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1 Executive Summary 
Since the launch of the Soil Moisture Active Passive (SMAP) satellite mission in 2015, 
post-launch calibration and validation (Cal/Val) activities have been guided by two 
primary objectives: 1) To calibrate, verify, and improve the performance of the science 
algorithms; and 2) to validate the accuracy of the science data products as specified in the 
SMAP Level 1 mission science requirements. This report provides an assessment of the 
latest, Version 7 (V7) SMAP Level 4 Carbon (L4_C) product. The L4_C global record 
now spans eight years (March 2015 – present) of SMAP science operations, including 
seven major reprocessing updates to the operational product. These updates include 
various L4_C algorithm refinements and calibration adjustments to account for changes 
in ancillary inputs. 

The SMAP L4_C algorithm estimates a global, daily terrestrial carbon budget that 
is informed by daily surface and root-zone soil moisture information from the SMAP 
Level 4 Soil Moisture (L4_SM) product and by land cover from the Moderate Resolution 
Imaging Spectroradiometer (MODIS), canopy fractional photosynthetic active radiation 
(fPAR) from the Visible Infrared Imaging Radiometer Suite (VIIRS), and other ancillary 
biophysical data. The L4_C product provides estimates of global, daily net ecosystem 
CO2 exchange (NEE) and the component carbon fluxes, namely, vegetation gross 
primary production (GPP) and soil heterotrophic respiration (RH). Other L4_C product 
elements include surface (ca. 0-5 cm depth) soil organic carbon (SOC) stocks and 
associated environmental constraints, including soil moisture-related controls on GPP and 
RH ecosystem respiration (Kimball, Jones, and Glassy 2014; Jones et al. 2017). The L4_C 
product addresses SMAP carbon cycle science objectives by: 1) Providing a direct link 
between terrestrial carbon fluxes and underlying freeze/thaw and soil moisture-related 
constraints; 2) Documenting primary connections between terrestrial water, energy and 
carbon cycles; and 3) Improving understanding of terrestrial carbon sink activity. 

L4_C is calibrated against eddy covariance (EC) tower CO2 flux measurements, 
which are a proxy for terrestrial ecosystem NEE. The L4_C product has self-imposed 
performance requirements related to NEE, the primary product field for validation, 
although the other L4_C product fields (namely GPP, RH, and SOC) have demonstrated 
utility for carbon science applications (Liu et al. 2019; Endsley et al. 2020; Wurster et al. 
2021). The L4_C targeted accuracy requirement is to stay below a mean unbiased root-
mean-square (RMS) error (ubRMSE, or standard deviation of the error) for NEE of 1.6 g 
C m-2 d-1 (or, equivalently, 30 g C m-2 yr-1), emphasizing northern (≥45°N) boreal and 
arctic ecosystems; this accuracy is similar to that of EC tower CO2 flux observations 
(Baldocchi 2008). The methods used for L4_C performance and validation assessment 
have been established from the SMAP Cal/Val plan and previous studies (Jones et al. 
2017; Endsley et al. 2020) and are reported here for L4_C V7. 

Our primary validation compares L4_C V7 estimates of NEE, GPP, and ecosystem 
respiration (RECO) to EC tower flux measurements at 26 globally distributed SMAP 
Core Validation Sites. We also compared the L4_C V7 mean annual fluxes, interannual 
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variability, and short-term trends to the recent literature and to independent reference 
datasets, including: solar-induced fluorescence data from the Orbiting Carbon 
Observatory-2 mission; global, up-scaled EC tower fluxes from an ensemble of machine-
learning models; global soil carbon inventory records; an ensemble of dynamic global 
vegetation models; and two indices of recent (2015-2022) climate oscillations. 

V7 shows a slight, statistically insignificant increase in RMSE compared to the 
previous version, largely owing to the unavoidable change from MODIS to VIIRS fPAR 
inputs. The L4_C product continues to exceed the target NEE accuracy and continues to 
show favorable accuracy for GPP and RECO. GPP and RECO interannual variability also 
show good agreement with independent estimates, particularly in the northern 
hemisphere. A comparison of recent L4_C flux variability with the literature and with El 
Niño Southern Oscillation indices demonstrates that L4_C can represent the response of 
the terrestrial carbon-cycle to moisture and temperature variability, particularly in 
southern, semi-arid regions. Similarly, L4_C surface SOC anomalies in the southern 
hemisphere show variability that closely corresponds to recent drying and re-wetting 
trends. 

