
COMPUTING HOMOTOPY TYPES USING

CROSSED N -CUBES OF GROUPS∗

Ronald Brown

Dedicated to the memory of Frank Adams

Introduction

The aim of this paper is to explain how, through the work of a number of people, some

algebraic structures related to groupoids have yielded algebraic descriptions of homotopy

n-types. Further, these descriptions are explicit, and in some cases completely computable,

in a way not possible with the traditional Postnikov systems, or with other models, such

as simplicial groups.

These algebraic structures take into account the action of the fundamental group. It

follows that the algebra has to be at least as complicated as that of groups, and the basic

facts on the use of the fundamental group in 1-dimensional homotopy theory are recalled

in Section 1. It is reasonable to suppose that it is these facts that a higher dimensional

theory should imitate.

However, modern methods in homotopy theory have generally concentrated on meth-

ods as far away from those for the fundamental group as possible. Such a concentration

has its limitations, since many problems in the applications of homotopy theory require a

non-trivial fundamental group (low dimensional topology, homology of groups, algebraic

K-theory, group actions, . . .). We believe that the methods outlined here continue a class-

ical tradition of algebraic topology. Certainly, in this theory non-Abelian groups have a

clear role, and the structures which appear arise directly from the geometry, as algebraic

structures on sets of homotopy classes1.

It is interesting that this higher dimensional theory emerges not directly from groups,

but from groupoids. In Sections 1 and 2 we state some of the main facts about the use of

multiple groupoids in homotopy theory, including two notions of higher homotopy groupoid,

and the related notions of crossed complex and of crossed n-cube of groups. Theorem 2.4

shows how to calculate standard homotopy invariants of 3-types for the classifying space of

∗This paper is an edited version, 03 Nov. 2017, in LATEX , with hyperref, updated references and some

corrections, of the paper of the same title which appeared in the Adams Memorial Symposium on Algebraic

Topology, Vol 1, edited N. Ray and G Walker, Cambridge University Press, 1992, 187-210.
1This philosophy is developed in the paper [13]
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a crossed square. We also show in Section 2 how crossed n-cubes of groups and the notion

of n-cube of fibrations, with the use of the Generalized Seifert-Van Kampen Theorem due

to Brown and Loday, 1987a, [27], cf. Theorem 3.2, can be used in some practical cases for

the computation of homotopy types (Proposition 3.3).

An interesting methodological point is that the description of the whole n-type has, by

these methods, better algebraic properties than do the individual invariants (homotopy

groups, Whitehead products, etc.). As an application, we give some explicit results on

3-types, including computations of Whitehead products at this level. In Section 4 we prove

a result from Section 1. In Section 5, we show that many simply connected 3-types arise

from a crossed square of Abelian groups (Theorem 5.1).

Baues, in [2, 3] also considers algebraic models of homotopy types involving non-

Abelian groups, and in the second reference considers quadratic modules and quadratic

chain complexes. It seems that the sets of results of the two techniques have a non-trivial

intersection, but neither is contained in the other. Thus a further comparison, and possibly

integration, of the two types of methods would be of interest2.

Joyal and Tierney have also announced a model of 3-types using braided 2-groupoids.

These models are equivalent to the braided crossed modules of Brown and Gilbert, [16],

which are there related to simplicial groups and used to discuss automorphism structures

of crossed modules3.

1 Groups and homotopy 1-types

The utility of groups in homotopy theory arises from the standard functors

π1 : (spaces with base point)→ (groups)

B : (groups)→ (spaces with base point)

known as the fundamental group and classifying space functors respectively. The classifying

space functor is the composite of geometric realisation and the nerve functorN from groups

to simplicial sets. These functors have the properties:

1.1 There is a natural equivalence of functors π1 ◦B ' 1.

1.2 If G is a group, then πiBG is 0 if i 6= 1.

The fundamental group of many spaces may be calculated using the Seifert-Van Kam-

pen theorem, or using fibrations of spaces. Further, if X is a connected CW -complex and

G is a group, then there is a natural bijection

[X,BG] ∼= Hom(π1X,G),

2In particular, quadratic modules do not satisfy the methods explained in [13, Sections 1,2].
3The relation of such ideas to potential developments in “higher order symmetry” is also postulated in

[10].
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where the square brackets denote pointed homotopy classes of maps. It follows that there

is a map

X → Bπ1X

inducing an isomorphism of fundamental groups. It is in this sense that groups are said

to model homotopy 1-types, and a computation of a group G is also regarded as a com-

putation of the 1-type of the classifying space BG.

A standard block against generalising this theory to higher dimensions has been that

higher homotopy groups are Abelian. The algebraic reason for this is that group objects in

the category of groups are Abelian groups. This seems to kill the case for a ‘higher dimen-

sional group theory’, and in 1932 was the reason for an initial dissatisfaction with Čech’s

definition of higher homotopy groups, [30], Incidentally, Čech also suggested the idea of

higher homotopy groups went back to Dehn, who never published it, [32] (Dieudonné,

1989). The difficulties of basic homotopy theory are shown by the fact that Hurewicz

never published the proofs of the results announced in his four notes on homotopy groups,

[46] (Hurewicz, 1935, 1936); that a proof of the Homotopy Addition Theorem did not

appear in print till [43] Hu, 1953; and that even current proofs of this basic theorem are

not easy (e.g. [55] G.W.Whitehead, 1978)4.

