is the projection. in each
case ‘a) ... (f) listed above the pair (p M ¢, q) satisfies the same condition as does
(pq) (forpMt: X XI—> B is the map (p (t)(x,u)=p(x), x €EX, u €I), aud it
follows by [6, Theorem 3.3] that the corresponding function (p M¢)MNg—r is
continuous. Now pNqMet=pNtNq:(XNY)XI—B, (x,y.u)» p(x)=q(y),
(x,y)€X1MY, u€l and we have determined the required homotopy 67'(f)=
07'(g) over B.

Definition 7.3. If p: X — B is a map the1 [secp] will denote the set [15,p] of
classes of sections of p, nder the relation of homotopy via sections.

Corollay 7.4 (homotopy version'of [6. Corollary 3.7]). Ifq:Y—>B,r:Z— B are
maps, then there is a natural function

[#]):[a,r]—[sec(gr)), [¢]if] = [@ (], [f1€(q,r]

(where ¢ is the function of [6, Corollary 3.4)). If Y is a Hausdorff k-space, ther [$]
is a bijection.

Proof. This follows easily from case {c) of Theorem 7.2, taking p to be the
projection B X I — B.

Lemma 7.5 (homotopy version of [6, Lemma 3.5}}). Givenamapq:Y->Banda
space W if t = t(w) is the projection W X B — B, then
[€):[Y, Wl=[q.e], [E1WUFD =€) [flely, W]

(where ¢ is the function of [6, Lemma 3.8)) is a bijection.

In other words the functor
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HTops >HTop, (¢:Y->B)w Y, [flsr[f],
is left adjoint to the functor

HTop—>HTops, Wer it [fle[iaxf]
Proof. This is an easy modification of the proof of [6, Lemma. 3.8(i)].

Coroi.ary 7.6 (homotopy version of [6, Corollary 3.9]). Given maps p:X — B,
q : Y —> B and a space W ; t will denote the projection t(W): W X B -» B. There is a
natural function

[W]: (XY, W]=[p.(g)), [#1UD=[¢{)) HeXnyY, W]

(W is the function of [6, Corollary 3.9}). If p, q satisfy any one of the conditions (a). ..
(f) of Thecrem 7.2 then [¢] is a bijection.

Example 7.7. If XY has the homotopy type of a CW-comlex and W =
K(m, n) then Corollary 7.6 determines a bijcction H*(X MY, 7)—>[p, (qr))], a fact
that will be used elsewhere in cohomology calculations.

Proof. [§'] is the composite of [£] of Lemma 7.5 aad [@] of Theorem 7.2.

Corollary 7.8 (homotopy version of [6, Corollary 3.10]). If ¢ : Y > B is a map, W is
a space and t denotes the projection t(W)): W X B — B then there is a natural function

[n]:[Y, W]—>[sec(qr)l, [21AfD=[n(N). [Fl€lY, W],
(n denotes the function of [6, Corollary 3.10]). If Y is a Hausdorff k -space ther: T+, is
a bijection.

Example 7.9. If Y has the homotopy of a CW-complex and W = K(m, n) then
there is a bijection H"(X, m)—> [sec(qr)]. This fact that will be used elsewhere in
cohomology calculations.

Proof of Corollary 7.8. The result is simply a combination of Corollary 7.4 and
Lemma 7.5.

8. Convenient categories
(8.1) Ii we attempt to modify the above arguments to the category of Hausdorft
k-spaces we face the difficulty that some cf the mapping spaces constracted may be

non-Hausdorf (compare with [6, Secticn 7).

(8.2) If our arguments are removed to the category K of ¥-spaces then this difficulty
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goes. In this category tte map a of Theorem 1.1 is casily shown to be a
homeomorphism, the f-spuces involved being subject only to the restriction that A
and B are t-Hausdorif. The 2=siest method of proof here involves applying the
fibred exponentnal law (see: [6, Theorem 7.3]) to maps over Ainto ATIYANZ)
and A M(YZ). It follows thzt the K analogues of the results of Sections 2, 3 hold
and that the exponential functions of the ex-fibred section-, fibred relative lifting-
and homotopy-exponential laws are homeomorphisms (in the last case bijections),
the t-spaces involved being subject only to'the restriction that B is -Hausdorff. In
pardcular, the category of ex-tspaces) over a given i-Hausdorff t-space B is a
symmetric monoida! closed (but n: zariesian closed) category. Another advantage
of the category of T-spuces is that the 6 of the ex-exponential law of Theorem 4.1
becomes a homeomorphisr (in the case of the category of all topological spaces we
found no condition suffic.ent to make 6! continuous). An additional related
difficulty in dealing with e-spaces in the ordinary category is that we have been
unable to prove that for given ex-space X, Y, suitable conditions imply tnat X A Y
is Hausdorff. However, the following holds in the category of ¥-spaces.

Proposition 8.3. Let p: X —B, q:Y—B be \-Hausdorff spaces over the 1-
Hausdorff space B. Let u, v be sections of p, q respectively, so that (p,u), (q, v) are
ex-spaces. Then the corresponding i-ex-smash product space X a Y is ¥-Hausdorff.

Proof. There is an identification map ¢ : X MY =X A Y {(where XT1Y is the
k-product). To prove X A Y ¥-Hausdorft it is sufficient to prove the :quivalence
relation R defined by ¢ is closed (in the ¥-product). But R i: the union of the
diagonal in (XM Y)X(XNY), the set A={xyx,y)EXNY)XXMNY):
q(y)=q(y’) and x = x’ = up(x)} and

A'={(xy,x,y)EXNY)X(XNY) p(x)=px)and y =y'{= vq(y)}.

The diagonal is closed (since X M Y is f-Hausdorff) and A, A’ are closed because
they are the intersections of sets on which various maps into f-Fiausdorii spaces
agree. It follows that R is closed.
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