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COVERINGS OF GROUPQOIDS
AND MAYER-VIETORIS TYPE SEQUENCES

Ronald Brown, Philip R. Heath, Klaus Heiner Kamps

Introduction

In [2] it was shown that a fibration of groupoids gives
rise to a family of six-term exact sequences of groups and
pointed sets. These exact sequences imply various exact se-
quences in homotopy theory, homological algebra and group
theory (see [2],[3],[10],[11],[15],[16],[17],[18],[19],[24],
(25]).

In the special case of a covering of groupoids, these
six-term exact sequences reduce to five-term exact sequences.
Here we exploit the latter sequences in applications to
operations of groupoids, and to Mayer-Vietoris type seguences.
In particular we generalize the results of (5]}, and give new
applications. We also show how the exact sequence of a fibra-
tion can be deduced from the apparently less general sequence
of a covering.

One of the reasons for emphasing coverings of groupoids
is that the relation between these and operations of
groupoids, which we recall in Section 1, is becoming more
generally important. For example, the construction of a
covering groupcid of a group G from a G-set gives one of
the basic examples of groupoids, used in many applications
(see [1],(2],(3],0(11]),(13],014],[20]),(21],[22)).

So we have further justification for regarding the
extension of viewpoint from groups to groupoids as signifi-
cant.
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1. Covering morphisms and operations

A groupoid is a small category in which every morphism
is invertible. A morphism of groupoids is simply a functor.
So we have a category Gd of groupoids, which contains as
full subcategory the category G of groups, where a group
is considered as a groupoid with one object. On the other
hand, any groupoid G contains a family G(x) =G{(x,x) of
vertex groups, one for each x€O0b(G) .

Thus the idea of a groupoid is a natural extension of
the idea of a group.As shown in [1] and [13], this extension
is useful. The reasons for considering a wider algebraic
structure are the usual ones: The category G6d has nicer
formal properties than G (it is cartesian closed, [21]);
examples of groupoids occur in many different branches of
mathematics; there are useful constructions leading from
groups to groupoids; groupoids cén be used in giving new
proofs and in proving new theorems.

A by now classical construction of a groupoid is that
arising from an operation of a group G on a set M , via
GXM-—=.M, (g,m) —~ge-m=gm, gEG, mEM . The groupoid
G X M has object set M , and morphisms m-m' the pairs

(g,m) EGxM such that gm=m' , with composition
 (g',gm) (g,m) = (g'g,m)

We call this groupoid the semi-direct product of G and M

(it is called the split extension in [3]) because it is a special
case of the semi-direct product construction for an action

of a group on a groupoid, or more generally of a groupoid

on a groupoid.

The set m_(G x M) of components of the groupoid

(
G x M is the oibit set M/G of M under the action of G.
Let p:G X M-G be the projection morphism (g,m) —g.
Then for any meM, p maps the vertex group (G x M) (m)
isomorphically to the stability (isotropy) group

G(m) = {g €G|gm=m}
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The morphism p:G % M—>G 1is a covering morphism of
groupoids. In general, a morphism g :H'-H of groupoids
is a fibration if for each object y' of H' and morphism
h of H starting at g(y') , there is a morphism h' of
H' starting at y' and with g(h')=h , and gq is a
covering if the 1lift h' of h is uniquely determined by
h and y' .

The above construction of G x M gives an equivalence
between the category of operations of the group G on sets
and the category of covering morphisms of G . In fact a
more general result is true. We recall the following defini-

tion due to Ehresmann ([7]).

1.1. Definition. An operation of a groupoid G on a set M
consists of a function v :M-0b(G) and a family of
functions g :v_1(x)-+v-1(y) , one for each gE€G(x,y)
and X,y €0b(G) , such that 1, =1 and (9'9) , =9,9,

As usual, g, (m) is also written g'm or gm,
anv_1(x) . Such an operation is often written (G,M,v)
Note that, for each g, g, is a bijection.

A morphism (G,M,v) - (H,N,w) of such operations is a
pair (¢y,k) where ¢ :G-H is a morphism of groupoids,

Kk :M-N is a function, and we have the rules wx =0b(y)v
and ¢¥(g)k(m) =k (gm) whenever gm is defined. So we obtain

a category OpGd of operations of groupoids on sets.

Alternatively,one can consider an operation of a groupoid

G simply as a functor M from G to the category of
sets, and consider a morphism M-N of such operations as
a morphism ¢ :G~-H of groupoids and a natural transforma-
tion A :M-Ny of functors. This gives a category Op'Gd
But it is easy to construct an equivalence of categories
O0pGd -~ 0p'Gd  (see [2]).

