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Abstract

Both the root mean square error (RMSE) and the mean absolute error (MAE) are reg-
ularly employed in model evaluation studies. Willmott and Matsuura (2005) have sug-
gested that the RMSE is not a good indicator of average model performance and might
be a misleading indicator of average error and thus the MAE would be a better metric5

for that purpose. While some concerns over using RMSE raised by Willmott and Mat-
suura (2005) and Willmott et al. (2009) are valid, the proposed avoidance of RMSE in
favor of MAE is not the solution. Citing the aforementioned papers, many researchers
chose MAE over RMSE to present their model evaluation statistics when presenting
or adding the RMSE measures could be more beneficial. In this technical note, we10

demonstrate that the RMSE is not ambiguous in its meaning, contrary to what was
claimed by Willmott et al. (2009). The RMSE is more appropriate to represent model
performance than the MAE when the error distribution is expected to be Gaussian. In
addition, we show that the RMSE satisfies the triangle inequality requirement for a dis-
tance metric whereas Willmott et al. (2009) indicated that the sums-of-squares-based15

statistics do not satisfy this rule. In the end, we discussed some circumstances where
using the RMSE will be more beneficial. However, we do not contend that the RMSE
is superior over the MAE. Instead, a combination of metrics, including but certainly not
limited to RMSEs and MAEs, are often required to assess model performance.

1 Introduction20

The root mean square error (RMSE) has been used as a standard statistical metric
to measure model performance in meteorology, air quality, and climate research stud-
ies. The mean absolute error (MAE) is another useful measure widely used in model
evaluations. While they have both been used to assess model performance for many
years, there is no consensus on the most appropriate metric for model errors. In the25

field of geosciences, many present the RMSE as a standard metric for model errors
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(e.g. McKeen et al. (2005); Savage et al. (2013); Chai et al. (2013)), while a few others
choose to avoid the RMSE and present only the MAE, citing the ambiguity of the RMSE
claimed by Willmott and Matsuura (2005) and Willmott et al. (2009) (e.g. Taylor et al.
(2013); Chatterjee et al. (2013); Jerez et al. (2013)). While the MAE gives the same
weight to all errors, the RMSE penalizes variance as it gives errors with larger absolute5

values more weight than errors with smaller absolute values. When both metrics are
calculated, the RMSE is by definition never smaller than the MAE. For instance, Chai
et al. (2009) presented both the mean errors (MAE) and the RMS error (RMSE) of
model NO2 column predictions compared to SCIAMACHY satellite observations. The
ratio of RMSE to MAE ranged from 1.63 to 2.29 (see Table 1 of Chai et al. (2009)).10

Using hypothetical sets of 4 errors, Willmott and Matsuura (2005) demonstrated that
while keeping the MAE as a constant of 2.0, the RMSE varies from 2.0 to 4.0. They
concluded that the RMSE varies with the variability of the the error magnitudes and
the total-error or average-error magnitude (MAE), and the sample size n. They further
demonstrated an inconsistency between MAEs and RMSEs using 10 combinations15

of 5 pairs of global precipitation data. They summarized that the RMSE tends to be-
come increasingly larger than the MAE (but not necessarily in a monotonic fashion)
as the distribution of error magnitudes becomes more variable. The RMSE tends to
grow larger than the MAE with n

1
2 since its lower limit is fixed at the MAE and its upper

limit (n
1
2 · MAE) increases with n

1
2 . Further, Willmott et al. (2009) concluded that the20

sums-of-squares-based error statistics such as the RMSE and the standard error have
inherent ambiguities and recommended the use of alternates such as the MAE.

As every statistical measure condenses a large number of data into a single value,
it only provides one projection of the model errors emphasizing a certain aspect of
the error characteristics of the model performance. Willmott and Matsuura (2005) have25

simply proved that the RMSE is not equivalent to the MAE and one cannot easily derive
the MAE value from the RMSE (and vice versa). Similarly, one can readily show that
for several sets of errors with the same RMSE, the MAE would vary from set to set.
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Since statistics are just a collection of tools, researchers must select the most ap-
propriate tool for the question being addressed. Because the RMSE and the MAE are
defined differently, we should expect the results to be different. Sometimes multiple
metrics are required to provide a complete picture of error distribution. When the error
distribution is expected to be Gaussian and there are enough samples, the RMSE has5

an advantage over the MAE to illustrate the error distribution.
The objective of this note is to clarify the interpretation of the RMSE and the MAE. In

addition, we demonstrate that the RMSE satisfies the triangle inequality requirement
for a distance metric, whereas Willmott and Matsuura (2005) and Willmott et al. (2009)
have claimed otherwise.10

