On relative homotopy groups of the product filtration, the James construction, and a formula of Hopf*

H.J. Baues † Max-Planck-Institut für Mathematik, 5300 Bonn 3, Germany

R. Brown [‡]
School of Mathematics, University of Wales,
Bangor, Gwynedd LL57 1UT, United Kingdom

February 5, 2007

For Alex Heller on his 65^{th} birthday

Abstract

We compute the *n*th relative homotopy group of (Z_n, Z_{n-1}) when Z_* is a product of certain filtered spaces. A consequence is information on the homotopy of $\Omega \Sigma X$ when X is the classifying space of a crossed complex.

Introduction

For a filtered space $X_* = \{X_0 \subseteq X_1 \subseteq \cdots\}$, the relative homotopy groups $\pi_n X_* = \pi_n(X_n, X_{n-1}, a)$ with $a \in X_0, n \geqslant 2$, together with the fundamental groupoid $\pi_1(X_1, X_0)$ and the usual actions and boundaries, form the fundamental crossed complex¹ $\Pi(X_*)$; see [2] and [6]-[9]. For $X = \text{colim}X_*$ and $Y = \text{colim}Y_*$ we obtain the usual product filtration $X_* \otimes Y_*$ of the topological product $X \times Y$ by

$$(X_* \otimes Y_*) = \bigcup_{i+j=n} X_i \times Y_j. \tag{1}$$

Here the product is taken in a convenient category of spaces.

In this paper we deal with the following problem: Is it possible to compute the relative homotopy groups $\Pi(X \otimes Y)_n$ of the product filtration $X_* \otimes Y_*$ in terms of the relative homotopy groups $(\Pi X_*)_p$, $(\Pi Y_*)_q$ of X_* and Y_* respectively?

^{*}This is a slightly edited version of the paper published in Journal of Pure and Applied Algebra 89 (1993) 49-61.

[†]This work was supported by a University of Wales Visiting Professorship.

 $^{^{\}ddagger}$ Email: ronnie.profbrown 'at' delete
this.btinternet.com

¹In this version we use ΠX_* for the fundamental crossed complex rather than πX_* as in the original version. This is in keeping with current usage.

If X and Y are CW-complexes with the skeletal filtration X^* and Y^* , we have the isomorphism of crossed complexes

$$\theta: \Pi X^* \otimes \Pi Y^* \cong \Pi \left(X^* \otimes Y^* \right), \tag{2}$$

where $X^* \otimes Y^* = (X \otimes Y)^*$ is the skeletal filtration of the product $X \times Y$ and $\Pi X^* \otimes \Pi Y^*$ denotes the tensor product of crossed complexes introduced in [8] - indeed this isomorphism is a basic motivation for the definition of the tensor product $C \otimes C'$ of crossed complexes C, C'. The generators of ΠX^* are the cells e in X and the isomorphism θ in (2) carries the generator $e \otimes f$ of the tensor product to the product cell $e \times f$.

The main purpose of this paper is the generalisation of (2) to a wider class of filtered spaces. We say that a filtered space X_* is *cofibred* if for all $n \ge 0$ the inclusion $X_n \to X_{n+1}$ is a closed cofibration. Moreover, X_* is *connected* if for $i \ge 0$ the induced function $\pi_0 X_0 \to \pi_0 X_i$ is surjective and if for $n \ge 1$ the pair (X_n, X_{n-1}) is (n-1)-connected.

Theorem 0.1 (Product Theorem) For filtered spaces X_* , Y_* there is a unique natural transformation

$$\theta: \Pi X_* \otimes \Pi Y_* \to \Pi \left(X_* \otimes Y_* \right)$$

which for CW-complexes coincides with θ in (2). Moreover, θ is associative. If X_* and Y_* are cofibred and connected, then so is $X_* \otimes Y_*$, and θ is an isomorphism.

We also give various applications of this result. In particular, we shall compute for a 2-type X the homotopy group $\pi_3\Sigma X$. Recall that in [10], a Generalized Van Kampen Theorem is applied to yield for any connected space X an exact sequence

$$\pi_2 X \to \pi_3 \Sigma X \to \pi_1 X \bar{\otimes} \pi_1 X \to \pi_1 X \to 1$$
,

where $-\bar{\otimes}-$ is the tensor product of groups each acting on the other defined in [10]. In this paper we shall determine $\pi_3\Sigma X$ completely in terms of any crossed module representing the 2-type of X. For this we use the classifying space BC of a crossed complex C in the sense of Brown and Higgins [9]. If $C = (C_2 \to C_1)$ is just a crossed module we obtain from the computation of $\pi_3(\Sigma BC)$ a formula for the second homology $H_2(BC)$. This result uses the James construction on crossed complexes which was already considered in [3] and [4]. This formula also generalises a classical result of Hopf for $H_2G = H_2BG$.

