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Abstract

We compute the nth relative homotopy group of (Zn, Zn−1) when Z∗ is a product of certain
filtered spaces. A consequence is information on the homotopy of ΩΣX when X is the classifying
space of a crossed complex.

Introduction

For a filtered space X∗ = {X0 ⊆ X1 ⊆ · · · }, the relative homotopy groups πnX∗ = πn (Xn, Xn−1, a)
with a ∈ X0, n > 2, together with the fundamental groupoid π1 (X1, X0) and the usual actions and
boundaries, form the fundamental crossed complex1 Π(X∗); see [2] and [6]-[9]. For X = colimX∗ and
Y = colimY∗ we obtain the usual product filtration X∗ ⊗ Y∗ of the topological product X × Y by

(X∗ ⊗ Y∗) =
⋃

i+j=n

Xi × Yj . (1)

Here the product is taken in a convenient category of spaces.
In this paper we deal with the following problem: Is it possible to compute the relative homotopy

groups Π (X ⊗ Y )n of the product filtration X∗⊗Y∗ in terms of the relative homotopy groups (ΠX∗)p,
(ΠY∗)q of X∗ and Y∗ respectively?

∗This is a slightly edited version of the paper published in Journal of Pure and Applied Algebra 89 (1993) 49-61.
†This work was supported by a University of Wales Visiting Professorship.
‡Email: ronnie.profbrown ‘at’ deletethis.btinternet.com
1In this version we use ΠX∗ for the fundamental crossed complex rather than πX∗ as in the original version. This is

in keeping with current usage.
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If X and Y are CW-complexes with the skeletal filtration X∗ and Y ∗, we have the isomorphism
of crossed complexes

θ : ΠX∗ ⊗ΠY ∗ ∼= Π(X∗ ⊗ Y ∗) , (2)

where X∗⊗Y ∗ = (X ⊗ Y )∗ is the skeletal filtration of the product X×Y and ΠX∗⊗ΠY ∗ denotes the
tensor product of crossed complexes introduced in [8] - indeed this isomorphism is a basic motivation
for the definition of the tensor product C ⊗ C ′ of crossed complexes C, C ′. The generators of ΠX∗

are the cells e in X and the isomorphism θ in (2) carries the generator e⊗ f of the tensor product to
the product cell e× f .

The main purpose of this paper is the generalisation of (2) to a wider class of filtered spaces. We
say that a filtered spaceX∗ is cofibred if for all n > 0 the inclusion Xn → Xn+1 is a closed cofibration.
Moreover, X∗ is connected if for i > 0 the induced function π0X0 → π0Xi is surjective and if for n > 1
the pair (Xn, Xn−1) is (n− 1)-connected.

Theorem 0.1 (Product Theorem) For filtered spaces X∗, Y∗ there is a unique natural transfor-
mation

θ : ΠX∗ ⊗ΠY∗ → Π(X∗ ⊗ Y∗)

which for CW-complexes coincides with θ in (2). Moreover, θ is associative. If X∗ and Y∗ are cofibred
and connected, then so is X∗ ⊗ Y∗, and θ is an isomorphism.

We also give various applications of this result. In particular, we shall compute for a 2-type X the
homotopy group π3ΣX. Recall that in [10], a Generalized Van Kampen Theorem is applied to yield
for any connected space X an exact sequence

π2X → π3ΣX → π1X⊗̄π1X → π1X → 1,

where −⊗̄− is the tensor product of groups each acting on the other defined in [10]. In this paper we
shall determine π3ΣX completely in terms of any crossed module representing the 2-type of X. For
this we use the classifying space BC of a crossed complex C in the sense of Brown and Higgins [9].
If C = (C2 → C1) is just a crossed module we obtain from the computation of π3 (ΣBC) a formula
for the second homology H2 (BC). This result uses the James construction on crossed complexes
which was already considered in [3] and [4]. This formula also generalises a classical result of Hopf for
H2G = H2BG.