A third way of considering operations arises from the
following definition. The category CovGd has objects the

covering morphisms of groupoids and has morphisms p-p'
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the commutative squares

of morphisms of groupoids, with the usual horizontal

composition.
1.2 Proposition. There is an equivalence of categories
0pGd - CovGd

given by a semi-direct product construction sending the
operation (G,M,v) to the covering morphism G X M-G . [

Here G ¥ M 1is the groupoid with object set M and

morphisms m-m'

the pairs (g,m) such that g€G(vm,vm')
and m'=gm . The proof of the proposition is straight-
forward.

The canonical construction associating an operation to
a covering morphism g : H' -H can be described as follows.
If heH(x,y), x' €Ob(H') such that q(x') =x , then h-x"
is the final point of the unique lift of h starting at x'

Thus we have three ways of considering operations of
groupoids, corresponding to our three categories, each way
being appropriate in particular circumstances. The covering
approach is less well known.Its value comes from the relation
between coverings and fibrations (discussed below) and the
fact that covering morphisms of groupoids model covering
maps of spaces (see [1] for a detailed discussion of this).
Proposition 1.2 may be generalized to groupoid objects in
arbitrary categories with finite limits - see [4] for the
appropriate definition of covering. For relations between
coverings of groupoids and coverings of categories, see
(91,[23].
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2. Exact sequences and fibrations

In this section we give the exact sequence associated
with a covering of groupoids. We show how this applies to
operations and also how the exact sequence of a fibration
can be deduced from the exact seguence of a covering.

The importance of these considerations is that many
situations in group theory lead to operations and so to
groupoids. The following exact sequences link many apparently

disparate facts.

2.1. Proposition. If g .H' -H 4s a covering morphism of
groupoids, y' €Ob(H") and Féy‘ is the diserete groupoid

(or set) q—1qy' , then

(2.2) 1-8' (y')—q—>H(qy')—8—>FC'Iy,—i—>1TOH'—q—>T.OH

is an exact sequence of groups and pointed sets (ezact
covering sequence), where the base pointse are y' 1in Féy"
the component y' of y' in WOH' , and the component
(ay")” of aqy' in TH . The connecting map 8 is given
by the operation of H(qy') on the element v' of

F' , :3(h) =hey', h EH(gy"')

qy
Further:

(a) If h,k€H(agy') , then 3(h) =3(k) <f and only If
there 78 an h' €H'(y") such that qgh') =k—1h

(b) If y.,z EFéy' , then ily) =i(z) <Zf and only ©f there
ie an h €H(gy') such that hry=2z . 0

The proof of this proposition is straightforward (see
[2] for the more general case of a fibration) .

As an example of the above, let 1 :G-H be the
inclusion of a subgroup G of a group H . Then H
operates on the set H/G of left cosets. The semi-
direct product fi=BxH/G is denoted by Tr(H :G) in
[13]. The exact sequence of the covering H-H at the
identity coset G 1is equivalent to

| g —H-—2-H/G— 1,
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where H/G 1is of course a pointed set with base point the
coset G . In effect, the properties of the exact sequence
(2.2) imply Lagrange's Theorem.

Since the motivation for Proposition 2.1 comes from
homotopy theory, we see here many useful and interesting
analogies.

More generally, if (G,M,v) 1is an operation of a
groupoid G on a set M, and m&€EM , the exact sequence
of the covering G «x M—-G at the object m is the sequence

-1

(2.3) 1= (G(vm)) (m) -~ G(vm) - v vm-=>M/G~T,G ,

where (G(vm)) (m) as above denotes the stability group of
m under the induced action of G(vm) on v_1vm and M/G
is the set of equivalence classes of M under the relation
m~m' 1if there exists g€G(vm,vm') with m'=gm

In the case G 1is a group, (2.3) reduces to the exact

sequence
(2.4) 1-G(m) ~G-M-M/G~1

The link between fibrations and coverings is given by
the following construction. If f :G-H is a morphism of
groupoids and y €0Ob(H) , we denote the groupoid f—1(y)
by Fy » and call it the fibre of £f over y . Let
ker £ denote the sum of the fibres Fy for all objects vy
of H . Ft is pointed out in [2] that £ has a factoriza-
tion Gji»G/ker f 3oy , where G/kerf is the quotient
groupoid, gq' is the gquotient morphism (see [13]), and g
has discrete fibres with q_1(y) bijective with
ﬂO(Fy), y EOb(H) . Further, f 1is a fibration if and only
if g 1is a covering morphism.