1 Proof of the Product Theorem

We first show that there is at most one natural transformation θ as described in the Product Theorem. For this consider the closed n-cell \mathbf{E}^n which is a CW-complex with the skeletal filtration, namely $E^0 = \{1\}, E^1 = \{0\} \cup \{1\} \cup e^1, E^n = e^0 \cup e^{n-1} \cup e^n, n \geq 2$. Now for any elements $[a] \in \Pi X_*$ and $[b] \in \Pi Y_*$ we obtain by naturality of θ the commutative diagram

where the top row is the canonical isomorphism in (2). For the identity 1_n of \mathbf{E}^n we thus have the formula

$$\theta\left(\left[a\right]\otimes\left[b\right]\right) = \left(a\otimes b\right)_{\star}\theta\left(\left[1_{p}\right]\otimes\left[1_{q}\right]\right),\tag{4}$$

which shows that there is at most one natural transformation θ as described in the Product Theorem. It is laborious to show directly that this transformation is well defined by (4). It is shown in [9] that an easy construction of θ may be obtained by working in the category of ω -groupoids and using the equivalence of this monoidal closed category to that of crossed complexes [8]. The reason for this easy proof is that the former category is based on cubical sets, and cubes satisfy the formula $I^m \otimes I^n \cong I^{m+n}$.

Let K_* be a filtered CW-complex K, filtered by subcomplexes K_n which satisfy

$$K^n \subseteq K_n \text{ for } n \geqslant 0,$$
 (5)

where K^n is the *n*-skeleton of K. Then clearly K_* is cofibred and connected. We now show the following:

Lemma 1.1 The Product Theorem holds for filtered CW-complexes X_* and Y_* which satisfy condition (5).

Proof Let X^* and Y^* be the skeletal filtrations of the CW-complexes X and Y respectively. By condition (5) we have filtered maps $i: X^* \to X_*$, $i: Y^* \to Y_*$, where X^* and Y^* denote the skeletal filtrations of X and Y. For a cell e in X, $\dim(e)$ denotes the dimension of e, while we write $\deg(e) = n$ if e is a cell in $X_n \setminus X_{n-1}$, so that $\deg e \leq \dim e$. Using the characteristic map $f_e: \mathbf{E}^d \to X^*$ of the cell e we obtain the generator

$$e = (f_e)_* [1_d] \in \Pi X^*$$
 (6)

denoted also by e. We also have the induced morphism

$$i_* = \Pi(i) : \Pi(X^*) \to \Pi(X_*) \tag{7}$$

which satisfies $i_*(e) = 0$ if and only if deg $e < \dim e$. It follows easily from the exact sequences of the triples (X_n, X^n, X^{n-1}) and (X_n, X_{n-1}, X^{n-1}) that i_* in (7) is surjective. An element a in ΠX^* is called degraded if $i_*a = 0$. Clearly, if a is degraded, so is δa .

We now consider the product $P = X \times Y$ which is a filtered CW-complex with $P_n = (X_* \otimes Y_*)_n$ and which satisfies $P^n \subseteq P_n$ by the assumptions on X_* and Y_* . For product cells $e \times f$ in P we have

$$deg(e \times f) = deg(e) + deg(f),$$

$$dim(e \times f) = dim(e) + dim(f).$$
(8)

It follows that if $e \times f$ is degraded, then one of e, f is degraded.