1 Proof of the Product Theorem

We first show that there is at most one natural transformation θ as described in the Product Theorem.
For this consider the closed n-cell En which is a CW-complex with the skeletal filtration, namely
E0 = {1}, E1 = {0} ∪ {1} ∪ e1, En = e0 ∪ en−1 ∪ en, n > 2. Now for any elements [a] ∈ ΠX∗ and
[b] ∈ ΠY∗ we obtain by naturality of θ the commutative diagram

ΠEp ⊗ΠEq θ
∼=

//

a∗ ⊗ b∗
²²

Π(Ep ⊗Eq)

(a⊗ b)∗
²²

ΠX∗ ⊗ΠY∗
θ // Π(X∗ ⊗ Y∗)

(3)
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where the top row is the canonical isomorphism in (2). For the identity 1n of En we thus have the
formula

θ ([a]⊗ [b]) = (a⊗ b)∗ θ ([1p]⊗ [1q]) , (4)

which shows that there is at most one natural transformation θ as described in the Product Theorem.
It is laborious to show directly that this transformation is well defined by (4). It is shown in

[9] that an easy construction of θ may be obtained by working in the category of ω-groupoids and
using the equivalence of this monoidal closed category to that of crossed complexes [8]. The reason
for this easy proof is that the former category is based on cubical sets, and cubes satisfy the formula
Im ⊗ In ∼= Im+n.

Let K∗ be a filtered CW-complex K, filtered by subcomplexes Kn which satisfy

Kn ⊆ Kn for n > 0, (5)

where Kn is the n-skeleton of K. Then clearly K∗ is cofibred and connected. We now show the
following:

Lemma 1.1 The Product Theorem holds for filtered CW-complexes X∗ and Y∗ which satisfy condition
(5).

Proof Let X∗ and Y ∗ be the skeletal filtrations of the CW-complexes X and Y respectively. By
condition (5) we have filtered maps i : X∗ → X∗, i : Y ∗ → Y∗, where X∗ and Y ∗ denote the skeletal
filtrations of X and Y . For a cell e in X, dim(e) denotes the dimension of e, while we write deg(e)= n
if e is a cell in Xn\Xn−1, so that deg e 6 dim e. Using the characteristic map fe : Ed → X∗ of the
cell e we obtain the generator

e = (fe)∗ [1d] ∈ ΠX∗ (6)

denoted also by e. We also have the induced morphism

i∗ = Π (i) : Π (X∗) ³ Π(X∗) (7)

which satisfies i∗ (e) = 0 if and only if deg e < dim e. It follows easily from the exact sequences of
the triples

(
Xn, Xn, Xn−1

)
and

(
Xn, Xn−1, X

n−1
)

that i∗ in (7) is surjective. An element a in ΠX∗

is called degraded if i∗a = 0. Clearly, if a is degraded, so is δa.
We now consider the product P = X × Y which is a filtered CW-complex with Pn = (X∗ ⊗ Y∗)n

and which satisfies Pn ⊆ Pn by the assumptions on X∗ and Y∗. For product cells e× f in P we have

deg (e× f) = deg (e) + deg (f) ,

dim (e× f) = dim (e) + dim (f) . (8)

It follows that if e× f is degraded, then one of e, f is degraded.
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We now consider the following diagram, in which P ∗
n is the skeletal filtration of Pn, so that for

example Pn
n = Pn:

πn+1

(
Pn+1

n , Pn
) qn // // πn+1 (Pn, Pn) ∂ // πn

(
Pn, Pn−1

) i // // πn

(
Pn, Pn−1

) j // //

τ

((RRRRRRR
πn (Pn, Pn−1)

(ΠX∗ ⊗ΠY ∗)n

θ∗ ∼=
OO

i∗⊗i∗ //

i′
OO

(ΠX∗ ⊗ΠY∗)n

θ∗

OO

πn

(
Pn

n−1, P
n−1

)
in−1

OO

qn−1 // // πn

(
Pn−1, P

n−1
)