It has for some time been established that most of the theory of the fundamental group

is better expressed in terms of the fundamental groupoid (Brown, 1968, 1988) [9] in that

theorems:

• have more natural and convenient expression;

• have more powerful statements;

• and have simpler proofs.

As an example, we mention the description in Brown, 1988, [9] of the fundamental groupoid

of the orbit space of a discontinuous action. Thus it is natural to ask:

Can a ‘better’ higher homotopy theory be obtained using some notion of ‘higher homotopy

groupoid’?

Expectations in this direction were expressed in Brown, 1967, [7].

By now, some of the answers to this question seem to be of the ‘best possible situation’

kind, and suggest that homotopy theory is in principle coincident with a ‘higher dimen-

sional group(oid) theory’. Such a theory is a significant generalisation of group theory. In

view of the many applications of group theory in mathematics and science, the wider uses

of this generalisation, and the principles underlying it, need considerable further study.

For example, some possibilities are sketched in [11, 12], Brown, Gilbert, Hoehnke, and

Shrimpton, 1991, [17]. Also, the known applications in homotopy theory have so far used

what seems only a small part of the algebra.

4This theorem is linked with the monoidal structure on crossed complexes in [24, Section 9.9].
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2 Multiple groupoids

The simplest object to consider as a candidate for a ‘higher dimensional groupoid’ is

an n-fold groupoid. This is defined inductively as a groupoid object in the category of

(n−1)-fold groupoids, or alternatively, as a set with n compatible groupoid structures. The

compatibility condition is that if ◦i and ◦j are two distinct groupoid structures, then the

interchange law holds, namely that

(a ◦i b) ◦j (c ◦i d) = (a ◦j c) ◦i (b ◦i d)

whenever both sides are defined. This is often expressed in terms of the diagram

[
a b

c d

]
j��

// i

Note that Ehresmann, 1963, [35], defines double categories, and the above definition

is a simple extension of that concept. The argument that a group object in the category

of groups is an Abelian group now yields that a double groupoid contains a family of

Abelian groups, one for each vertex of the double groupoid. More generally, a basic result

is that a double groupoid contains also two crossed modules over groupoids (Brown and

Spencer, 1976) [29]. For example, the horizontal crossed module is defined analogously to

the second relative homotopy group. It consists in dimension 2 of the elements of the form

1V

∂m

m 1V

1H

where 1H and 1V denote identities for the horizontal and vertical ‘edge’ groupoid structures

respectively. In dimension 1 it consists of the horizontal ‘edge’ groupoid. The boundary

∂m of an element m is as shown, and the action is not hard to define, as suggested by the

following diagram:

mb = 1V

b−1 ∂m

m

b

1V

b−1 1H b

where denotes a vertical identity.

The existence of these crossed modules in any double groupoid, and the fact that a

particular kind of double groupoid can be constructed from any given crossed module

(Brown and Spencer, 1976), [29], together illustrate that double groupoids are in some
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sense more non-Abelian than groups. This in principle makes them more satisfactory

as models for two dimensional homotopy theory than are the second homotopy groups.

In fact it is known that crossed modules over groupoids, and hence also certain double

groupoids, model all homotopy 2-types [51] (see Mac Lane and Whitehead, 1950, [51], but

note that they use the term “3-type” for what is now called “2-type”).

One of the features of the use of multiple groupoids is that they are most naturally

considered as cubical objects of some kind, since they have structure in different direc-

tions. Analogous simplicial objects may in some cases be defined, but their properties

are often difficult to establish, and are sometimes obtained by referring to the cubical

analogue. For a general background to problems on algebraic models of homotopy types,

see Grothendieck, 1983, [41], although this work does not take into account the use of

multiple groupoids5.

The first example of which we know of a ‘higher homotopy groupoid’ was found in 1974

(see [18] Brown and Higgins, 1978), 42 years after Čech’s definition of homotopy groups,

namely the fundamental double groupoid of a pair of pointed spaces. It is conveniently

expressed in the more general situation of filtered spaces as follows (Brown and Higgins,

1981b, [20], as modified in [23] Brown and Higgins, 1991, Section 8). Let

X∗ : X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X

be a filtered space. Let RX∗ be the singular cubical complex of X∗, consisting for all

n > 0 of the filtered maps In∗ → X∗ , where the standard n-cube In is filtered by its

skeleta, and with the standard face and degeneracy maps. Let ρX∗ consist in dimension

n of the homotopy classes, through filtered maps and rel vertices, of such filtered maps.

(The modification in the 1991 paper6 is to take the homotopies rel vertices.) The standard

gluing of cubes in each direction imposes an extra structure of n compositions on (RX∗)n
for each n > 1.

It is a subtle fact [20] (Brown and Higgins, 1981b) that this structure is inherited by

ρX∗ to give the latter the structure of n-fold groupoid in each dimension n. There is also

an extra, easily verified structure, on both RX∗ and ρX∗, namely that of connections:

these are extra degeneracy operations which arise in the cubical context from the monoid

structure max on the unit interval I. The total structure on ρX∗ is called that of ω-

groupoid [19, 20] (Brown and Higgins, 1981a,b). This gives our first example of a higher

homotopy groupoid.

