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1. Introduction

A partialmapf: X — Y isdefined asa triple (X, Y , G,)where X, Y are sets and G,.
the graph of £, is a subset of X x Y such that (x, y), (x, ¥)€ G, implies y = y'. More
informally, a partial map consists of X, ¥ and a function with domain contained in X
and range contained in Y.

From the point of view of analysis, partial maps occur more naturally than maps.
For example, it is natural to consider functions such as log, x+1,sin™", \/ as partial
maps R—R, and this allows for a smooth exposition, unclogged by notation, of many
aspects of elementary analysis.

It is thus surprising that the algebra and topology of such partial maps has been
little studied, and this paper is one of several which attempt the beginning of such a
study. Some algebraic aspects of partial maps are considered in [2]. Here our
attention is on aspects of their topology.

The following example will indicate some of the motivation for this study. Consider
for various y € R the real functions Jy: x> log (x+y). This family of functions is
illustrated belowt:

/77

Itis natural to suggest that this family varies continuously with y, thatis, that y — f, isa
continuous function in an appropriate topology. However, the domain Z( J,)off is the
interval (—y, o) which varies with y. We are in the curious position that such an
example, apparently so basic, does not seem to be treated in the enormous literature on
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function spaces, which, as far as we know, is concerned almost entirely with functions
with fixed domain.

One attempt to obtain a usable topology for partial maps is indicated in [3]. The
basic observation is that if fis a function and C is any set then f(C) can be defined to be
f(Cn2 (/) (this definition occurs in [10]) and so the compact-open topology, with its
sub-basic open sets of the form WIC,U) = {f.flC) c U} for C compact and U open,
extends immediately to an y set of partial maps. However it is not clear if this definition
gives useful properties of such spaces, in general. For spaces of partial maps with closed
domain, we do obtain good properties; this was shown in [3], using the idea of
representability for such maps (called parc maps in [3]).

In this paper we study partial maps with open domain, which we call paro maps. We

The compact-open topology on paro maps specialises to a useful topology on the
set ((X) of open sets of . space X. This topology has been considered in [12] and
elsewhere.

The material of this paper is a part of [1], and the first author is grateful to the
Egyptian government for support,

2. The compact-open topology on paro maps

For any spaces X, Y, let M(X, Y) be the space of all maps X — Y (i.e. continuous
functions with domain X ) with the compact-open topology.

For any space Y, let Y* be the space Y U {w} (where w ¢ Y) with the topology in
which U is open in Y* if and onlyif U= Y or U is openin Y. Then Y is an open
subspace of Y* and {w} is closed, but not open, in Y. (This definition was given in
[3; 1.6]) :

Let Py(X, Y) be the set of paro maps X »» Y.

ProPosITION 1. There is a bijection

u:PB(X,Y) —s MX, v

where
f) i xea(f)
u(f)x) = (

w otherwise.

The topology on Py(X, Y)which makes y a homeomorphism has a sub-basis of open sets of
the form

W(C,U) = {fe Py(X, Y):C <= 9(f), f(C) = U}

Jor all compact subsets C of X and open subsets U of Y.
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From now on, we give Py(X, Y) the topology of Proposition 1.

Unlike the usual mapping space, the case of paro maps X »» Y where Y is a
singleton is still interesting. Let 1 denote the one-point space with element 1. Let ¢ (X)
denote the set of open sets of X .

ProrosiTioN 2. There is a natural bijection
X X)) — Po(X 1)

such that y(U) is the constant paro map X »— 1 with domain U. The topology on ( (X)
which makes y a homeomorphism has a sub-basis of open sets of the form

W(C) = {UeC (X):C < U},

for C compact.
An elementary fact about the spaces Py(X, Y) is the existence of induced maps.

ProrosiTioN 3. (i) Let h: T X, g: Y>> Z be paro maps. Then h, g induce, by
composition, maps

gy Po(X,Y) — Py(X, Z),
h*: Po(X, Y) —— P(T, Y).

(i} Let X', Y' be subsets of X, Y respectively such that X' is open in X . Let the map
i:Py(X',Y') = PyX, Y)send a paro map X' — Y' to the paro map X ~ Y with the same
graph. Then i is a homeomorphism into.