We now consider the following diagram, in which P_n^* is the skeletal filtration of P_n , so that for example $P_n^n = P^n$:

$$\pi_{n+1}\left(P_{n}^{n+1},P^{n}\right) \xrightarrow{q_{n}} \pi_{n+1}\left(P_{n},P^{n}\right) \xrightarrow{\partial} \pi_{n}\left(P^{n},P^{n-1}\right) \xrightarrow{i} \pi_{n}\left(P_{n},P^{n-1}\right) \xrightarrow{j} \pi_{n}\left(P_{n},P_{n-1}\right)$$

$$\theta^{*} \stackrel{\cong}{\cong} \qquad \qquad \uparrow_{i'} \qquad \uparrow_{i'} \qquad \uparrow_{i'} \qquad \uparrow_{i} \qquad \uparrow_{i'} \qquad$$

In this diagram, q_n is surjective, by the exact sequence of the triple (P_n, P_n^{n+1}, P^n) , and $\pi_{n+1} (P_n^{n+1}, P^n)$ is generated by degraded product cells $e \times f$ of dimension n+1. But $(\theta^*)^{-1} \delta q_n (e \times f)$ is a sum of terms involving $\delta e \otimes f$ and $e \otimes \delta d$, so that $(i_* \otimes i_*) (\theta^*)^{-1} \delta q_n = 0$. By exactness of the row at $\pi_n (P^n, P^{n-1})$, there is a morphism τ , as in the diagram, such that $\tau i = (i_* \otimes i_*) (\theta^*)^{-1}$. Now $(i_* \otimes i_*) i_{n-1} = 0$, since $\pi_n (P_{n-1}^n, P^{n-1})$ is generated by degraded product cells $e \times f$. Hence $\tau i' = 0$. By exactness of the sequence $\stackrel{i'}{\longrightarrow} \stackrel{j}{\longrightarrow}$, there is a morphism $\bar{\theta} : \pi_n (P_n, P_{n-1}) \to (\Pi X_* \otimes Y_*)_n$ such that $\bar{\theta}_j = \tau$. Then $\theta_* \bar{\theta} = 1$. But $\bar{\theta}$ is surjective, by commutativity of the diagram. So θ_* is an isomorphism.

Finally, that $\pi_i(P_n, P_{n-1}) = 0$ for i < n is proved by a similar argument. This completes the proof of the lemma.

Proof of the Product Theorem The fact that $X_* \otimes Y_*$ is cofibred is a consequence of the product theorem for cofibrations.

We say that a map $f: K_* \to X_*$ between filtered spaces is a weak equivalence if $f_n: K_n \to X_n$ is a weak homotopy equivalence in each degree $n \ge 0$ and if f_0 is surjective. Clearly a weak homotopy equivalence induces a map $f_*: \Pi K_* \to \Pi L_*$ which, restricted to each point $a \in K_0$, in an isomorphism. For weak equivalences f as above, and $g: L_* \xrightarrow{\sim} Y_*$, between cofibred filtered objects, the tensor product $f \otimes g: K_* \otimes L_* \xrightarrow{\sim} X_* \otimes Y_*$ is also a weak equivalence. This follows since $(X_* \otimes Y_*)_n$ can be obtained as a colimit of a diagram in which only products $X_i \times Y_j$ occur. Moreover, $X_* \otimes Y_*$ is cofibred by the union theorem for cofibrations; see [11]. Using the well-known method of CW-approximations we see that for a connected cofibred filtered space X_* there exists a filtered CW-complex K_* as in (5) together with a weak equivalence $f: K_* \xrightarrow{\sim} X_*$. In the same way we obtain a CW-approximation $g: L_* \xrightarrow{\sim} Y_*$ where L_* satisfies (5). So the Product Theorem is now a consequence of the special case in Lemma 1.1.

We point out that in degree 1 the Product Theorem is also a consequence of the Seifert-Van Kampen theorem. For this we observe that we have for cofibred and connected filtered spaces X_* , Y_* the pushout diagram of pairs

$$(X_0 \times Y_0, X_0 \times Y_0) \longrightarrow (X_0 \times Y_1, X_0 \times Y_0)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(X_1 \times Y_0, X_0 \times Y_0) \longrightarrow (P_1, P_0)$$

where $P_* = X_* \otimes Y_*$. By applying the fundamental groupoid functor π to this diagram we obtain the isomorphism

$$\theta: (C_1 \rightrightarrows C_0) \cong \Pi(P_1, P_0) \tag{9}$$

where $C = \Pi X_* \otimes \Pi Y_*$, $C_0 = P_0 = X_0 \times Y_0$. This is the degree-1 part of the isomorphism in the Product Theorem.