5Since this article was first published, there has been a large amount of work on the Grothendieck

programme, developing models of homotopy types in terms of forms of weak infinity categories; see for

example https://www.ncatlab.org/nlab/show/homotopy+hypothesis. However it seems the weak infin-

ity categories considered do not seem suitable for explicit calculations. The philosophy of our approach is

made more explicit in [13].
6See also [24].
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The aim of the introduction of this functor

ρ : (filtered spaces)→ (ω-groupoids)

was that the proof of the usual Seifert-Van Kampen Theorem for the fundamental group

generalised to a corresponding theorem for ρ [20] (Brown and Higgins, 1981b). One main

feature of the proof is that ω-groupoids, being cubical objects, are appropriate for encoding

subdivision methods, since they easily allow an ‘algebraic inverse to subdivision’. It is not

easy to formulate a corresponding simplicial method. (See Jones, 1984, [47], for a possible

approach.) Another feature crucial in the proof is the use of the connections to express

facts related to the Homotopy Addition Theorem, [43]. It seems that connections are an

important new part of the cubical theory, since they allow for ‘degenerate’ elements in

which adjacent faces are identical, as in the simplicial theory7.

The classifying space BG of an ω-groupoid G is the geometric realisation of its un-

derlying cubical set. These classifying spaces model only a restricted range of homotopy

types, namely those which fibre over a K(π, 1) with fibre a topological Abelian group [23]

(Brown and Higgins, 1991). Nonetheless, these restricted models have useful applications.

A principal reason for this is the equivalence proved in [19] Brown and Higgins, 1981a,

between ω-groupoids and the classical tool in homotopy theory of crossed complex.

A crossed complex is a structure which encapsulates the properties of the relative

homotopy groups πn(Xn, Xn−1, p), p ∈ X0, n > 2, for a filtered space X∗, together

with the boundary maps and the actions of the fundamental groupoid π1(X1, X0) on

these relative homotopy groups. The notion was first considered in the reduced case (i.e.

when X0 is a singleton) by Blakers, 1948, [6], under the name group system. It was

studied in the free case, and under the name homotopy system, by Whitehead, 1949 [56].

The term crossed complex is due to Huebschmann, 1980, [44] who used crossed n-fold

extensions to represent the elements of the (n + 1)-st cohomology group of a group (see

also Holt, 1979,[42] Mac Lane, 1979, [50] Lue, 1981, [49]), and to determine differentials in

the Lyndon-Hochschild-Serre spectral sequence (Huebschmann, 1981)[45]. Lue, 1981, [49]

gives a good background to the general algebraic setting of crossed complexes. Crossed

complexes have the advantage of being able to include information on chain complexes

with a group (or groupoid) G of operators, [24], and on presentations of the group G.

The category of crossed complexes also has a monoidal closed structure [21] (Brown and

Higgins, 1987), which is convenient for expressing homotopies and higher homotopies8.

The Generalized Seifert-Van Kampen Theorem for the fundamental ω-groupoid of a

filtered space (Brown and Higgins, 1981b, [20]) implies immediately a similar theorem

for the fundamental crossed complex, and this theorem has a number of applications,

including the Relative Hurewicz Theorem. The latter theorem is thus seen in a wider

7This development in cubical theory is discussed further in [13], and is different from that developed in

[52], which concentrates on connectivity results.
8These results are now covered in [24].

6



context, related to excision, and in a formulation dealing initially with the natural map

πn(X,A) → πn(X ∪ CA). This formulation was a model for the (n + 1)-ad Hurewicz

theorem [28] (Brown and Loday, 1987b). Other recent applications of crossed complexes

are given in Baues, 1988, 1991, [2, 3] Brown and Higgins, 1987, 1989, 1991, [21, 22, 23] [4]

Baues and Brown, 1990,[5] Baues and Conduché, 1991. See also [24].

More general algebraic models related to groupoids are associated not with filtered

objects but with n-cubes of objects. Let 〈n〉 denote the set {1, 2, . . . , n}. An n-cube C

in a category C is a commutative diagram with vertices CA for A ⊆ 〈n〉 and morphisms

CA → CA∪{i} for A ⊆ 〈n〉, i ∈ 〈n〉, and i 6∈ A. In particular, a 1-cube is a morphism, and

a 2-cube is a commutative square.

Let X∗ be an n-cube of pointed spaces. Loday, 1982, [48], defines the fundamental

catn-group ΠX∗. (We are following the terminology and notation of [27] Brown and Loday,

1987a.) Here, a catn-group may be defined to be an n-fold groupoid in the category of

groups. Alternatively, it is an (n + 1)-fold groupoid in which one of the structures is a

group. (This is one of several equivalent definitions considered in [?] Loday, 1982.)

For simplicity, we describe ΠX∗ in a special case, namely when X∗ arises from a pointed

(n + 1)-ad X = (X;X1, . . . , Xn) by the rule: X〈n〉 = X and for A properly contained in

〈n〉, XA =
⋂
i 6∈AXi, with maps the inclusions. Let Φ be the space of maps In → X which

take the faces of In in the ith direction into Xi. Notice that Φ has the structure of n

compositions derived from the gluing of cubes in each direction. Let ∗ ∈ Φ be the constant

map at the base point. Then G = π1(Φ, ∗) is certainly a group. Gilbert, 1988, identifies G

with Loday’s ΠX∗, so that Loday’s results, obtained by methods of simplicial spaces, show

that G becomes a catn-group. It may also be shown that the extra groupoid structures

are inherited from the compositions on Φ. It is this catn-group which is written ΠX and

is called the fundamental catn-group of the (n + 1)-ad X . This construction of Loday is

our second example of a higher homotopy groupoid. We emphasise that the existence of

this structure is itself a non-trivial fact, containing homotopy theoretic information. Also

the results of Gilbert, 1988, [39], are for the case of n-cubes of spaces.

