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Abstract 

A classical theory gives an equivalence between the category of covering maps of a space and 

the category of actions on sets of the fundamental groupoid of the space. We give a corresponding 

theory in dimension 2 for simplicial sets as a consequence of a General&d Galois Theory. 

This yields an equivalence between a category of Z-covering maps of a simplicial set B and 

a category of actions on groupoids of a certain double groupoid constructed from f3. @ 1999 
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0. Introduction 

Thcrc is a classical description of covering maps of a “good” space B in terms of 

actions of the fundamental group rrl(B,h) of B. This description can instead be used 

as a definition of the fundamental group. 

There are second order analogues of the fundamental group. These include not just 

the second homotopy group but also the crossed module formed by the second relative 

homotopy group and the fundamental group, as considered by Whitehead [ 121 and by 

Mac Lane and Whitehcad [ 1 I]. Several closely related structures were proposed hy 

Quillen (the crossed module of a fibration), Brown and Higgins (the double groupoid 

of a pair [3], crossed modules over groupoids [4]), Loday (the fundamental cat’-group 

of a map [IO, 5]), and others. 
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However there has been no corresponding theory of second order covering maps. The 

purpose of this paper is to develop such a theory for simplicial sets, as a special case 

of Galois theory in categories [7]. The second order notion of fundamental groupoid 

arising here as the Galois groupoid of a fibration is slightly different from the above 

notions but it yields the same notion of the second relative homotopy group, considered 

as a crossed module. 

The paper contains four sections. The first section recalls an appropriate simplified 

version of Galois theory in categories with respect to an adjunction [7]. The second 

section describes the connection with the classical theory of coverings. The main re- 

sults are in the third section: this gives the Galois theory with respect to the adjunction 

between simplicial sets and groupoids. The fourth section gives the corresponding no- 

tion of second order covering and second order fundamental double groupoid; these 

second order coverings are described as the “fibrational ” internal actions of this double 

groupoid in the category of groupoids. 

1. Galois theory in categories 

Let @ be a category with pullbacks and .F a class of morphisms 

isomorphisms, closed under compositions. and pullback stable: 3 

as a pseudofunctor 

in @ containing all 

can be considered 

defined as follows: given an object B in C:, the objects of 9(B) are all pairs (A, x), 

where 2: A + B is a morphism in .F and morphisms (A, x) + (A’,%‘) are all commu- 

tative triangles in @ 

.4-A’ 

We will write .9(B) = (C 1 B). 

Note that for any morphism p: E -B in 3 the pullback functor 

T(p)=p*:(CLB) 4 (ClE) 

(A, x) H (E x/j A, J”‘r ) 

has a left adjoint p! : (C J, E) - (C 1 B) which is the composition with p, i.e. for a given 

object (D, 6) in (C 1 E). we have IA(D. ii) = (D. p(S). If in addition p* is monadic, then 

we say that p : E 4 B is an c$%ctiw .F-rl~~.scwtt tttotphisttt. 

Let 



be an adjunction between categories @ and X with pullbacks and let .P and 3’ 

be classes of morphisms in C and X respectively satisfying the conditions above. If 

/(.F) 2 F’ and H(.F’) i 3 then for any object B E @ we obtain an induced adjunction 

I” 
(a3 LB). (X i l(B)), i.’ : /“HR 2 1 

HB 
11~ : 1,~: I Bj + H”IB, (X I I(B)) 

in which 

P(A, x)=(J(A),I(r)k 

H’W, (/)I= (b’ x H/(B) H(X 1, P”I ) 

via the pullback 

p.3 

B XH/(B) H(X) - H(X) 

P’I I ,I H(4) 

B HI(B) 
‘Ia 

for any (X. (b) in (X 1 I(B)); 

‘I$,, = (x11.1) : A -B xf,/,B) HI(A); 

L1 
i;( .\ ,I, , = ::.yI( p/Y), 

i.e. it is the composition 

Let f = (UZ, X. I, H, 11, c, .F-,.F’) be the data above; as in [7] we will say that r is a 

Gukois stwctur-r. 

Let p:E - B be an effective .F-descent morphism, i.e. (E, p) is a nwnrrrlic cJ.\-tension 

in the sense of [7, Definition 6.71 and let Gal,(E, p) = 

l(E x8 E x8 E);l(E x8 E)+(E) 

be its Galois pregroupoid in the sense of [7]. The fundamental theorem of Galois theory 

[7, Theorem 6.81 establishes a certain category equivalence 

W, (E Y) b Co.splr(Gd,(E, /I), x) (1) 

between a full subcategory .S/JI~(E, p) of (UI L B) whose objects can be described as 

“coverings split over (E, p)” and a certain category Cos/A-( Gcrl,(E, p), W) of “co-split 

Gcr/t(E, p)-actions” in X. In this paper we will consider only a special case where 

SpI,.(E, p) = {(A, x) E (@ 1 B) 1 &xn,,,,,,-, ,is an isomorphism} (2) 



and 

Cospl,~(Gul,(E, p), X) = X(i”‘i(‘r./” n (X 1 l(E)) (3) 

~ see [7] for details. 