In this diagram, qn is surjective, by the exact sequence of the triple
(
Pn, Pn+1

n , Pn
)
, and πn+1

(
Pn+1

n , Pn
)

is generated by degraded product cells e×f of dimension n+1. But (θ∗)−1 δqn (e× f) is a sum of terms
involving δe⊗f and e⊗δd, so that (i∗ ⊗ i∗) (θ∗)−1 δqn = 0. By exactness of the row at πn

(
Pn, Pn−1

)
,

there is a morphism τ , as in the diagram, such that τi = (i∗ ⊗ i∗) (θ∗)−1. Now (i∗ ⊗ i∗) in−1 = 0,
since πn

(
Pn

n−1, P
n−1

)
is generated by degraded product cells e × f . Hence τi′ = 0. By exactness of

the sequence i′−→ · j−→, there is a morphism θ̄ : πn (Pn, Pn−1) → (ΠX∗ ⊗ Y∗)n such that θ̄j = τ . Then
θ∗θ̄ = 1. But θ̄ is surjective, by commutativity of the diagram. So θ∗ is an isomorphism.

Finally, that πi (Pn, Pn−1) = 0 for i < n is proved by a similar argument. This completes the proof
of the lemma. 2

Proof of the Product Theorem The fact that X∗ ⊗ Y∗ is cofibred is a consequence of the product
theorem for cofibrations.

We say that a map f : K∗ → X∗ between filtered spaces is a weak equivalence if fn : Kn → Xn is
a weak homotopy equivalence in each degree n > 0 and if f0 is surjective. Clearly a weak homotopy
equivalence induces a map f∗ : ΠK∗ → ΠL∗ which, restricted to each point a ∈ K0, in an isomorphism.
For weak equivalences f as above, and g : L∗

∼−→ Y∗, between cofibred filtered objects, the tensor
product f ⊗ g : K∗ ⊗L∗

∼−→ X∗ ⊗ Y∗ is also a weak equivalence. This follows since (X∗ ⊗ Y∗)n can be
obtained as a colimit of a diagram in which only products Xi×Yj occur. Moreover, X∗⊗Y∗ is cofibred
by the union theorem for cofibrations; see [11]. Using the well-known method of CW-approximations
we see that for a connected cofibred filtered space X∗ there exists a filtered CW-complex K∗ as in (5)
together with a weak equivalence f : K∗

∼−→ X∗. In the same way we obtain a CW-approximation
g : L∗

∼−→ Y∗ where L∗ satisfies (5). So the Product Theorem is now a consequence of the special case
in Lemma 1.1. 2

We point out that in degree 1 the Product Theorem is also a consequence of the Seifert-Van
Kampen theorem. For this we observe that we have for cofibred and connected filtered spaces X∗, Y∗
the pushout diagram of pairs

(X0 × Y0, X0 × Y0) //

²²

(X0 × Y1, X0 × Y0)

²²
(X1 × Y0, X0 × Y0) // (P1, P0)
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where P∗ = X∗ ⊗ Y∗. By applying the fundamental groupoid functor π to this diagram we obtain the
isomorphism

θ : (C1 ⇒ C0) ∼= Π (P1, P0) (9)

where C = ΠX∗ ⊗ ΠY∗, C0 = P0 = X0 × Y0. This is the degree-1 part of the isomorphism in the
Product Theorem.