The proof is straightforward.
ProrosiTiON 4. The domain map 9 : P(X, Y) - €(X), f+— 2(f), is continuous.

Proof. The composite y2 : Py(X, Y) —» Py(X, 1) is induced by the constant map
Y — 1 and so is continuous. Hence 2 is continuous.

Remark. The definitions given here suggest a new topology for spaces of germs of
which the applications are at present unexplored. Recall that an equivalence relation
~, on paro maps X » Y with domain including a point x of X is obtained by saying

f ~.g if x has an open neighbourhood U such that f|U = g|U. The equivalence
classes f, of such paro maps f are called germs at x of functions X > Y. The set of all
such germs at all x € X is written 4(X, Y). Let D be the subspace of X x Py(X, Y) of
points (x, f) such that x € 2(f). Then the definition of germs gives a surjection

G:D-9X,Y), [N~

and it seems reasonable to consider giving 4(X, Y) the identification topology with
respect to G. It is possible that this topology is relevant to singularity theory: A. du
Plessis in [7; p. 65] says: “To match more closely the stability theory for mappings, we
seem forced to consider representatives of germs: essentially, for ‘nearby’ germs we need
to consider representatives defined on ‘nearby’ open sets. This looks a very difficult
theory to work with....”

-
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The relation between the identification topology and the usual sheaf topology is
that the latter topology is the finer, and that the topologies differ if X is non-empty and
Y = R. Recall that the sheaf topology has basic opensets W(f) = {f.:ye 2} for any
paromap f: X >»» Y. On the other hand if A is open in the identification topology, then

G~ '(A) is open in D and so is a union of sets of the form B = D () W(C;, Uyx
i=1
where U;, ¥, are open in Y, X respectively, and C; is compact in X . So if f, € A, then

(/, x) belongs to sucha B. Now if g = f | () Vi.,then f, € W(g) S A; thus 4 is open in
the sheaf topology. =1

Suppose Y = R and X is non-empty. Let W(f) be a basic neighbourhood of f.in
the sheaf topology, and let 4 be an open neighbourhood of f, in the identification
topology. Assume (f, x) € B above , and that r is the minimum of the distances
d(f(C)), R\\U,). Then r > 0and the function h — f+rissuch that W(h)is contained in
A but does not meet W(f). So the topologies differ in this case.

3. The exponential law and its applications
We recall that the exponential function
0: M(X x Y,Z) - M(X, M(Y, Z)) (3.1
X)) =flx,9,  xeX,yeY, feMX x Y,2Z)

is a well-defined injection, The pair (X, Y)is called an exponential pair if for all spaces Z
the map 6 of (3.1) is a surjection. It is standard that (X, Y) is an exponential pair if
(i) each point of Y has a fundamental system of compact neighbourhoods, or (i) XxY
is a Hausdorff k-space. (We reserve the term locall y compact to mean the condition (i) of
the last sentence.)

The following theorem is immediate from the above, the representability of paro
maps, and other standard results on the exponential law.

THeoRrEM 5. (Expanential law for paro maps.) The exponential function
0:Po(X x Y,Z) > M(X, Py(Y, Z))
0(/) (x) () = f(x, y)
is a well-defined injection. Further:

(i) if (X, Y) is an exponential pair, then 0 is surjective;
(ii) if X is Hausdorff, then 0 is continuous:
(i) if X, Y are Hausdorff, then 6 is a homeomorphism into.

As usual, the maps f and 6(f) are called adjoint.
Although the proof of the above result is simple, the theorem does have some
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interesting and important applications. First. we solve the problem posed in the
Introduction.

Example 1. The function R — Py(R, R), y +— (x + log (x + y)). is continuous.

Proof. This mapisadjointtof: R x R R, (x, )+ log (x+ ), which is clearly a
paro map.

The domain of x - log (x+y) is (—y, o). By Example 1 and Proposition 4, we
obtain that the map R — ((R), y — (—y, o), is continuous. Alternatively, this can be
proved as a consequence of the following.

For any subset U of X x Y and x € X, we define

U,={yeY:(x,yeU},

and call U, the x-section of U. If U is open in X x Y, then U, is open in Y.