According to the results of [7] a suthcient condition for that is: 

2. The “easiest case”; coverings of abstract families 

Let A be a category and let C = I;ir/rr(A) be the category of families of objects in A; 

a morphism (.f‘. J) : (A;.);., 1 - (A:, ),J~ 1~ consists of a map .f’ : A + A’ and morphisms 

x;. :A,. +A’,(;., for all 3. t A. For example. Sets = FLUX(~), where Sets is the usual 

category of sets and tl is the category with exactly one morphism. 

If A has pullbacks, then so also does C, but the converse is not true; we will assume 

only that @ has pullbacks. 

Consider the following Galois structure r = (@, X. I. H, rl, c, ,F/;, R’): 

@ = FN~I(A) as above, assuming that A has a terminal object t, and @ has pullbacks; 

X = Srts; 

1 :(A;),,,1 H A; 

H :X w c.,.-cx. t = (A,),,, where A, = t for all x E X, with obvious tl and r:; 

,F and .‘i’ are the classes of all morphisms in 6: and X, respectively. 

If p: E + B is an effective descent morphism in @ with cwwwtrd E, i.e. with 

E in A, then SpI,.(E, p) consists of those (A, 2) c (@ I B) for which there exists an 

isomorphism in (C 1 E) of the fomr 

(4) 

where CE is a (possibly infinite) coproduct of copies of E with the canonical mor- 

phism to E - in fact this coproduct is just a family each member of which is E. 

Clearly (4) agrees with the ordinary notion of covering space. Moreover, under an 

appropriate choice of C = FLUH( A ) and p : E 4 B, the category equivalence (1) gives 

the classical equivalence 

CM>(B) - Set.~“(~’ (5) 

between the category COP(B) of covering spaces over a “good” topological space B, 

and the category SetsK1”’ of its fundamental group actions. In fact (5) is a special 



case of the covering theory in a molecular topos ~ see [I], which itself is a special 

case of the situation considered here as explained in detail in [8]. 

Note that the category Sets ““’ of simplicial sets can also be used as @ (any category 

of the form Srts”, where D is a small category, is a molecular topos and in particular 

is the category of families of its connected objects), which again will give (5) as a 

special case of (I ). 

3. The Galois structure for second order coverings 

Consider the following Galois structure I‘ = (C, XL. I, H, rl. E, 3.3’): 
c = &[sfl” is the category of simplicial set ~ here and below we use as far as 

possible the terminology and notation of Gabriel and Zisman [6] for simplicial sets; 

X is the category of groupoids; 

H:X - @ is the canonical inclusion, often called the nerve functor, and written as 

D’ in [6]; 

I = 711 : @ -- X (written as 17 : A”6 +Yr in [6]) is the left adjoint of the canonical 

inclusion H : X + @, with obvious r7 and E; 

.F is the class of jibrations in the sense of Kan [6, p. 651 and so .P’ = .=i; n X is the 

class of fibrations of groupoids in the sense of [2] ~ so H(.F’) c .F by the definition, 

and clearly also /(.P) = 9’. 

Recall [6. p, 651 that a simplicial set B is a Kan complex if and only if the unique 

map Bt Jl is a fibration. 

Proof. Since J:: IH - IX, is an isomorphism, we have to show that for any fibration 

of the form cjj:X+/(B) in X the morphism l(po):f(B XHI(H) H(X))--IH(X) is 

an isomorphism of groupoids. Furthermore, since the functors I and H do not change 

vertices of simplicial sets, it suffices to show that for any vertex (71.x) of BxH,(H)H(X) 

the homomorphism 

is an isomorphism. 

The pullback diagram 

P’l 

B xHI(B) H(X) - B 



gives a commutative diagram with exact rows 

where F = H(~)-‘(vB(~)), and the homomorphism (6) is an isomorphism by the stan- 

dard (non-abelian) five-lemma (see, e.g., [2]) since we know that 

(i) all arrows not involving rco are group homorphisms; 

(ii) rr~(H(B),~~a(h))=O since HI(B) is a groupoid considered as a simplicial set; 

(iii) the projection ({h} x F, (hx)) --i (F,x) is an isomorphism and hence so also 

are the induced maps on rcr and ~(1; 

(iv) ~~I(B,~)-‘~cI(HI(B),~?B(~)) is an isomorphism by the definition of rrr. 