2 On the James construction

In this section we apply the Product Theorem to the James construction of a filtered space. For this
we need the following notion of a ‘free monoid’:

Definition 2.1 Let (C,⊗) be a monoidal category with a terminal object ∗ satisfying X ⊗ ∗ = X =
∗ ⊗X for X ∈ C. Let (X, ∗) be a pointed object in C, i.e. an object X with a morphism 0 : ∗ → X.
Then we get for the n-fold tensor product X⊗n the maps (1 6 t 6 n)

it : X⊗(n−1) → X⊗(n)

given by it = X⊗(t−1) ⊗ 0⊗X⊗(n−t). These maps define the diagram

∗ // X
//
// X⊗2

////// X⊗3 · · ·
the colimit of which in C is written J(X). In fact, if the bifunctor ⊗ preserves the colimits used for
the definition of J(X), then J(X) becomes a monoid in C (with respect to ⊗), and the morphism
X → J(X) makes J(X) the free monoid on the pointed object (X, ∗). In case C = Top is a convenient
category of topological spaces with ⊗ defined by the product, and X is a pointed space, then J(X) is the
classical James construction or infinite reduced product of X. The topological monoid JX is homotopy
equivalent to the loop space

JX ∼= ΩΣX (10)

provided X is path-connected and ∗ → X is a cofibration [11].

Now let C be the category of filtered objects in Top (see [2], Chapter III, Section 1). Then the
filtered product of our Introduction is a tensor product as in Definition 2.1 and the James construction
JX∗ of a pointed filtered space X∗ is a filtered space with

colim(JX∗) = JX, X = colimX∗. (11)

For x ∈ Xn\Xn−1 we write deg(x)= n. Then (JX∗)n consists of all words x1 . . . xi with deg(x1) +
· · ·+ deg(xi) 6 n, xj 6= ∗, i > 0. On the other hand, for a pointed crossed complex A the free monoid
JA is defined by the tensor product of Brown and Higgins [8] which was used in the Product Theorem.
The next result is an application of this theorem.
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Theorem 2.2 For a pointed filtered space X∗ there is natural transformation

η : J(ΠX∗) → Π(JX∗).

Moreover, if X∗ is cofibred and connected, then so is JX∗ and the natural transformation η is an
isomorphism.

Proof The natural transformation θ in the Product Theorem is essentially the identity if X∗ or
Y∗ is the base point ∗, and so θ is compatible with the diagram in Definition 2.1. This yields the
transformation η in Theorem 2.2.

Suppose now that X∗ is cofibred and connected. By the Product Theorem, we know that X⊗n∗ is
cofibred and connected. The construction of JX∗ by successive coequalisers and unions then shows
that JX∗ is cofibred.

We now apply the Van Kampen Theorem for the fundamental crossed complex of a filtered space
[7], Theorem C. This is stated in terms of a filtered space Y∗ and an open cover U = {Uλ} of Y such
that U is closed under finite intersection and each Uλ∗ = Uλ∩Y∗ is ‘homotopy full’. This last condition
is equivalent to the connected condition, as is shown by manipulations with homotopy exact sequences
of triples. The Van Kampen theorem states that the diagram

⊔
(λ,µ) Π(Uλ ∩ Uµ)∗

a //

b
//
⊔

λ ΠUλ∗
c // πY∗,

in which a, b, c are induced by the maps Uλ ∩ Uµ → Uλ, Uλ ∩ Uµ → Uµ, Uλ → Y , is a coequaliser
diagram of crossed complexes. A consequence (not stated in [7]) is that Y∗ also is connected.

By applying homotopy colimit methods, one finds that the fundamental crossed complex preserves
colimits obtained by pushouts of a cofibration, and by unions of cofibrations, for connected cofibred
filtered spaces. This proves Theorem 2.2. 2

In case X∗ is the skeletal filtration of a reduced CW-complex X, i.e. one with X0 = ∗, we see also
that (JX)∗ is the skeletal filtration of the CW-complex JX. In this case Theorem 2.2 coincides with
the special case given in Theorem C6 of Chapter III of [3]. Moreover , if X∗ is simply the pair ∗ ⊆ BG
where BG is the classifying space of a group G, then ΠX∗ is the reduced crossed complex consisting
of G concentrated in degree 1. In this case we get by Theorem 2.2 the isomorphism

η : J(G) ∼= ΠJ∗(BG), (12)

where J∗(BG) = J(X∗) is the word-length filtration in J(BG). This special case of Theorem 2.2 is
proved in [4] by different methods. The paper [4] investigates the properties of the ‘crossed tensor
algebra’ J(G) of the non-abelian group G.