2 On the James construction

In this section we apply the Product Theorem to the James construction of a filtered space. For this we need the following notion of a 'free monoid':

Definition 2.1 Let (C, \otimes) be a monoidal category with a terminal object * satisfying $X \otimes * = X = * \otimes X$ for $X \in C$. Let (X, *) be a pointed object in C, i.e. an object X with a morphism $0 : * \to X$. Then we get for the n-fold tensor product $X^{\otimes n}$ the maps $(1 \leq t \leq n)$

$$i_t: X^{\otimes (n-1)} \to X^{\otimes (n)}$$

given by $i_t = X^{\otimes (t-1)} \otimes 0 \otimes X^{\otimes (n-t)}$. These maps define the diagram

$$* \longrightarrow X \Longrightarrow X^{\otimes 2} \Longrightarrow X^{\otimes 3} \cdots$$

the colimit of which in C is written J(X). In fact, if the bifunctor \otimes preserves the colimits used for the definition of J(X), then J(X) becomes a monoid in C (with respect to \otimes), and the morphism $X \to J(X)$ makes J(X) the free monoid on the pointed object (X,*). In case C = Top is a convenient category of topological spaces with \otimes defined by the product, and X is a pointed space, then J(X) is the classical James construction or infinite reduced product of X. The topological monoid JX is homotopy equivalent to the loop space

$$JX \cong \Omega \Sigma X \tag{10}$$

provided X is path-connected and $* \rightarrow X$ is a cofibration [11].

Now let C be the category of filtered objects in Top (see [2], Chapter III, Section 1). Then the filtered product of our Introduction is a tensor product as in Definition 2.1 and the James construction JX_* of a pointed filtered space X_* is a filtered space with

$$\operatorname{colim}(JX_*) = JX, \quad X = \operatorname{colim}X_*. \tag{11}$$

For $x \in X_n \setminus X_{n-1}$ we write $\deg(x) = n$. Then $(JX_*)_n$ consists of all words $x_1 \dots x_i$ with $\deg(x_1) + \dots + \deg(x_i) \leq n$, $x_j \neq *, i \geq 0$. On the other hand, for a pointed crossed complex A the free monoid JA is defined by the tensor product of Brown and Higgins [8] which was used in the Product Theorem. The next result is an application of this theorem.

Theorem 2.2 For a pointed filtered space X_* there is natural transformation

$$\eta: J(\Pi X_*) \to \Pi(JX_*).$$

Moreover, if X_* is cofibred and connected, then so is JX_* and the natural transformation η is an isomorphism.

Proof The natural transformation θ in the Product Theorem is essentially the identity if X_* or Y_* is the base point *, and so θ is compatible with the diagram in Definition 2.1. This yields the transformation η in Theorem 2.2.

Suppose now that X_* is cofibred and connected. By the Product Theorem, we know that $X_*^{\otimes n}$ is cofibred and connected. The construction of JX_* by successive coequalisers and unions then shows that JX_* is cofibred.

We now apply the Van Kampen Theorem for the fundamental crossed complex of a filtered space [7], Theorem C. This is stated in terms of a filtered space Y_* and an open cover $U = \{U^{\lambda}\}$ of Y such that U is closed under finite intersection and each $U_*^{\lambda} = U^{\lambda} \cap Y_*$ is 'homotopy full'. This last condition is equivalent to the connected condition, as is shown by manipulations with homotopy exact sequences of triples. The Van Kampen theorem states that the diagram

$$\bigsqcup_{(\lambda,\mu)} \Pi(U^{\lambda} \cap U^{\mu})_* \xrightarrow{a \atop b} \bigsqcup_{\lambda} \Pi U_*^{\lambda} \xrightarrow{c} \pi Y_*,$$

in which a, b, c are induced by the maps $U^{\lambda} \cap U^{\mu} \to U^{\lambda}$, $U^{\lambda} \cap U^{\mu} \to U^{\mu}$, $U^{\lambda} \to Y$, is a coequaliser diagram of crossed complexes. A consequence (not stated in [7]) is that Y_* also is connected.

By applying homotopy colimit methods, one finds that the fundamental crossed complex preserves colimits obtained by pushouts of a cofibration, and by unions of cofibrations, for connected cofibred filtered spaces. This proves Theorem 2.2.