2 Interpretation of RMSE and MAE

To simplify, we assume that we already have n samples of model errors ε calculated
as (ei, i=1,2,...,n). The uncertainties brought in by observation errors or the method
used to compare model and observations are not considered here. We also assume
the error sample set ε is unbiased. The RMSE and the MAE are calculated for the data15

set as

MAE =
1
n

n∑
i=1

|ei| (1)

RMSE =

√√√√ 1
n

n∑
i=1

e2
i (2)20
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The underlying assumption when presenting the RMSE is that the errors are un-
biased and follow a normal distribution. Thus, using the RMSE or the standard error
(SE)1 helps to provide a complete picture of the error distribution.

Table 1 shows RMSEs and MAEs for randomly generated pseudo-errors with zero
mean and unit variance Gaussian distribution. When the sample size reaches 100 or5

above, using the calculated RMSEs one can re-construct the error distribution close to
its “truth” or “exact solution”, with its standard deviation within 5 % to its truth, i.e. SE =
1. When there are more samples, reconstructing the error distribution using RMSEs
will be even more reliable. The MAE here is the mean of the half-normal distribution,
i.e., the average of the positive subset of a population of normally distributed errors10

with zero mean. Table 1 shows that the MAEs converge to 0.8, an approximation to the

expectation of
√

2
π . It should be noted that all statistics are less useful when there are

only a limited number of error samples. For instance, Table 1 shows that neither the
RMSEs nor the MAEs are robust when only 4 or 10 samples are used to calculate those
values. In those cases, presenting the values of the errors themselves, e.g. in tables,15

are probably more appropriate than calculating any of the statistics. Fortunately, there
are often hundreds of observations available to calculate model statistics, unlike the
examples with n=4 (Willmott and Matsuura, 2005) and n=10 (Willmott et al., 2009).

Condensing a set of error values into a single number, either the RMSE or the MAE,
removes a lot of information. The best statistics metrics should not only provide a per-20

formance measure, but also a representation of the error distribution. The MAE is suit-
able to describe uniformly distributed errors. Because model errors are likely to have

1For unbiased error distributions, the standard error (SE) is equivalent to the RMSE as the
sample mean is assumed to be zero. For an unknown error distribution, the SE of mean is the

square root of the “bias-corrected sample variance”. That is, SE =

√
1

n−1

n∑
i=1

(ei − ε)2, where

ε = 1
n

n∑
i=1

ei.

5
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a normal distribution rather than a uniform distribution, the RMSE is a better metric to
present than the MAE for such type of data.

3 Triangle inequality of a metric

Both Willmott and Matsuura (2005) and Willmott et al. (2009) emphasized that sums-of-
squares-based statistics do not satisfy the triangle inequality. An example is given in a5

footnote of Willmott et al. (2009). In the example, it is given that d(a,c)=4, d(a,b)=2, and
d(b,c)=3, where d(x,y) is a distance function. The authors stated that d(x,y) as a “metric”
should satisfy the “triangle inequality”, i.e. d(a,c)≤ d(a,b) + d(b,c). However, they did
not specify what a, b, and c represent here before arguing that the sum of squared
errors does not satisfy the “triangle inequality” because 4≤ 2+3 whereas 42 6≤ 22 +32.10

In fact, this example represents the mean-square-error (MSE) which cannot be used
as a distance metric, rather than the RMSE.

Following a certain order, the errors ei, i=1,...,n can be written into a n-dimensional
vector ε. The L1-norm and L2-norm are closely related to the MAE and the RMSE,
respectively, as shown in Equations 3 and 4.15

|ε|1 = (
n∑

i=1

|ei|) = n ·MAE (3)

|ε|2 =

√√√√(
n∑

i=1

e2
i ) =

√
n ·RMSE (4)

All vector norms satisfy |X + Y | ≤ |X|+ |Y | and | −X|= |X| (see, e.g. Horn and20

Johnson, 1990). It is trivial to prove that the distance between two vectors measured
by Lp-norm would satisfy |X − Y |p ≤ |X|p + |Y |p. With three n-dimensional vectors,

6



D
iscu

ssion
P
a
p
er

|
D
iscu

ssion
P
ap

er
|

D
iscu

ssio
n
P
ap

er
|

D
iscu

ssion
P
ap

er
|

X, Y , and Z, we have

|X −Y |p = |(X −Z)− (Y −Z)|p ≤ |X −Z|p + |Y −Z|p. (5)