The exact sequence for a fibration used above is described in [6, p. 1171 ~ we may 

use it here since B is a Kan complex and H(X) + HI(B) and PYI : B XH/(B) H(X) + B 

are fibrations. 0 

Proposition 3.2. Let p : E + B hc LI swjwtiw jilwution qf Km conzpkws. Then p is 

an ~~~c.tice dcsctwt mouph71 iri @ .smti,sf~~ingj the Condition 1.1. 

Proof. Since p is surjective and C is a topos, p is an effective global-descent morphism 

and in order to show that p is an efrective .F-descent morphism we need only show 

that if 

is a pullback diagram in which pt.1 : E XHA + E is a fibration, then so also is x : A + B 

(see [9] for details). 

Consider a commutative diagram 

A; ’ )A 

i 

A”- B 
f 

(7) 

in which i is the inclusion of the k-horn of A”. We have to prove that there exists a 

completion ,f’ : A” + A such that a,/” = .f’, ,f”i = /I. 



Choose .f; : A” -+ E such that p-f, = .f‘. This is possible since p is surjective. Let 

h=~f;i,y):il;l~EXDA: 

Since art is a fibration, the lift .f{ exists, and then przf{ is the required completion. 

We can apply Proposition 3.1 to complete the proof once we know that p satisfies 

the Condition 1.1. For this it suffices to show that E, E xg E, E xg E xg E are 

Kan complexes. This follows from the assumptions that E is Kan and p : E - B is a 

fibration, since then E XB E x8 E --+ E xg E + E are also fibrations. Cl 

From this and the results of [7] described in the first section we obtain 

$ ! HJ( pry ) 

HJ(E 1 

In addition we have 

Proof. We need to show only that there exists a morphism ,f : E + E’ with p!t‘ = p. 

This is a standard lifting argument on each component of E. 0 



Proof. As mentioned in [7. 5.5~1 it suffices to show that the canonical morphisms 

I((E XB E) XF: (E XB E)) - I(E XB E) X/(E) I(E XB E) 

I(@ XB E) XF (E XB E) XF (E XK E))--/(E X,JI E) X/(E) I(E X/I E) 

x/,i:,l(E XH E) 

are isomorphisms. However, this follows from the more general known statement 

(which can be easily proved using again standard arguments involving the exact 

sequence of a fibration): The functor I = rrt preserves all pullbacks 

in which L,N are Kan complexes and ,f’ is both a fibration and a split surjection. cl 

Clearly Gal,(E, p) contains as an “object group” Loday’s cat’-group 

~I(E XB E,*) zn,(E.*) 

of the fibration p: E + B [IO]. This cat’-group is known to be equivalent to other 

similar structures, for example the crossed module nl(F, *)- rrt(E, *). due to Quillen. 

4. Second order coverings and the second order fundamental groupoid 

The general results of [7] applied to the Galois structure described in the previous 

section suggest the following: 

Definition 4.1. A fibration ^A : ,4 - B of Kan complexes is said to be a src~~r/ o&r. 

coreri~zg if there exists a surjective fibration p : E -- B such that the diagram (8) is a 

pullback. 

Note that instead of saying that the diagram (8) is a pullback we could say that 

E x~ A + E can be obtained from a fibration of groupoids X + HI(E), (where H/(E) 

is the ordinary fundamental groupoid I(E) = n,(E) of E, considered as simplicial set) 

by pulling back along E 4 HI(E). So our “second order coverings” are in the same 

relationship with the usual coverings, as groupoids are with sets. 



Let 2-Car(B) be the category of second order coverings of B. From Proposition 3.4 

and Corollary 3.3 we obtain 

n,(E xLIE x,E)=q(E xBE)=n,(E) 
i 

Remark 4.3. As mentioned in Proposition 3.5, Gal,(E, p) is just a double groupoid 

~ but it is better to consider it as an internal groupoid in the category of groupoids, 

since there are two ways to consider a double groupoid as such an internal groupoid. 

Now we can define the second order fundamental groupoid of a Kan complex B 

as Gcrl,(E, p). where I_‘: E -B is as in the theorem above. It is determined uniquely 

up to certain “Morita equivalence”, and naturally contains the fundamental groupoid 

n,(B) together with the action of this groupoid on the family { nl(B.h)}hEB of second 

homotopy groups of B. 

Note that all fibres of second order coverings are groupoids, so that this theory is 

related to that of the classification of fibre bundles with fibre a K( G. I ), where G is a 

groupoid. 
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