In case X_* is the skeletal filtration of a reduced CW-complex X, i.e. one with $X^0 = *$, we see also that $(JX)_*$ is the skeletal filtration of the CW-complex JX. In this case Theorem 2.2 coincides with the special case given in Theorem C6 of Chapter III of [3]. Moreover, if X_* is simply the pair $* \subseteq BG$ where BG is the classifying space of a group G, then ΠX_* is the reduced crossed complex consisting of G concentrated in degree 1. In this case we get by Theorem 2.2 the isomorphism

$$\eta: J(G) \cong \Pi J_*(BG), \tag{12}$$

where $J_*(BG) = J(X_*)$ is the word-length filtration in J(BG). This special case of Theorem 2.2 is proved in [4] by different methods. The paper [4] investigates the properties of the 'crossed tensor algebra' J(G) of the non-abelian group G.

We now determine the first two terms of JC. First, if $\mu: M \to P$, $\nu: N \to P$ are crossed P-modules, then their coproduct in the category of crossed P-modules will be written $\kappa: M \circ_P N \to P$. This construction is studied in [5] (and written $M \circ N$) and in [12], where it is called the *Pfeiffer product* (and written $M \bowtie N$). It is shown in [5] that $M \circ_P N$ may be represented as a quotient of either of the semi-direct products $M \ltimes N$ or $M \rtimes N$ by the subgroup $\{M, N\}$ generated by the elements

$$(-m+m^n, -n+n^m)$$

for all $m \in M$, $n \in N$ (where M and N operate on each other via P), and that $\kappa(m,n) = (\mu m)(\nu n)$.

Proposition 2.3 If C is a reduced crossed complex, then the first two terms of J(C) in dimensions 2 and 1 form the crossed module

$$C_2 \circ_{C_1} J_2(C_1) \stackrel{\kappa}{\longrightarrow} C_1,$$

the coproduct of the crossed C_1 -modules

$$\delta: C_2 \to C_1 \text{ and } \delta_J: J_2(C_1) \to J_1(C_1) = C_1.$$

Proof The proof is by verification of the universal property for this part of J(C). So let A be a reduced crossed complex which is a monoid in the category of crossed complexes, i.e. is equipped with a multiplication $A \otimes A \to A$ with the usual monoid properties. Let $f: C \to A$ be a morphism of crossed complexes. Then $f_1: C_1 \to A_1$ extends uniquely to a morphism of crossed complexes $J(C_1) \to A$. This, with $f: C \to A$, determines uniquely a morphism over f_1 of crossed modules

$$C_2 \circ_{C_1} J_2(C) \to A_2$$
.

This completes the proof.

Recall that if C is a reduced crossed complex then for $n \ge 2$ we define

$$H_n(C) = \operatorname{Ker}(\delta_n : C_n \to C_{n-1}) / \operatorname{Im}(\delta_{n+1} : C_{n+1} \to C_n),$$

while $\pi_1 C = \text{Cok}(\delta_n : C_2 \to C_1)$. It is known [4] that if G is a group regarded as a crossed complex with G concentrated in dimension 1, then

$$H_2(JG) = \text{Ker}(G\bar{\otimes}G \to G).$$
 (13)

The next result gives information on $H_2(JC)$ when C is the crossed module $i: K \hookrightarrow E$ with i the inclusion of a normal subgroup of E. We write this crossed module (crossed complex) as $K \triangleleft E$.

Theorem 2.4 If $K \triangleleft E$ is an inclusion of a normal subgroup, then there is a commutative diagram with exact rows

$$H_{2}\left(JE\right) \longrightarrow H_{2}\left(J\left(K \lhd E\right)\right) \longrightarrow \left(K \cap [E,E]\right)/\left[K,E\right]$$

$$\downarrow \qquad \qquad \qquad \parallel$$

$$H_{2}\left(E\right) \longrightarrow H_{2}\left(J\left(K \lhd E\right)\right)/Q\left(E\right) \longrightarrow \left(K \cap [E,E]\right)/\left[K,E\right]$$

where Q(E) is generated by classes of cycles e^2 for $e \in E$.

Proof Let $L = (K \cap [E, E])/[K, E]$. Let C be the crossed complex consisting of $i: K \triangleleft E$ as its crossed module part and trivial elsewhere. By Proposition 2.3, the 2-cycles of JC are represented by elements (k, x) of the semi-direct product $K \rtimes J_2(E)$, such that $ik = -\delta_J x$. Define the morphism

$$\phi: K \rtimes J_2(E) \to K \cap [E, E]$$

by $(k,x) \mapsto \delta_J x$. Then $\phi(-k+k^x, -x+x^k) \in [K,E]$, so that ϕ defines a morphism $\psi: K \circ_E J_2(E) \to L$.