We now determine the first two terms of JC. First, if µ : M → P , ν : N → P are crossed P -
modules, then their coproduct in the category of crossed P -modules will be written κ : M ◦P N → P .
This construction is studied in [5] (and written M ◦ N) and in [12], where it is called the Pfeiffer
product (and written M ./ N). It is shown in [5] that M ◦P N may be represented as a quotient
of either of the semi-direct products M n N or M o N by the subgroup {M, N} generated by the
elements

(−m + mn,−n + nm)

for all m ∈ M , n ∈ N (where M and N operate on each other via P ), and that κ(m,n) = (µm)(νn).
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Proposition 2.3 If C is a reduced crossed complex, then the first two terms of J(C) in dimensions
2 and 1 form the crossed module

C2 ◦C1 J2(C1)
κ−→ C1,

the coproduct of the crossed C1-modules

δ : C2 → C1 and δJ : J2(C1) → J1(C1) = C1.

Proof The proof is by verification of the universal property for this part of J(C). So let A be a
reduced crossed complex which is a monoid in the category of crossed complexes, i.e. is equipped
with a multiplication A ⊗ A → A with the usual monoid properties. Let f : C → A be a morphism
of crossed complexes. Then f1 : C1 → A1 extends uniquely to a morphism of crossed complexes
J(C1) → A. This, with f : C → A, determines uniquely a morphism over f1 of crossed modules

C2 ◦C1 J2(C) → A2.

This completes the proof. 2

Recall that if C is a reduced crossed complex then for n > 2 we define

Hn(C) = Ker(δn : Cn → Cn−1)/Im(δn+1 : Cn+1 → Cn),

while π1C = Cok(δn : C2 → C1). It is known [4] that if G is a group regarded as a crossed complex
with G concentrated in dimension 1, then

H2(JG) = Ker(G⊗̄G → G). (13)

The next result gives information on H2(JC) when C is the crossed module i : K ↪→ E with i the
inclusion of a normal subgroup of E. We write this crossed module (crossed complex) as K ¢ E.

Theorem 2.4 If K ¢ E is an inclusion of a normal subgroup, then there is a commutative diagram
with exact rows

H2 (JE) //

²²

H2 (J (K ¢ E)) // //

²²

(K ∩ [E, E]) / [K, E]

H2 (E) // H2 (J (K ¢ E)) /Q (E) // // (K ∩ [E, E]) / [K, E]

where Q(E) is generated by classes of cycles e2 for e ∈ E.

Proof Let L = (K ∩ [E,E])/[K,E]. Let C be the crossed complex consisting of i : K ¢ E as its
crossed module part and trivial elsewhere. By Proposition 2.3, the 2-cycles of JC are represented by
elements (k, x) of the semi-direct product K o J2(E), such that ik = −δJx. Define the morphism

φ : K o J2(E) → K ∩ [E,E]

by (k, x) 7→ δJx. Then φ(−k+kx,−x+xk) ∈ [K,E], so that φ defines a morphism ψ : K◦EJ2(E) → L.
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Next we verify that ψ vanishes on boundaries. According to (1.4) of [4], J3(C) is generated by
elements ke and z for k ∈ K, e ∈ E, z ∈ J3(E). Then according to (6) of (1.4) of [4],

δ(ke) = (ik)e− (−k + ke),

so that
φδ(ke) = −i(−(−k + ke)) ∈ [K, E].

On the other hand,
ψ(δz) = δ2z = 0.