For n-dimensional vectors and the L2-norm, Equation 5 can be written as

√√√√ n∑
i=1

(xi− yi)2 ≤

√√√√ n∑
i=1

(xi− zi)2 +

√√√√ n∑
i=1

(yi− zi)2, (6)5

which is equivalent to√√√√ 1
n

n∑
i=1

(xi− yi)2 ≤

√√√√ 1
n

n∑
i=1

(xi− zi)2 +

√√√√ 1
n

n∑
i=1

(yi− zi)2. (7)

This proves that RMSE satisfies the triangle inequality required for a distance function
metric.

4 Summary and discussion10

We present that the RMSE is not ambiguous in its meaning, and is more appropriate
to use than the MAE when model errors follow a normal distribution. In addition, we
demonstrate that the RMSE satisfies the triangle inequality required for a distance
function metric.

The sensitivity of the RMSE to outliers is the most common concern with the use15

of this metric. In fact, the existence of outliers and their probability of occurrence is
well described by the normal distribution underlying the use of the RMSE. Table 1
shows that with enough samples (n≥100), including those outliers, one can closely
re-construct the error distribution. In practice, it might be justifiable to throw out the

7
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outliers that are several orders larger than the other samples when calculating the
RMSE, especially if the number of samples is limited. If the model biases are severe,
one may also need to remove the systematic errors before calculating the RMSEs.

One distinct advantage of RMSEs over MAEs is that RMSEs avoid the use of abso-
lute value which is highly undesirable in many mathematical calculations. For instance,5

it might be difficult to calculate the gradient or sensitivity of the MAEs with respect
to certain model parameters. Furthermore, in the data assimilation field, the sum of
squared errors is often defined as the cost function to be minimized by adjusting model
parameters. In such applications, penalizing large errors through the defined least-
square terms proves to be very effective in improving model performance. Under the10

circumstances of calculating model error sensitivities or data assimilation applications,
MAEs are definitely not preferred over RMSEs.

An important aspect of the error metrics used for model evaluations is their capability
to discriminate among model results. The more discriminating measure that produces
higher variations in its model performance metric among different sets of model results15

is often the more desirable. In this regard, the MAE might be affected by a large amount
of average error values without adequately reflecting some large errors. Giving higher
weighting to the unfavorable conditions, the RMSE usually is better at revealing model
performance differences.

In many of the model sensitivity studies that use only RMSE, a detailed interpretation20

is not critical because variations of the same model will have similar error distributions.
When evaluating different models using a single metric, differences in the error distri-
butions become more important. As we stated in the note, the underlying assumption
when presenting the RMSE is that the errors are unbiased and follow a normal distri-
bution. For other kinds of distributions, more statistical moments of model errors, such25

as mean, variance, skewness, and flatness, are needed to provide a complete picture
of the model error variation. Some approaches that emphasize resistance to outliers
or insensitivity to non-normal distributions have been explored by other researchers
(Tukey, 1977; Huber and Ronchetti, 2009).
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As stated earlier, any single metric provides only one projection of the model errors,
and therefore only emphasizes a certain aspect of the error characteristics. A combi-
nation of metrics, including but certainly not limited to RMSEs and MAEs, are often
required to assess model performance.
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Table 1. RMSEs and MAEs of random generated pseudo-errors with a zero mean and unit
variance Gaussian distribution. Five sets of errors of size n are generated with different random
seeds.

n RMSEs MAEs

4 0.92, 0.65, 1.48, 1.02, 0.79 0.70, 0.57, 1.33, 1.16, 0.76
10 0.81, 1.10, 0.83, 0.95, 1.01 0.65, 0.89, 0.72, 0.84, 0.78
100 1.05, 1.03, 1.03, 1.00, 1.04 0.82, 0.81, 0.79, 0.78, 0.78
1000 1.04, 0.98, 1.01, 1.00, 1.00 0.82, 0.78, 0.80, 0.80, 0.81
10,000 1.00, 0.98, 1.01, 1.00, 1.00 0.79, 0.79, 0.79, 0.81, 0.80
100,000 1.00, 1.00, 1.00, 1.00, 1.00 0.80, 0.80, 0.80, 0.80, 0.80
1000,000 1.00, 1.00, 1.00, 1.00, 1.00 0.80, 0.80, 0.80, 0.80, 0.80
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