Next we verify that ψ vanishes on boundaries. According to (1.4) of [4], $J_3(C)$ is generated by elements ke and z for $k \in K$, $e \in E$, $z \in J_3(E)$. Then according to (6) of (1.4) of [4],

$$\delta(ke) = (ik)e - (-k + k^e),$$

so that

$$\phi\delta(ke) = -i(-(-k+k^e)) \in [K, E].$$

On the other hand,

$$\psi(\delta z) = \delta^2 z = 0.$$

It follows that ψ defines a morphism $\tau: H_2(C) \to L$. This morphism is surjective since if $k \in K \cap [E, E]$, then $k = \delta x$ where $x \in J_2(E)$, and so (-k, x) represents an element of $H_2(JC)$ mapped by τ to k. The morphism $\sigma: H_2(JE) \to H_2(JC)$ is induced by the inclusion $E \to C$. Clearly $\tau \sigma = 0$. Suppose now that $(k, x) \in K \rtimes J_2(E)$ represents a cycle in $J_2(C)$ such that $\delta x \in [K, E]$. We also write (k, x) as k + x. At this stage, we have to be careful about notation. We write k for an element of K considered as an element of $C_2 = K$, and we write ik for the same element considered as an element of K and K of K of K of K and K of K

$$\delta x = \sum_{r} (-(ik_r)^{e_r} + ik_r).$$

Then $y = \sum_{r} k_r e_r$ is an element of $J_3(C)$ and

$$\delta y = \sum_{r} (ik_r)e_r + \sum_{r} (-k_r^{e_r} + k) = z + w,$$

say. But $ik = -\delta x = -iw$. So $k + x + \delta y = z$, and z is a cycle in $J_2(E)$. This completes the proof of exactness of the first row.

The exactness of the second row follows except for the identification of $H_2(JE)/Q(E)$ with $H_2(E)$. This identification is a consequence of the formula (13) and the description due to [15] of $H_2(E)$ as $\ker(E \wedge E \to E)$, where $E \wedge E$ is the quotient of $E \otimes E$ by the subgroup generated by all $e \otimes e$ for $e \in E$. See [10] for more information on this.

3 Classifying spaces

Brown and Higgins in [9] study the classifying space BC of a crossed complex C. This is defined by BC = |NC|, where the nerve NC of C is the simplicial set such that $(NC)_n = \mathsf{Crs}(\Pi\Delta^n, C)$, the set of crossed complex morphisms $\Pi\Delta^n \to C$. For a crossed complex C = G consisting of a group G concentrated in degree 1, this classifying space coincides with the usual classifying space BG of G, which we used in (12). A different, but homotopy equivalent, construction of the classifying space of a crossed module is given in [13].

It is known that for a reduced crossed complex C we have

$$\pi_1 BC \cong \pi_1 C, \quad \pi_n BC \cong H_n C \quad (n \geqslant 2).$$

Let $C_{\leq n}$ be the subcomplex of C which coincides with C in degree $\leq n$ and is zero in degree > n. Then BC is actually a filtered CW-complex $(BC)_*$ with $(BC)_n = B(C_{\leq n})$. Moreover, the filtered space $(BC)_*$ is connected and satisfies (see [1], p. 40)

$$\Pi(BC)_* \cong C. \tag{14}$$

Using this result we derive from Theorem 2.2 the following theorem:

Theorem 3.1 For a pointed crossed complex C one has the natural isomorphism

$$J(C) \cong \Pi J(BC)_*.$$

For a group C = G this is just the formula described in (12).

The main property of the classifying space BC is the following homotopy classification formula [9], which generalises classical results on maps into an Eilenberg-MacLane space:

$$[X, BC] \cong [\Pi X^*, C]. \tag{15}$$

Here X is a CW-complex and the left-hand side is a set of homotopy classes in Top. The right hand side is a set of homotopy classes of maps in the category of crossed complexes; see [8].