It follows that ψ defines a morphism τ : H2(C) → L. This morphism is surjective since if k ∈ K∩[E, E],
then k = δx where x ∈ J2(E), and so (−k, x) represents an element of H2(JC) mapped by τ to k.
The morphism σ : H2(JE) → H2(JC) is induced by the inclusion E → C. Clearly τσ = 0. Suppose
now that (k, x) ∈ KoJ2(E) represents a cycle in J2(C) such that δx ∈ [K,E]. We also write (k, x) as
k +x. At this stage, we have to be careful about notation. We write k for an element of K considered
as an element of C2 = K, and we write ik for the same element considered as an element of C1 = E.
Then the condition on δx implies that there are a finite number of elements kr of K and er of E such
that

δx =
∑

r

(−(ikr)er + ikr).

Then y =
∑

r krer is an element of J3(C) and

δy =
∑

r

(ikr)er +
∑

r

(−ker
r + k) = z + w,

say. But ik = −δx = −iw. So k + x + δy = z, and z is a cycle in J2(E). This completes the proof of
exactness of the first row.

The exactness of the second row follows except for the identification of H2(JE)/Q(E) with H2(E).
This identification is a consequence of the formula (13) and the description due to [15] of H2(E) as
ker(E ∧ E → E), where E ∧ E is the quotient of E⊗̄E by the subgroup generated by all e ⊗ e for
e ∈ E. See [10] for more information on this. 2

3 Classifying spaces

Brown and Higgins in [9] study the classifying space BC of a crossed complex C. This is defined by
BC = |NC|, where the nerve NC of C is the simplicial set such that (NC)n = Crs(Π∆n, C), the
set of crossed complex morphisms Π∆n → C. For a crossed complex C = G consisting of a group G
concentrated in degree 1, this classifying space coincides with the usual classifying space BG of G,
which we used in (12). A different, but homotopy equivalent, construction of the classifying space of
a crossed module is given in [13].

It is known that for a reduced crossed complex C we have

π1BC ∼= π1C, πnBC ∼= HnC (n > 2).
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Let C6n be the subcomplex of C which coincides with C in degree 6 n and is zero in degree > n.
Then BC is actually a filtered CW-complex (BC)∗ with (BC)n = B(C6n). Moreover, the filtered
space (BC)∗ is connected and satisfies (see [1], p. 40)

Π(BC)∗ ∼= C. (14)

Using this result we derive from Theorem 2.2 the following theorem:

Theorem 3.1 For a pointed crossed complex C one has the natural isomorphism

J(C) ∼= ΠJ(BC)∗. 2

For a group C = G this is just the formula described in (12).
The main property of the classifying space BC is the following homotopy classification formula

[9], which generalises classical results on maps into an Eilenberg-MacLane space:

[X, BC] ∼= [ΠX∗, C]. (15)

Here X is a CW-complex and the left-hand side is a set of homotopy classes in Top. The right hand
side is a set of homotopy classes of maps in the category of crossed complexes; see [8].

By (15), we see that the path component of BC6n containing ∗ is actually an n-type. To this
end recall that an n-type X is a path-connected CW-space with πi(X) = 0 for i > n. Let 2-types
be the full subcategory of Top/ ∼= consisting of 2-types. It was shown by MacLane and Whitehead
[14] that a 2-type is algebraically represented by a crossed module. Each crossed module C gives us a
pointed crossed complex C which is concentrated in degree 1 and 2. Moreover, the classifying space
B of Brown and Higgins actually yields an equivalence of categories

B : Ho(Crs(2)) ∼−→ 2-types. (16)

Here Crs(2) is the category of crossed modules and Ho(Crs(2)) is the localisation with respect to weak
equivalences in Crs(2). The equivalence (16) in fact goes back to [14]; compare also [13] and [2]. On
the other hand, a 2-type X is represented by its k-invariant

kX ∈ H3(π1X, π2X) (17)

and it is well known how to represent the cohomology class kX by a crossed module C for which the
sequence

π2X ½ C2
∂−→ C1 ³ π1X (18)

is exact. Any such C satisfies B(C) ' X.
As an application of Theorem 3.1, we get the following result on the homotopy groups πnΣX of a

suspended 2-type. Clearly π2ΣX = (π1X)ab is the abelianisation of the fundamental group.