Suppose now that f :G-H is a fibration of groupoids,
and x €0b(G) . Apply 2.1 to the covering g and the object
g'(x) in the above factorization f=qq' of f . The
resulting exact sequence (2.2) together with the exact

sequence of groups
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1-+fo(x)-’G(x)—»H'(q'x)-*1 p

where H'=G/ker f, now gives the exact seguence of a
fibration discussed in [2].

If (y,k) : (G,M,v) = (H,N,w) is a morphism of
operations, and ¥ :c~H is a fibration of groupoids,
then so also is Yxkk : GXM—=-HKN . The exact seguence
of this fibration then relates the various orbit sets /
stability subgroups of the operations involved. This idea

is exploited in [11] for the case G and H are groups.

3. Homotopy pullbacks and Mayer-Vietoris type seguences

Groupoids have a 'model' of the unit interval, namely
the groupoid I with two objects 0 and 1, and two
non-identity morphisms 1 :0-=1, 1—1 :1-0 . Many standard
constructions of homotopy theory can therefore be imitated
for groupoids (this was the origin of the fibration notion),
but with a much simpler theory than for the usual homotopy
theory. This fact has been exploited in [13,021,08]),0131,
and (18] and in a number of other papers. It shows one of
the advantages groupoids have over Jgroups.

In this section we borrow ideas on homotopy pullbacks
(see [6] for the topological case) to obtain a Mayer-Vietoris
sequence.

Throughout this section we consider a pullback square

A

B

of groupoids

D
(3.1) 5[

A

£

£
so that D is the subgroupoid of AXE whose elements

are pairs (a,e) such that £(a) =p(e) . and p,f are
given by projection onto the factors. We will also need

the standard homotopy pullback which is the groupoid double
mapping track Z of £ and p defined as follows.
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The objects of Z are triples (a,B,e) , where
a€EOb(A) , e€O0Ob(E) and B:pl(e)>f(a) 1is a morphism
of B . The morphisms (a,c) :(a,B,e) =~ (a',B',e') of 2
are pairs of morphisms a:a—-a' of A, e:e-e' of E ,
such that
),

g’ ‘B.

T
is a commutative square in B . Let gq:Z-+AXE be defined
by a(a,B8,e) = (a,e) on objects and g(a,e) = (a,e) on

morphisms.
3.2. Proposition. q:Z-AXE <s a covering of groupotds.

Proof. Let (a,B,e) be an object of Z and

(a,e) : (a,e) - (a',e') a morphism of AXE . Then

(¢,€) & (a,B,e) - (a',B',e') with B'=f(a)Bple) | is the
unique lifting. 0

3.3. Theorem. For each object do= (ao,eo) of D and each

element BO of B(bo) where bo=f(a0) =p(eo) there is
an exact (Mayer—-Vietoris) sequence of groups and based sets
A (®,f)

q o -
(3.4) 1—>Z(zo)—>A(aO)><E(eo) B(bo) JTOZ ﬂoAnerE 1,

where z, s the object (aO,B ,e ) of Z , and TroArHroE

denotes the pullback of ﬂOA—f>1TOB<—E—1TOE . The base points
are BOEB(bO) and the components z, in '!TOZ and (ao,eo)

in ﬂoAnWOE
The boundary A 1s given by A(B) = (ao,B,eo)~ for

BEB(bO) , while BZ 18 the restriction of the operation
o
of A(ao) XE(eo) on _]13(bo) , given by
(a,e) B =1(a)BRpl(e) for aEA(aO), EEE(eo), BEB(bO) ,

to the base point Bo
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Furthermore:
< B,B' EB(bo) , then A(B) =A(B') <Zf and only Zf
there are « EA(aO), € €E(eo) such that B'=f(a)Bple)

Proof. We apply 2.1 to the covering g :Z2-+AxE of 3.2 and
the object zo==(ao,60,eo) of Z . Note that the fibre of
g over (ao,eo) has B(bo) as its set of objects. We
obtain the sequence above with the extreme right hand terms
replaced by wOA><ﬂOE . The operation is determined by the
unique lifting property of a covering (cf. the proof of 3.2).
To see that the induced map ﬂoZ->ﬂoAr1ﬂoE is surjective

let a€Ob(A), e €Ob(E) such that the components in B of
f(a) and p(e) coincide. Thus we have a morphism

B:p(e) ~f(a) in B . Then (a,B,e) is an object of 2

whose component is mapped to (a,é) . 0

Next we relate the pullback to the homotopy pullback.
Let ¢ :D—-Z be the canonical functor defined by
¢(a,e)==(a,1f(a),e) on objects and ¢(a,e) = (a,e) on

morphisms.