By (15), we see that the path component of $BC_{\leq n}$ containing * is actually an n-type. To this end recall that an n-type X is a path-connected CW-space with $\pi_i(X) = 0$ for i > n. Let 2-types be the full subcategory of Top/\cong consisting of 2-types. It was shown by MacLane and Whitehead [14] that a 2-type is algebraically represented by a crossed module. Each crossed module C gives us a pointed crossed complex C which is concentrated in degree 1 and 2. Moreover, the classifying space B of Brown and Higgins actually yields an equivalence of categories

$$B: \operatorname{Ho}(\operatorname{Crs}^{(2)}) \xrightarrow{\sim} 2$$
-types. (16)

Here $\mathsf{Crs}^{(2)}$ is the category of crossed modules and $\mathsf{Ho}(\mathsf{Crs}^{(2)})$ is the localisation with respect to weak equivalences in $\mathsf{Crs}^{(2)}$. The equivalence (16) in fact goes back to [14]; compare also [13] and [2]. On the other hand, a 2-type X is represented by its k-invariant

$$k_X \in H^3(\pi_1 X, \pi_2 X) \tag{17}$$

and it is well known how to represent the cohomology class k_X by a crossed module C for which the sequence

$$\pi_2 X \rightarrowtail C_2 \xrightarrow{\partial} C_1 \twoheadrightarrow \pi_1 X$$
 (18)

is exact. Any such C satisfies $B(C) \simeq X$.

As an application of Theorem 3.1, we get the following result on the homotopy groups $\pi_n \Sigma X$ of a suspended 2-type. Clearly $\pi_2 \Sigma X = (\pi_1 X)^{ab}$ is the abelianisation of the fundamental group.

Theorem 3.2 Let X be a 2-type which is represented by a crossed module C, that is, $BC \simeq X$. Then there is a natural isomorphism

$$\pi_3 \Sigma X \cong H_2(JC)$$

and a natural surjection $\pi_4\Sigma X \to H_3(JC)$. Here JC is the James construction of the crossed module C in the category of crossed complexes and $H_n(JC)$ denotes the homology of the (reduced) crossed complex JC.

When X = BG is the classifying space of a group G we obtain by Theorem 3.2 the isomorphism $\pi_3\Sigma BG \cong H_2(JG)$, where $H_2(JG) \cong \operatorname{Ker}(G\bar{\otimes}G \to G)$ as in the Introduction. This special case of Theorem 3.2 is considered in [4] and [10].

For the proof of Theorem 3.2 we use the following concept of 'certain exact sequence' in the sense of Whitehead [16]. Let X_* be a connected filtered space with $X_0 = *$. Then we have by (III.10.7) in [2] the exact sequence

$$\cdots \rightarrow \Gamma_3 X_* \rightarrow \pi_3 X \rightarrow H_3(\Pi X_*)$$

$$\rightarrow \Gamma_2 X_* \rightarrow \pi_2 X \rightarrow H_2(\Pi X_*) \rightarrow 0,$$
 (19)

where $\Gamma_n X_* = \operatorname{Im}(\pi_n X_{n-1} \to \pi_n X_n)$.

Proof of Theorem 3.2 We consider the filtered space $X_* = J(BC)_*$ where $(BC)_*$ is filtered by $* \to BC_1 \to BC = (BC)_2$. Whence $X_1 = B(C_1)$ and thus $\Gamma_2 X_* = 0$. This implies the result in Theorem 3.2 by use of (19) and (10).

Corollary 3.3 Let $K \hookrightarrow E \twoheadrightarrow G$ be a short exact sequence of groups. Then there is an isomorphism of exact sequences

$$\pi_{3}\Sigma BE \xrightarrow{} \pi_{3}\Sigma BG \xrightarrow{} (K \cap [E, E]) / [K, E]$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \parallel$$

$$Ker(E\bar{\otimes}E \to E) \xrightarrow{} Ker(G\bar{\otimes}G \to G) \xrightarrow{\longrightarrow} (K \cap [E, E]) / [K, E]$$

Proof This follows from (13), the first row of the exact sequence of Theorem 2.4, Theorem 3.2, and the fact that the canonical map $B(K \triangleleft E) \rightarrow BG$ is a homotopy equivalence.

Whitehead's exact sequence [16] is the special case of (19) when the filtered space is the skeletal filtration of a reduced CW-complex. In particular, if X is a reduced CW-complex, then Whitehead's sequence for the 1-connected space ΣX yields the exact sequence

$$\cdots \to \pi_4 \Sigma X \to H_3 X \to \Gamma H_1 X \xrightarrow{k} \pi_3 \Sigma X \to H_2 X \to 0. \tag{20}$$

Here the isomorphism k is exactly the first k-invariant of the space ΣX , and k represents an element

$$k \in H^4(K(\pi_2, 2), \pi_3) = \text{Hom}(\Gamma_2, \pi_3)$$

with $\pi_n = \pi_n \Sigma X$, $\pi_2 = H_2 \Sigma X = H_1 X$.