Theorem 3.2 Let X be a 2-type which is represented by a crossed module C, that is, BC ' X. Then
there is a natural isomorphism

π3ΣX ∼= H2(JC)

and a natural surjection π4ΣX ³ H3(JC). Here JC is the James construction of the crossed module
C in the category of crossed complexes and Hn(JC) denotes the homology of the (reduced) crossed
complex JC.
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When X = BG is the classifying space of a group G we obtain by Theorem 3.2 the isomorphism
π3ΣBG ∼= H2(JG), where H2(JG) ∼= Ker(G⊗̄G → G) as in the Introduction. This special case of
Theorem 3.2 is considered in [4] and [10].

For the proof of Theorem 3.2 we use the following concept of ‘certain exact sequence’ in the sense
of Whitehead [16]. Let X∗ be a connected filtered space with X0 = ∗. Then we have by (III.10.7) in
[2] the exact sequence

· · · → Γ3X∗ → π3X → H3(ΠX∗)
→ Γ2X∗ → π2X → H2(ΠX∗) → 0, (19)

where ΓnX∗ = Im(πnXn−1 → πnXn).

Proof of Theorem 3.2 We consider the filtered space X∗ = J(BC)∗ where (BC)∗ is filtered by
∗ → BC1 → BC = (BC)2. Whence X1 = B(C1) and thus Γ2X∗ = 0. This implies the result in
Theorem 3.2 by use of (19) and (10). 2

Corollary 3.3 Let K ↪→ E ³ G be a short exact sequence of groups. Then there is an isomorphism
of exact sequences

π3ΣBE //

∼=
²²

π3ΣBG //

∼=
²²

(K ∩ [E, E]) / [K,E]

Ker (E⊗̄E → E) // Ker (G⊗̄G → G) // // (K ∩ [E, E]) / [K,E]

Proof This follows from (13), the first row of the exact sequence of Theorem 2.4, Theorem 3.2, and
the fact that the canonical map B(K ¢ E) → BG is a homotopy equivalence. 2

Whitehead’s exact sequence [16] is the special case of (19) when the filtered space is the skeletal
filtration of a reduced CW-complex. In particular, if X is a reduced CW-complex, then Whitehead’s
sequence for the 1-connected space ΣX yields the exact sequence

· · · → π4ΣX → H3X → ΓH1X
k−→ π3ΣX → H2X → 0. (20)

Here the isomorphism k is exactly the first k-invariant of the space ΣX, and k represents an element

k ∈ H4(K(π2, 2), π3) = Hom(Γ2, π3)

with πn = πnΣX, π2 = H2ΣX = H1X.
Suppose now that X = BC where C is a reduced crossed complex. Using the isomorphism in

Theorem 3.2, the homomorphism

k : ΓH1X → π3ΣX ∼= H2(JC) (21)

is obtained as follows. We have H1X = (π1X)ab with π1X = Cok(C2 → C1). Whence elements
[c] ∈ H1X are represented by elements c ∈ C1. Now k is induced by the quadratic map H1X → H2(JC)
which carries [c] to the homology class [c2] of the cycle c2 in JC. This result gives us by (20) the
following possibility to compute the first two Z-homology groups of a 2-type X ' BC.
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Theorem 3.4 Let C be a crossed module and let BC be the classifying space of C. Then H1(BC) is
the abelianisation of π1C = Cok(C2 → C1). Moreover, the homology group H2(BC) is given by the
formula

H2(BC) = H2(JC)/Q(C),

where Q(C) is the subgroup generated by all classes {c2}, c ∈ C1. 2

Consider now a short exact sequence K ↪→ E ³ G. The morphism E → G induces a homotopy
equivalence of classifying spaces B(K ¢ E) → BG. So Theorem 3.4 with Theorem 2.4 yields an exact
sequence H2(E) → H2(G) → (K ∩ [E, E])/[K, E] → 1. In the case E is free, so that H2(E) = 0, this
is the classical result of Hopf.
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