3.5. Proposition. For each object d of D, ¢ :D(d) ~2Z2(d(d))

is an tsomorphism; the induced map ¢ :ﬂOD-+ﬂOZ 78 injective.

Proof. We have Z(¢(d)) =D(d) , and ¢ is the identity
map. Suppose we are given objects d= (a,e), d'=(a',e') of

i . g 1 1 s
D and a morphism (a,g) .(a,1f(a),e) (a ,Tf(a,),e } in Z .
Then we have f(a) =p(e) . Thus (a,e) :d-d' is a morphism
in D . Hence ¢ :ﬂOD-*ﬂoZ is injective. 0
3.6. Definition. A pair of morphisms (£f,p) of groupoids
with common target

a-f-pB g

is called surgective if for each object (a,B8,e) of 2
there are morphisms e€:e-e' in E and ao:a'-a in A

where p(e')=£f(a') with B=f(a)p(e)

155
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3.7. Examples. (i) If f or p 1is a fibration, then the
pair (f,p) 1is surjective.

(ii) If f and p are group homomorphisms, then the pair
(f,p) 1is surjective if and only if B is the product set
f(A)p(E) . In the case that f and p are inclusions of
subgroups G1,G2 into a group G this condition reduces

to G=G1G2 =

3.8. Proposition. The pair (f,p) is surjective if and
only ©f the induced map ¢ :ﬂOD'*WOZ 18 surjective.

Proof. Assume that (f,p) is surjective. Let (a,B,e) €0b(Z).

Then A8 =f(a)p(e) for appropriate a:a'-—-a, €e:e—-e' with
p(e') =f(a') . Then (a_1,€) :(a,B,e)-*(a',1f(a.),e') is

a morphism of Z into the image of ¢ , and conversely. [

3.9. Remarks. (i) Note that the following Whitehead-type
lemma holds for groupoids. A morphism f:G—-H is a
homotopy equivalence if and only if the induced map

f :ﬂOG-+ﬂOH is bijective and for each a € O0b(G)

f : G(a) ~H(fa) is an isomorphism of groups.

(ii) In view of (i), 3.5 and 3.8, the pair (f,p) is
surjective if and only if ¢ :D—-Z 1is a homotopy equiva-
lence which means that the pullback (3.1) is a homotopy
pullback in the category of groupoids.

3.10. Corollary. If in diagram (3.1) the pair (f,p) <is
surjective, then for each object do==(ao,eo) of D and
bo==f(ao)==p(eo) there is an exact (Mayer-Vietoris)

sequence of groups and based sets

_1 - —
2 mp )-Len piB.£)
o o

(3.11) 1»D(do)(p—'f)-A(ao) X E(e_) T _AnT _E=1,

where (fp_1)(a,s) =f(ot)p(e:)—1 for aGEA(aO), € EE(eo)

The base points are 1 EB(bO) and the components ao in

- ~ o~ ,
oD and (ao,eo) in ﬂoAr1ﬂoE
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Proof. We apply 3.3 for BO==1 . Then 3.5 and 3.8 give the
result. O

Note that, in general, fp_1 in (3.11) is not a group
homomorphism.

I1f p is a fibration, then 3.10 is essentially 2.4 of
[5]. Using the methods of [5] Mayer-Vietoris type sequences
for homotopy pullbacks have been obtained in [26].

4. Applications to group theory

We start with an improved version of an example from

elementary group theory taken from [25].

4.1. Example. Let G be-a group and G1 and G subgroups

2
of G . Consider the diagram of inclusions
G|2
(4.2) ln
G.l el G

in the category of groupoids.