The nerve NG mentioned in Section 1 may be defined, not only for a group but also

for a groupoid G, to be in dimension i the set of groupoid maps π1(∆
i,∆i

0)→ G , where

∆i
0 is the set of vertices of the i-simplex ∆i . It follows by iteration that N defines also a

functor

((n+ 1)-fold groupoids)→ ((n+ 1)-simplicial sets).

Hence there is a classifying space functor

B : (catn-groups)→ (pointed spaces)

defined as the composite of geometric realisation and the nerve functor to (n+1)-simplicial

sets. Loday, 1982, [48], proves that if G is a catn-group, then BG is (n+ 1)-coconnected,

i.e. πiBG = 0 for i > n + 1. He also shows, with a correction due to Steiner, 1986,
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[54], that if X is a connected, (n + 1)-coconnected CW -complex, then there is a catn-

group G such that X is of the homotopy type of BG. In fact, Loday gives an equivalence

between a localisation of the category of catn-groups and the pointed homotopy category

of connected, (n+ 1)-coconnected CW -complexes. This can be put provocatively as

(n+ 1)-fold groupoids model all homotopy (n+ 1)-types.

That is, the generalisation from groups or groupoids to (n+ 1)-fold groupoids is as good

for modelling homotopy types as might be expected. This result also shows the surprising

richness of the algebraic structure of (n+ 1)-fold groupoids.

There is an important structure equivalent to that of catn-groups, namely that of

crossed n-cubes of groups ([38] Ellis and Steiner, 1987). The main intuitive idea is that a

crossed n-cube of groups is a crossed module in the category of crossed (n − 1)-cubes of

groups. This leads to the following definition (loc. cit.).

Definition 2.1 Let 〈n〉 denote the set 1, 2, . . . , n. A crossed n-cube of groups is a family

of groups, MA, A ⊆ 〈n〉, together with morphisms µi : MA →MA\{i}, (i ∈ 〈n〉, A ⊆ 〈n〉),
and functions h : MA ×MB → MA∪B, (A,B ⊆ 〈n〉), such that if ab denotes h(a, b)b for

a ∈MA and b ∈MB with A ⊆ B, then for a, a′ ∈MA, b, b
′ ∈MB, c ∈MC and i, j ∈ 〈n〉,

the following hold:

1. µia = a if i 6∈ A

2. µiµja = µjµia

3. µih(a, b) = h(µia, µib)

4. h(a, b) = h(µia, b) = h(a, µib) if i ∈ A and i ∈ B

5. h(a, a′) = [a, a′]

6. h(a, b) = h(b, a)−1

7. h(a, b) = 1 if a = 1 or b = 1

8. h(aa′, b) =a h(a′, b)h(a, b)

9. h(a, bb′) = h(a, b) bh(a, b′)

10. ah(h(a−1, b), c) ch(h(c−1, a), b) bh(h(b−1, c), a) = 1

11. ah(b, c) = h(ab,a c) if A ⊆ B ∩ C.

A morphism of crossed n-cubes (MA) → (NA) is a family of morphisms of groups

fA : MA → NA(A ⊆ 〈n〉) which commute with the maps µi and the functions h. This

gives us a category Crsngp. Ellis and Steiner, 1987, [38], show that this category is

equivalent to that of catn-groups, and this is the reason for the choice of structure and

axioms in Definition 2.1. This equivalence shows that there is a classifying space functor

B : Crsngp→ Top.
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This functor would be difficult to describe directly9. The results for catn-groups imply that

a localisation of the category Crsngp is equivalent to the homotopy category of pointed,

connected, (n+ 1)-coconnected CW -complexes.

The fundamental crossed n-cube of groups functor Π′ is defined from n-cubes of pointed

spaces to crossed n-cubes of groups: Π′X∗ is simply the crossed n-cube of groups equivalent

to the catn-group ΠX∗. It is easier to identify Π′ in classical terms in the case X∗ is the

n-cube of spaces arising as above from a pointed (n + 1)-ad X = (X;X1, . . . , Xn). That

is, let X〈n〉 = X and for A properly contained in 〈n〉 let XA =
⋂
i 6∈AXi. Then M = Π′X

is given as follows (Ellis and Steiner, 1987, [38],): M∅ = π1(X) ; if A = i1, . . . , ir, then

M is the homotopy (r + 1)-ad group πr+1(X;X1 ∩ Xi, . . . , Xn ∩ Xi); the maps µ are

given by the usual boundary maps; the h-functions are given by generalised Whitehead

products. Note that whereas these separate elements of structure had all been considered

previously, the aim of this theory is to consider the whole structure, despite its apparent

complications. This global approach is necessary for the Generalized Seifert-Van Kampen

Theorem 3.2 stated below. That Π′X satisfies the laws for a crossed n-cube of groups

follows immediately since Π′X is the crossed n-cube of groups derived from the cat -group

ΠX∗. From now on, we abbreviate Π′ to Π , the meaning being clear from the context.

