Supplement of Geosci. Model Dev. Discuss., 7, 7861–7886, 2014 http://www.geosci-model-dev-discuss.net/7/7861/2014/doi:10.5194/gmdd-7-7861-2014-supplement © Author(s) 2014. CC Attribution 3.0 License.

Supplement of

An observation-constrained multi-physics RCM ensemble for simulating European mega-heatwaves

A. I. Stegehuis et al.

Correspondence to: A. I. Stegehuis (annemiek.stegehuis@lsce.ipsl.fr)

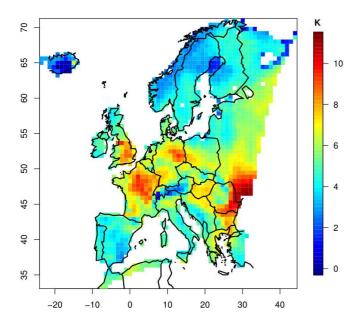

1 Supplementary material

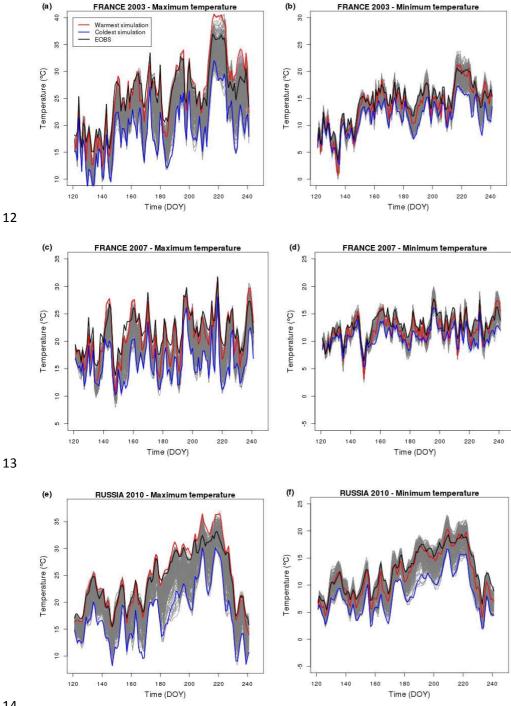
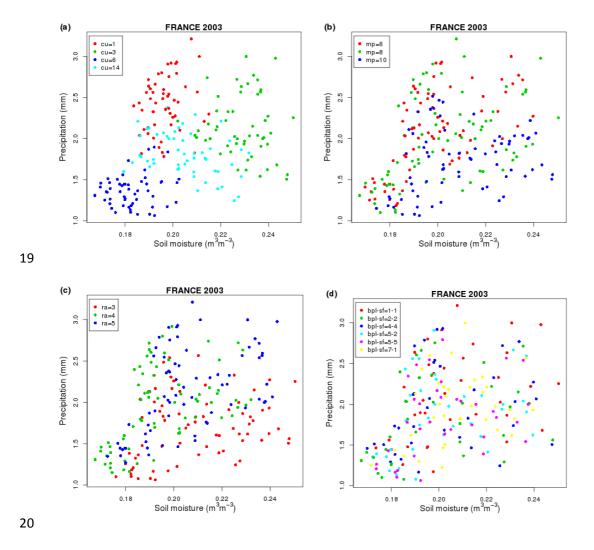
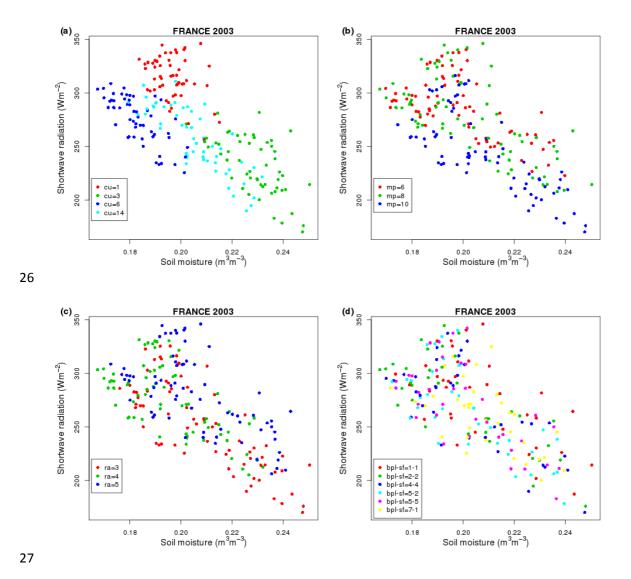
Table S1: Final ranks.