Suppose now that X = BC where C is a reduced crossed complex. Using the isomorphism in Theorem 3.2, the homomorphism

$$k: \Gamma H_1 X \to \pi_3 \Sigma X \cong H_2(JC)$$
 (21)

is obtained as follows. We have $H_1X=(\pi_1X)^{ab}$ with $\pi_1X=\operatorname{Cok}(C_2\to C_1)$. Whence elements $[c]\in H_1X$ are represented by elements $c\in C_1$. Now k is induced by the quadratic map $H_1X\to H_2(JC)$ which carries [c] to the homology class $[c^2]$ of the cycle c^2 in JC. This result gives us by (20) the following possibility to compute the first two \mathbb{Z} -homology groups of a 2-type $X\simeq BC$.

Theorem 3.4 Let C be a crossed module and let BC be the classifying space of C. Then $H_1(BC)$ is the abelianisation of $\pi_1C = Cok(C_2 \to C_1)$. Moreover, the homology group $H_2(BC)$ is given by the formula

$$H_2(BC) = H_2(JC)/Q(C),$$

where Q(C) is the subgroup generated by all classes $\{c^2\}$, $c \in C_1$. \square

Consider now a short exact sequence $K \hookrightarrow E \twoheadrightarrow G$. The morphism $E \to G$ induces a homotopy equivalence of classifying spaces $B(K \lhd E) \to BG$. So Theorem 3.4 with Theorem 2.4 yields an exact sequence $H_2(E) \to H_2(G) \to (K \cap [E, E])/[K, E] \to 1$. In the case E is free, so that $H_2(E) = 0$, this is the classical result of Hopf.

References

- [1] N. Ashley, Simplicial T-complexes and crossed complexes, Ph.D. Thesis, University of Wales, 1978; published as: Simplicial T-complexes and crossed complexes: A non-abelian version of a theorem of Dold and Kan, Dissertationes Math. 265 (1988).
- [2] H.J. Baues, Algebraic Homotopy (Cambridge University Press, Cambridge, 1988).
- [3] H.J. Baues, Combinatorial Homotopy and 4-Dimensional Complexes (de Gruyter, Berlin, 1991).
- [4] H.J. Baues and D. Conduché, On the tensor algebra of a non-abelian group and applications, K-theory 5 (1992) 531-554.
- [5] R. Brown, Coproducts of crossed P-modules: Applications to second homotopy groups and to the homology of groups, Topology 23 (1984) 337-345.
- [6] R. Brown and P.J. Higgins, On the algebra of cubes, J. Pure Appl. Algeba 21 (1981) 233-260.
- [7] R. Brown and P. J. Higgins, Colimit theorems for relative homotopy groups, J. Pure Appl. Algebra 22 (1981) 11-41.
- [8] R. Brown and P. J. Higgins, Tensor products and homotopies for ω -groupoids and crossed complexes, J. Pure Appl. Algebra 47 (1987) 1-33.
- [9] R. Brown and P. J. Higgins, The classifying space of a crossed complex, Math. Proc. Cambridge Philos. Soc. 110 (1992) 95-120.
- [10] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987) 331-335.
- [11] A. Dold, H.J. Kamps and D. Puppe, Homotopietheorie, Lecture Notes in Mathematics, Vol. 57 (Springer, Berlin, 1970).
- [12] N.D. Gilbert and P.J. Higgins, The non-Abelian tensor product of groups and related constructions, Glasgow Math. J. 31 (1989) 17-29.

- [13] J.-L. Loday. Spaces with finitely many non trivial homotopy groups, J. Pure Appl. Algebra 24 (1982) 179-202.
- [14] S. Mac Lane and J.H.C. Whitehead, On 3-types, Proc. Nat. Acad. Sci. U.S.A. 35 (1950) 41-48.
- [15] C. Miller, The second homology of a group, Proc. Am. Math. Soc. 3 (1952) 588-595.
- [16] J.H.C. Whitehead, A certain exact sequence, Ann. of Math. 52 (1950) 51-110.