A crossed n-cube of groups M gives rise to an n-cube of crossed n-cubes of groups

M where

(( M)(A))B =

{
MB if A′ ⊆ B
1 otherwise

Then B M is an n-cube of spaces. The generalisation to this context of the result on the

fundamental group of the classifying space of a group is that there is a natural isomorphism

of crossed n-cubes of groups

ΠB M ∼= M.

(See Loday, 1982, [48],for the catn-group case, and Brown and Higgins, 1981b, [20], [23]

1991, for the analogous crossed complex case.) This result confirms the appropriate nature

of the axioms (1)-(11) of Definition 2.1.

A description of the homotopy groups of BG for a catn-group G has been given in

Loday, 1982, [48], in terms of the homology groups of a non-Abelian chain complex. This,

with some extra work, yields a result on the homotopy invariants of the classifying space

of a crossed square (i.e. a crossed 2-cube of groups). It is useful first to give the axioms

for this in a different notation.

A crossed square (Loday, 1982) [48], consists of a commutative square of morphisms

9 (Porter, 1990, [53], gives a different account of such a functor, but that paper does not deal with the

Generalised Seifert-van Kampen Theorem.)
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of groups

L
λ //

λ′

��

M

µ

��
N ν

// P

(2.2)

together with actions of P on the groups L,M,N , and a function h : M ×N → L. This

structure shall satisfy the following axioms, in which we assume that M and N act on

L,M,N via P :

(2.3)(i) the morphisms λ, λ′, µ, ν and µλ = νλ′ are crossed modules and λ and λ′ are

P -equivariant;

(2.3)(ii) λh(m,n) = m nm−1, λ′h(m,n) = mnn−1;

(2.3)(iii) h(λl, n) = l n l−1, h(m,λ′l) = mll−1;

(2.3)(iv) h(mm′, n) = mh(m′, n)h(m,n), h(m,nn′) = h(m,n) nh(m,n′);

(2.3)(v) h(pm,p n) = ph(m,n),

for all l ∈ L,m,m′ ∈M,n, n′ ∈ N, p ∈ P .

We now describe the homotopy groups of BG for a crossed square G as above. The

first part of the following result is a special case of results in Loday, 1982, [48].

Theorem 2.4 Let G be the crossed square (2.2). Then the homotopy groups of BG may

be computed as the homology groups of the non-Abelian chain complex

L
(λ−1,λ′)−−−−−→M oN

µ∗ν−−→ P (2.5)

where µ ∗ ν : (m,n) 7→ (µm)(νn). This implies that

πiBG ∼=


P/(µM)(νN) if i = 1

(M ×P N)/{(λl, λ′l) : l ∈ L} if i = 2

(Ker λ) ∩ (Ker λ′) if i = 3

0 if i > 4.

(2.6)

Further, under these isomorphisms, the composition η∗ : π2BG → π3BG with the Hopf

map η : S3 → S2 is induced by the function M ×P N → L, (m,n) 7→ h(m,n), and the

Whitehead product π2 × π2 → π3 on BG is induced by the function ((m,n), (m′, n′)) 7→
h(m′, n)h(m,n′). The first Postnikov invariant of BG is the cohomology class determined

by the crossed module

(M oN)/Im(λ−1, λ′)
µ∗ν−−→ P.

We will explain the proof of this result in Section 4.
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3 n-cubes of fibrations

As in Brown and Loday, 1987a, [27], an n-cube of maps X∗ yields an n-cube of fibrations

X∗. (See [34] Edwards and Hastings, 1976, [31] Cordier and Porter, 1990.) Following

Steiner, 1986, [54] we parametrize this as a commutative diagram consisting of spaces

XA,B (A,B disjoint subsets of 〈n〉 ) and fibration sequences

XA∪{i},B → XA,B → XA,B∪{i}, A ∩B = ∅, i ∈ 〈n〉 \ (A ∪B) (3.1)

The n-cube of fibrations (XA,B) contains an n-cube of spaces X∅,∗ homotopy equivalent to

X∗ (i.e. there is a morphism X∗ → X∅,∗ consisting of homotopy equivalences XB → X∅,B).

The n-cube of maps X∗ is called connected if all the spaces XA,B are path-connected.

Just as the traditional Seifert-Van Kampen Theorem enables one to compute the fun-

damental group of a union of connected spaces, so the Generalised Seifert-Van Kampen

Theorem (GSVKT) enables one to compute the fundamental crossed n-cube of a union of

connected n-cubes. This result is Theorem 5.4 of Brown and Loday, 1987a, [27], where it

is proved by induction on n starting with the usual SVKT. It may be restated in terms of

crossed n-cubes of groups, rather than catn-groups, as follows:

Theorem 3.2 Let X∗ be an n-cube of spaces, and suppose that U = {Uλ} is an open

cover of the space X<n> , such that U is closed under finite intersections. Let Uλ be the

n-cube of spaces obtained from X∗ by inverse images of the Uλ. Suppose that each Uλ is

a connected n-cube of spaces. Then:

(C): the n-cube X∗ is connected, and

(I): the natural morphism of crossed n-cubes of groups

colimλ ΠUλ → ΠX∗

is an isomorphism.