Final rank	Physic combinations					
	MP	PBL	SF	RA	CU	SU
1	10	1	1	4	6	2
2	6	5	5	4	3	2
3	6	7	1	5	6	2
4	8	5	5	4	14	2
5	8	7	1	4	6	2
6	8	7	1	5	6	2
7	10	5	2	4	6	2
8	6	1	1	3	6	2
9	10	2	2	4	6	2
10	10	5	5	4	6	2
11	8	4	4	4	6	2
12	8	5	5	4	3	2
13	6	7	1	4	6	2
14	8	5	2	4	14	2
15	6	7	1	3	6	2
16	6	4	4	4	6	2
17	6	7	1	4	3	2
18	6	5	5	4	14	2
19		5	5	- 4 		2
	8	1	1	5	6	2
20						
21	8	2	2	4	14	2
22	6	2	2	5	6	2
23	8	5	2	5	6	2
24	6	5	2	4	14	2
25	8	2	2	5	6	2
26	8	5	2	3	6	2
27	6	5	5	5	6	2
28	8	1	1	5	3	2
29	8	5	5	3	6	2
30	6	5	2	3	6	2
31	8	7	1	4	14	2
32	8	1	1	4	14	2
33	6	2	2	3	6	2
34	6	7	1	4	14	2
35	6	5	5	3	6	2
36	6	2	2	4	14	2
37	8	2	2	3	6	2
38	10	5	5	4	1	2
39	6	1	1	5	14	2
40	10	5	2	4	1	2
41	6	1	1	4	14	2
42	10	1	1	4	1	2
43	6	7	1	4	1	2
44	6	5	5	5	1	2
45	8	7	1	4	1	2
46	8	2	2	4	1	2
47	6	5	5	4	1	2
48	8	5	2	4	1	2
49	8	5	5	4	1	2
50	8	6	6	4	1	2
51	8	5	2	4	1	2
52	6	5	2	5	1	2
53	6	1	1	4	1	2
54	8	1	1	4	1	2
55	8	2	2	5	1	2

- 4 Figure S1: Simulated temperature min-max range during the heatwave of 2003 (1-15 August). The
- 5 range is calculated as the difference between the warmest and the coldest simulation during this period
- 6 between the 216 members of the ensemble.

7

- Figure S2a-d: Timeseries over France 2003 (a,b) and 2007 (c,d) and Russia (e,f) with maximum (a,c,e) 8
- and minimum (b,d,f) daily temperatures. Every simulation is shown in gray and observations of E-OBS 9
- in black. The blue and red lines are the coldest and the warmest simulations over France during the 10
- heatwave. These lines have the same set of physics in all the figures. 11

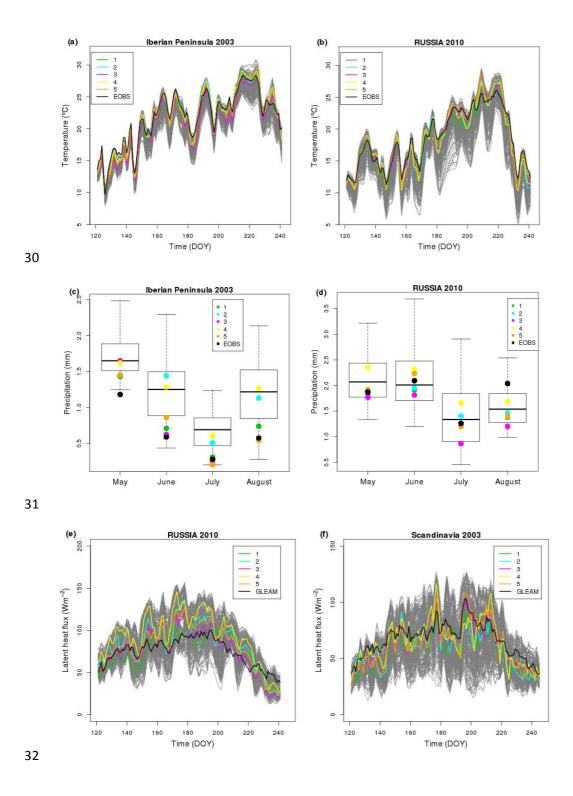

Figure S3a-d: Correlation between soil moisture content at July 31st and precipitation in the preceding months of June-July. Every point is one simulation. Different colors represent different physics for convection (CU) (a), microphysics (MP) (b), radiation (RA) (c) and planet boundary layer-surface (PBL-SF) (d).

Figure S4a-d: Correlation between soil moisture content at the end of July and shortwave radiation during the preceding months of June-July. Every point is one simulation. Different colors represent different physics for convection (a), microphysics (b), radiation (c) and planet boundary layer-surface (d).

- 28 Figure S5a-f: Timeseries of temperature (a,b), precipitation (c,d) and latent heatflux (e,f) over the
- 29 Iberian Penisula 2003 (a,c), Russia 2010 (b,d,e) and Scandinavia 2003 (f).