Let gq :Z-’G1 XG2 be the covering constructed as in
3.2. Let 1 denote the unique object of a group considered
as a groupoid. Then Ob(Z2) ={(1,9,1)|g€Gl =G and g=g'
in nOZ if and oni¥ if there are elements g, €G, and
9, EG2 with g=g, g'g2 , showing ﬁOZ is the set G/G1><G2
of doub1?1cosets. Finally (g1,g2) €z(g) if and_?nly if
94 =99,9 and so the homomorphism Z(g)—~G2fWg G.9
giyen by (g1,g2) H-g2 is an isomorphism. Putting all this
together with 3.3, for each ge€G we ocbtain an exact
sequence

K 3
-1 -9, 9. — -
1-G,Ng Gu9 G, x G, G G/G4 X G, 1,

_ -1 _ -1
where Kg(gz)-(ggzg ,gz) and where 8g(g1,g2)-g1ggz

157
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We obtain the classification
-1
= N
G ; (G1><G2)/l<g(G2 g G49) .
where the disjoint union is taken over a complete set of
representatives of the double cosets G1gG2

For finite G as in [25], we obtain the counting

formula
0(G) =0(G,)0(G,) > 1_ ’
1 2 1
g o(G,Ng G,9)
2 1
where o(G) denotes the order of G . O

We consider next operations of groups on sets. Consider

the commutative diagram

GxM ~ M
B XK K
(4.3) H x N - N
ny// //A(
KxL = L

of group actions, where B8:G-H and ¥y :K-H are
homomorphisms and x :M-N and XA :L-N are maps.

Let KnG and LnM denote the pullbacks of
K—Y—-H-LG and L—A-N~—K—M respectively. We have
generalizing 2.3 of [11]:

4.4. Proposition. (i) The group XKmG operates on LMOM by
(k,g) = (L,m) =(k +1,g+m)

(ii) The pullback of the induced diagram of groupoid

morphisms
KoL LA gy EXK gy
28 (KmG) x (LAM) . 0
Here, B&«k , for example, is given by the map x on

objects and by (B&«k)(g,m) = (Bg,km) on morphisms.
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4.5. Lemma. If in the situation (4.3) the pair (yv,B) <s
surjective, then the pair (YXX,BXK) <78 surjective and
hence (KM G) x (LAM) <s homotopy equivalent to the standard
homotopy pullback of YKA and BKK

Proof. Let (l1,h,m) be an object of the standard homotopy

pullback for y&xX and f&k , Thus 1€L, h€H, and
meM with h+k(m) =Xx(1l) . Since H=v(K)B(G) then
h=y(k)B(g) for some k€K, g€G . Now e€=g:m->g-'m

-1

and o=k :k *»1-+1 do the trick. O

4.6. Corollary. If <n the situation (4.3) the group H s
the product set Y(K)B(G) , then for any (1l,m) ELNM

we have an exact sequence

-1
1~ (Km @) (1,m ~K(1) xG(mLEaB(n) ~LaM/KAG->L/KAM/G~ 1
4.7. Example. Let G1 and G2 be subgroups of a group G
such that G=6G.,G, . Let each group act on itself by conju-

172
gation. Then for each g €G, nG2 we have an exact sequence

1=-C (g)"[G1ﬂG2]*[G1]n[G2]-1,

G mGz(g)*c (g) xCp (g) ~C

1 €4 2
where CG(g) is the centralizer of g in G and [ ] denotes
the set of conjugacy classes. This sequence is of the type
used in [24] for rationalization problems in group theory. 0O

We conclude with a special case of the main algebraic
result of [12].

Recall that for a homomorphism f :G-G of a group G
the Reidemeister number R(f) of £ is the number of
equivalence classes of G wunder the relation g~g' if
and only if there is g, €G with g=g1g'f(g1)-1 . As
was shown in [10] R(f) can be defined as the cardinality
of the orbit set of the operation GxG-~G given hy

(a,B) = aBf(a)”"

The stability subgroup of G at 1€G is written Fix f
Let B :G~H be a surjective homomorphism and vy :K~-H

159
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any homomorphism. Suppose further fK s K=K ; fH tH-H
and fG :G~G are homomorphisms. Let fKrlfG denote the

induced homomorphism on KmG .

4.8. Proposition. If in the above situation K,H and G
are abelian then the Reidemeister numbers of fK’fH’fG
and fKr1fG are related by the formula

[Fix £ @ (YFix £;) (BFix E RUEIR(EL) =R(£,ME)R(E,) ,
where the first number denotes the number of double cosets
of YFix fK and BFix fG in  Fix fH
Proof. This follows from the interpretation of the exact
sequence of groups (see [10],1.3)

T+ ((KnG) x (KAG)) (1) -~ ((KxK) x (GKXG)) (1) -~ (Hx H) (1) -
-—TTO((KI'lG) x (KHG))-TTO(KD(K)H TI'O(GD<G) -1

and easy calculation on this last set. 0
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