The colimit in this theorem is taken in the category of crossed n-cubes of groups, and so

the validity of (I) confirms again that the axioms for crossed n-cubes of groups are well

chosen.

The connectivity statement (C) of this theorem generalises the famous (n + 1)-ad

connectivity theorem, which is usually regarded as a difficult result (at the time of initial

writing, no recent proof was in print except that referred to here10). Of course, the

connectivity result is related to the fact that a colimit of zero objects is zero.

The isomorphism statement (I) implies the characterisation by a universal property of

the critical group of certain (n+1)-ads. (See Brown and Loday, 1987b, [28] for the general

procedure and explicit results on the triad case, using a non-Abelian tensor product, and

Ellis and Steiner, 1987, [38], for the general case.) The earlier result in this area is in

10More recent proofs of these connectivity results are given in the book [52].
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Barratt and Whitehead, 1952, [1] but there the assumption is made of simply connected

intersection, and the result is proved by homological methods, so that it has no possibility

for dealing with the occurrence of a non-Abelian (r+ 1)-ad homotopy group. It is clearly

advantageous to see the Barratt and Whitehead result, including the (n+1)-ad connectivity

theorem, as a special case of a theorem which has other consequences, for example an

(n+ 1)-ad Hurewicz theorem (Brown and Loday, 1987b) [28, 14]

These results, with Theorem 2.4, illustrate how situations in homotopy theory may

require constructions on non-Abelian groups for the convenient statement of a theorem,

let alone its proof. The methods of crossed n-cubes of groups give a (largely unstudied11)

range of new constructions in group theory.

Theorem 3.2 allows in some cases for the computation of the fundamental crossed n-

cube of groups ΠX∗ of an n-cube of spaces X∗. We now consider to what extent it also

allows computation of the (n+ 1)-type of the space X<n>.

Let X∗ be a connected n-cube of spaces, and let X = X<n>. It is proved in Loday,

1982, that there is an n-cube of fibrations Z∗ and maps of n-cubes of fibrations

X
f←− Z∗

g−→ B (ΠX∗)

such that f is a level weak homotopy equivalence and g induces an isomorphism of π1 at

each level. Assume now that X is of the homotopy type of a CW -complex. Then from f

and g we obtain a map

φ : X → BΠX∗

inducing an isomorphism of π1, namely the composite, at this level, of g with a homotopy

inverse of f , and with the map X<n> → X<n>. We do not expect φ to be a homotopy

equivalence in general, since the n-cube of fibrations B (ΠX∗) has special properties not

necessarily satisfied by X∗.

We say an n-cube of spaces X∗ is an Eilenberg-Mac Lane n-cube of spaces if it is

connected and all the spaces XA, are spaces of type K(π, 1). A chief example of this is

the n-cube of spaces B M derived from a crossed n-cube of groups. In fact, (B M)A,B
is not only path-connected but also (|B|+ 1)-coconnected. This n-cube of fibrations may

also be constructed directly in terms of the structure of M , using the techniques of Loday,

1982, [48]. We have the following result.

Proposition 3.3 Let X∗ be a connected n-cube of spaces such that X<n> is of the ho-

motopy type of a CW -complex. Suppose that for A,B ⊆ 〈n〉, such that A ∩ B = ∅, i ∈
〈n〉 \ (A ∪ B), and r = |B|, the induced morphism πr+2XA,B → πr+2XA,B∪{i} is zero.

Then the canonical (up to homotopy) map φ : X<n> → BΠX∗ is an (n+ 1)-equivalence.

11The nonabelian tensor product of groups introduced in [26, 27] has by 2017 a bibliography of 160

items, starting in 1952, and mainly by group theorists: see http://groupoids.org.uk/nonabtens.html.

There have been a lot of developments of the paper [15]. .
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Proof This is a simple consequence of the five lemma applied by induction on |B| to

the maps of homotopy exact sequences of the fibration sequences (3.1) of the n-cubes of

fibrations X∗ and B (ΠX ). 2

Example 3.4 Let M and N be normal subgroups of a group P , and let the space X be

given as the homotopy pushout

K(P, 1) //

��

K(P/M, 1)

��
K(P/N, 1) // X

Brown and Loday, 1987a, [27], apply the case n = 2 of Theorem 3.2 to show that the

above square of spaces has fundamental crossed square given by the ‘universal’ crossed

square
M ⊗N //

��
M
��

N // P
(3.5)

where M ⊗ N is the non-Abelian tensor product (loc. cit.), with generators m ⊗ n for

m ∈M and n ∈ N and relations

mm′ ⊗ n = (mm′ ⊗m n)(m⊗ n),

m⊗ nn′ = (m⊗ n)(nm⊗n n′)

for all m,m′ ∈ M,n, n′ ∈ N . The h-map of this crossed square is (m,n) 7→ m ⊗ n. It

follows from Proposition 3.3 that the 3-type of X is also given by this crossed square.

This result has been stated in Brown, 1989b, 1990, [11], and we have now given the proof.

Note that Theorem 2.4 allows one to compute η : π2 → π3 and the Whitehead product

map π2 × π2 → π3.