PROPOSITION.6. The section map
o (X xY) — M(X,((Y))
o(U)x) = U,
is a well-defined injection. Further:

(i) if (X, Y) is an exponential pair, then o is surjective;
(1) if X is Hausdorff, then o is continuous;

(iil) if X, Y are Hausdorff, then ¢ is a homeomorphism into.

Proof. The bijection y of Proposition 2 transforms o to § of Theorem 5, but with
Z=1

The intuitive meaning of Proposition 6 is that if (X, Y)is an exponential pair (and in
particular if Y is locally compact) then an open set in X x Y corresponds precisely to a
continuous (indexed by X) family of open sets of Y.

Example 2. Theset U = {(x,y)e RxR:y+x > 0} is open in R x R. Its section
map a(U): R = O(R) is x — (—x, o0), and g(U) is continuous by Proposition 6.

Other applications of Theorem 5 are standard applications of exponential laws.
They are still interesting results on paro maps, or on spaces of open sets.

ProposiTioN 7. If Y is locally compact, then the evaluation map
e: PyY,Z)yx Y Z, (f,y)—f(y), is a paro map, and hence has open domain.

Proof. In Theorem 5, set X = Py(Y, Z); then ¢ = 607" (1).

S
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ProrosiTion 8. If'Y is locally compact, then the membership relation

M={(U,y):Usy} € ((Y)xY
is an open subset of ¢(Y)x Y.
Proof. Take Z =1 in Proposition 7. If x is as in Proposition 2, then
(x x 1) (M) = D(c). Hence M is open.

ProrosiTion 9. If X and Y are locally compact, then the composition mapping

7 Po(X, Y)x Po(Y, Z) — Py(X, Z), (f,9) — gf,

is continuous.

Proof. The mapping y is adjoint to the composite

o &
Po(X, V)X Py(Y,Z)x X —— Po(Y,Z)X Y —— Z

where o(/, g, x) = (g,/(x)). Both « and ¢ are continuous, by Proposition 7.

Remark. Topologies on the set ((X) of open sets of X have also been considered in
[6,9,11,12]. In particular [ 12] considers a compact-open topology as in Proposition 1,
while Proposition 6 is clearly related to [12; Theorem 1,p.271]. However none of these
papers consider the set of paro maps from X to Y.

4. Topological pseudo-groups of transformations

Let X be a topological space. A pseudo-group of transformations of X is a set T of
paro maps X »» X such that:

(i) each f'e I'is a homeomorphism from an open subset of X to an open subset of
X

(i) f T implies f "' eT;
(it)) f,g e I" implies fg e T;

@(v) il fe I" with f having domain and range U, Vrespectively, then 1, 1, (the
identities on U, V) also belong to I'.

Such pseudo-groups are used in many areas of topology and differential geometry (see
the Bibliographies in [4, 5]). In [2] we show the relation of the notion of pseudo-
group to that of inverse semi-group. Here we show how I may be topologised to
become, if X is locally compact, a topological pseudo-group.

Let I'(X) be the pseudo-group of all homeomorphisms of open subsets of X. Then
each feI is a paro map. Let i:T (X) = Py(X, X) be the inclusion and let
n: I'(X) - I'(X) be the inverse map S f71. We give I'(X) the initial topology with
respect to 1 and 7.
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Proposition 10. If X is locally compact then the composition map
Y TX)x (X)) - T(X), (f.g9)—gf. and the inverse map n:T(X)—- ['(X) are
continuous.

Proof, The following diagram is commutative

’

[(X) x [(X)——

I'(X)

X1 1

Po(X, X)x Po(X, X)—— P(X, X).

Since X is locally compact, y is continuous. So 1}’ is continuous. Similarly,
my = yT(in x m), where T is a twist map (f, g) — (g, f). Hence 1y}’ is continuous.
Hence y' is continuous.

Also 1 is continuous, as is iy = 1. So 1 is continuous.

We can now give any sub-pseudo-group I' of I'(X) the subspace topology so that it
also becomes, if X is locally compact, a topological pseudo-group, in the sense that the
composition and inverse mappings are continuous.

In a subsequent paper we show how to extend these definitions to a convenient
category of topological spaces.
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