By contrast, the Postnikov description of the 3-type of X requires the description of

the first k-invariant

k(3) ∈ H3(P/MN, (M ∩N)/[M,N ]),

which in this case is represented by the crossed module M ◦N → P , where M ◦N is the

coproduct of the crossed P -modules M and N (see Brown, 1984, [8], and also Gilbert and

Higgins, 1989, [40]). This k-invariant determines (up to homotopy) a space X(2), which

could be taken to be the classifying space of the above crossed module, constructed either

by regarding the crossed module as a crossed 1-cube of groups, or as in Brown and Higgins,

1991, [23]. One then needs a second Postnikov invariant

k(4) ∈ H4(X(2),Ker(M ⊗N → P )).

This description of the 3-type of X is less explicit than that given by the crossed square

(2.2), from which we obtained the homotopy groups and the action of π1 in the first place.
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Note also that if M,N,P are finite, then so also is M ⊗ N (Ellis, 1987, [37]), so that in

this case the crossed square (2.2) is finite.

As an example, in this way one finds that if P = M = N is the dihedral group Dn of

order 2n, with generators x and y and relations x2 = yn = xyxy = 1, where n is even,

then the suspension SK(Dn, 1) of K(Dn, 1) has π3 isomorphic to (Z2)
4 generated by the

elements of Dn ⊗Dn:

x⊗ x, (x⊗ y)n/2, y ⊗ y, (x⊗ y)(y ⊗ x).

Further, η∗(x) = x⊗ x, η∗(y) = y⊗ y, where x and y denote the corresponding generators

of π2SK(Dn, 1) = (Dn)ab (if n is odd, only the x ⊗ x term appears in π3). The element

(x⊗y)(y⊗x) is the Whitehead product [x, y]. Other computations of η∗ and of Whitehead

products at this level in spaces SK(P, 1) may be deduced from the calculations of non-

Abelian tensor products given in Brown, Johnson and Robertson, 1987, [25]. (This paper

covers the case of dihedral, quaternionic, metacyclic and symmetric groups, and all groups

of order 6 31.) Problems in this area are given in Brown, 1990, [12]12.

4 Proof of Theorem 2.4

We now explain the results on η∗ and Whitehead products in the second part of Theorem

2.4. Let G be the crossed square (2.2). Then the square of crossed squares G may be

written in abbreviated form as follows:(
1 1

1 P

)
−→

(
1 1

N P

)
↓ ↓(

1 M

1 P

)
−→

(
L M

N P

) (4.1)

Let us write Y∗ for the square of spaces B G. Then ΠY∗ is isomorphic to the original

crossed square G . Further the 2-cube of fibrations Y ∗ associated to Y∗ is homotopy

equivalent to the following diagram:

BL //

��

BM //

��

B(L→M)

��
BN //

��

BP //

��

B(N → P )

��
B(L→ N) // B(M → P ) // B(G)

(4.3)

12See also the nonabelian tensor product bibliography cited in footnote 11.
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For a general square of spaces X∗ as follows

C
f //

g ��

A
a��

B
b
// X

(4.4)

the associated 2-cube of fibrations is equivalent to the following diagram

F (X∗) //

��

F (g) //

��

F (a)

��
F (f)

��

// C //

��

A

��
F (b) // B // X

(4.5)

where each row and column is a fibration sequence. So we deduce the second part of

Theorem 2.4 from the following more general result.

Proposition 4.6 Let X∗ be the square of pointed spaces as in (4.4). Suppose that the

induced morphism π2C → π2X is zero. Then there is a commutative diagram

π2X

η∗

��

π1F (f)×π1C π1F (g)
δ′oo

h′

��
π3X

∂
// π2F (a)

∂′
// π1F (X)

(4.7)

in which δ′ is defined by a difference construction, ∂, ∂′ are boundaries in homotopy exact

sequences of fibrations, η∗ is induced by composition with the Hopf map η, and h′ is the

restriction of the h-map of the crossed square ΠX∗.

Proof This result is a refinement of Lemma 4.2 of Brown and Loday, 1987a, [27]. It is

proved by similar methods. One first considers the suspension square of S1:

S1 //

��

E2
+

��
E2

- // S2

The fundamental crossed square of this suspension square is determined by Theorem 3.2,

compare Example 3.4, as in Brown and Loday, 1987a, [27] and is

Z 0 //

0 ��

Z
1��

Z
1
// Z

(4.7)

15



with h-map Z×Z→ Z given by (m,n) 7→ mn, so that h(1, 1) represents the Hopf map η.

But the diagram (4.7) interpreted for the suspension square of S1 may now be completely

determined, and is the universal example for Proposition 4.6. This completes the proof of

the Proposition. 2

For the proof of the final part of Theorem 2.4 we have to explain how the particular

crossed module given in the theorem determines the homotopy 2-type. This is proved by

considering the Moore complex of the diagonal simplicial group of the bisimplicial group

arising as the nerve of the associated cat2-group (see also [53].)

5 Simply connected 3-types and crossed squares of Abelian

groups

It is known that the 3-type of a simply connected space X is determined by the homotopy

groups π2X, π3X and the quadratic function η∗ : π2X → π3X induced by composition

with the Hopf map η : S3 → S2. This essentially results from the fact that for abelian

groups A and B the cohomology group H4(K(A, 2), B) is isomorphic to the group of

quadratic functions A→ B (Eilenberg and Mac Lane, 1954, [36]).

The aim of this section is to show that all simply connected 3-types can be modelled

by a crossed square of Abelian groups. It is not known if simply connected (n+ 1)-types

can be modelled by crossed n-cubes of Abelian groups.

Theorem 5.1 Let C and D be Abelian groups such that C is finitely generated, and let

t : C → D be a quadratic function. Then there is a crossed square

G :

L
λ //

λ′

��

M

1
��

M −1
//M

of abelian groups whose classifying space X = BG satisfies π2X ∼= C, π3X ∼= D and such

that these isomorphisms map η∗ to the quadratic map t.

Proof The quadratic function t has first to be extended to a biadditive map. We use a

slight modification of a definition of [36] Eilenberg and Mac Lane, 1954, § 18.

Let t : C → D be a quadratic function on Abelian groups C,D. A biadditive extension

of t is an abelian group M and an epimorphism α : M → C of Abelian groups together

with a biadditive map φ : M ×M → D such that for all m,m′ ∈M
(5.1.1) φ(m,m) = tαm;

(5.1.2) φ(m,m′) = 0 if αm = αm′ = 0;

(5.1.3) φ(m,m′) = φ(m′,m).
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It is shown in loc. cit. that such a biadditive extension exists assuming C is finitely

generated. (In fact they do not assume the symmetry condition (5.1.3), but their proof of

existence yields such a φ.)

Let K = Ker α and let L be the product group D×K. Let M act on L on the left by

m(d, k) = (d+ φ(m, k), k),

for m ∈ M, d ∈ D, k ∈ K. Define λ, λ′ : L → M by λ(d, k) = −k, λ′(d, k) = k, for

(d, k) ∈ L, and let M act trivially on itself. Then λ and λ′ are M -morphisms, and (5.1.2)

shows that they are also crossed modules. Define h : M ×M → L by

h(m,m′) = (φ(m,m′), 0)

for m,m′ ∈ M . A straightforward check shows that we have defined a crossed square G

say. The symmetry condition, or even the weaker condition that φ(m,m′) = φ(m′,m) if

m or m′ lies in K, is used to verify that

h(λ(d, k),m) = (d, k)−m (d, k).

The homotopy groups of BG are computed as the homology groups of the chain com-

plex

L
(−λ,λ′)−−−−→M ×M ψ−→M

where ψ(m,m′) = m −m′. Thus π2BG ∼= M/K ∼= C, π3BG ∼= D. Further h(m,m) =

(φ(m,m), 0) = (tαm, 0). This proves the final assertion of the theorem. 2

Note that in the proof of this theorem, while the groups are Abelian, the actions are

in general non-trivial. So the associated cat2-group in general has non-Abelian big group.
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and the SERC.

References

[1] M.G.Barratt, J.H.C.Whitehead, ‘The first non-vanishing group of an (n+1)-ad’, Proc. London

Math. Soc. (3) 6, 417-439, 1956. 12

[2] H.J.Baues, Algebraic homotopy, Cambridge University Press, 1989. 2, 7

[3] H.J.Baues, Combinatorial homotopy and 4-dimensional complexes, De Gruyter, 1991. 2, 7

[4] H.J.Baues, R.Brown, ‘On the relative homotopy groups of the product filtration and a

formula of Hopf’, J. Pure Appl. Algebra 89 (1993) 49–61. 7
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Topology, Barcelona, 1986 (ed. J.Aguadé and R.Kane) Springer Lecture Notes in Math. 1298,

124-139, 1988. 7

[40] N.D.Gilbert, P.J.Higgins, ‘The non-Abelian tensor product of groups and related con-

structions’, Glasgow Math. J., 31, 17-29, 1989. 13

19



[41] A.Grothendieck, Pursuing stacks, 600pp, (distributed from Bangor), 1983. 5

[42] D.F.Holt, ‘An interpretation of the cohomology groups H∗(G,M)’, J. Algebra, 16, 307-318,

1979. 6

[43] S.-T.Hu, ‘The Homotopy Addition Theorem’, Ann. Math.58, 108-122, 1953. 3, 6

[44] J.Huebschmann, ’Crossed n-fold extensions and cohomology’, Comm. Math. Helv. 55, 302-

314, 1980. 6

[45] J.Huebschmann, ‘Automorphisms of group extensions and differentials in the Lyndon-

Hochschild-Serre spectral sequence’, J. Algebra 72, 296-334, 1981. 6

[46] W.Hurewicz, ‘Beitrage zur Topologie der deformationen I-IV’, Nederl. Akad. Wetensc. Proc.

Ser. A, 38, 112-119, 521-528, 1935; 39, 117-126, 215-224, 1936. 3

[47] D.W.Jones, Polyhedral T -complexes, University of Wales PhD Thesis, 1984; published as

A general theory of polyhedral sets and their corresponding T-complexes, Diss. Math. 266,

1988. 6

[48] J.-L.Loday, ‘Spaces with finitely many non-trivial homotopy groups’, J. Pure Appl. Algebra,

24, 179-202, 1982. 7, 9, 10, 12

[49] A.S.-T.Lue, ‘Cohomology of groups relative to a variety’, J. Algebra, 69, 155-174, 1981. 6

[50] S.Mac Lane, ‘Historical note’, J. Algebra, 60, 319-320, 1979. 6

[51] S. Mac Lane, J.H.C. Whitehead, ‘On the 3-type of a complex’, Proc. Nat. Acad. Sci.

Washington 36, 41-58, 1950. 5
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