These assessments underscore the utility of L4_C for diverse science applications; 
indeed, L4_C surface SOC was recently used in a NASA DEVELOP project, sponsored 
by Conservation International, for assessing the spatial and temporal variability of 
irrecoverable carbon reserves (Noon et al. 2021) in Peru and Bolivia. Other recent 
examples include the use of L4_C for constraining the magnitude and timing of the 
northern hemisphere land carbon sink (Endsley et al. 2022; Watts et al. 2023); estimating 
the impact of the COVID-19 pandemic on global carbon emissions (Ray et al. 2022); 
evaluating the impact of changes to a land surface model (Huang et al. 2022); diagnosing 
the response of ecosystem productivity to extreme climatic events, including droughts, 
heatwaves, and ice storms (Li and Wei 2020; Kwon et al. 2021; Dannenberg et al. 2022; 
Yang and Liu 2023); and regional monitoring of cropland conditions for projecting 
annual crop yields (Wurster et al. 2021). 
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2 Version 7 Algorithm and Product Updates 
The updates in the L4_C Version 7 (V7) algorithm address changes made to the L4_SM 
drivers as part of L4_SM V7. These include changes to L4_SM estimates of root-zone 
soil moisture, surface soil moisture, and surface soil temperature, which are used to drive 
the operational L4_C V7 product. In addition to these changes, L4_C V7 was recalibrated 
using the L4_SM Nature Run version 10 (NRv10), a multi-decadal simulation using the 
L4_SM V7 land modeling system that is not informed by SMAP brightness temperature 
retrievals. Model spin-up to the soil-organic carbon equilibrium state was also changed in 
V7. While the L4_SM Nature Run climatology (2000-Present) was previously used in 
L4_C spin-up, in V7 we instead used the L4_SM ensemble Open Loop (2015-Present) 
climatology to minimize the difference in climatology between the L4_C spin-up and 
forward operations. No changes were made to the core L4_C algorithm. 

Another major change in L4_C V7 is the adoption of a new fraction of 
photosynthetically active radiation (fPAR) dataset, which is used as a key model input for 
estimating vegetation productivity. In all prior versions of L4_C, fPAR data were 
obtained from the Terra MODIS MOD15A2H product. However, as the Terra satellite is 
nearing the end of its mission (Endsley et al. 2023), it has become imperative to switch to 
a new source of fPAR data with global coverage, favorable performance, and low latency 
matching those of the MODIS heritage record. The Visible Infrared Imaging Radiometer 
Suite (VIIRS) sensors aboard the Suomi NPP (SNPP), NOAA-20 and NOAA-21 
satellites are similar to the MODIS sensors aboard Terra and Aqua, and a VIIRS 
VNP15A2H fPAR product is already available. Therefore, L4_C V7 is the first L4_C 
product version using VIIRS fPAR data. Prior to recalibration, we applied a bias 
correction, using cumulative distribution function (CDF) matching, to our MODIS 
Collection 6.1 fPAR data so as to better match VIIRS Collection 1 fPAR at eddy 
covariance (EC) tower sites. This is necessary because most of our EC tower flux data 
were collected prior to the launch of SNPP VIIRS. The operational L4_C V7 product is 
run exclusively using the VIIRS VNP15A2H Collection 1 product as the sole fPAR 
input. 

We recalibrated the L4_C model Biome Properties Look-up Table (BPLUT) by 
optimizing L4_C predicted GPP and RECO fluxes against observed GPP and RECO 
fluxes from a global network of 356 EC flux towers (Pastorello et al. 2020; Ukkola et al. 
2021). New calibration software was used in L4_C V7; the major difference is that an 
open-source re-implementation of Sequential Least-Squares Quadratic Programming 
(Kraft 1994; Johnson 2023) was used instead of the default, closed-source 
implementation in Matlab. As in the previous L4_C Version 6 (V6) calibration, in V7 soil 
litter decay rates were again adjusted to improve L4_C agreement with independent 
datasets in the initial size of soil organic carbon (SOC) stocks. Following recalibration of 
the BPLUT, the L4_C initial SOC pool sizes were initialized as described by Jones et al. 
(2017), based on an updated L4_SM soil moisture and temperature climatology. 
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3 L4_C Product Performance 
The L4_C V7 product continues to perform within specified accuracy requirements 
(Jones et al. 2017), with unbiased root-mean squared error (ubRMSE) in mean daily NEE 
well below 1.6 g C m-2 day-1 (Figure 1). Relative to the previous Version (V6) product, 
when compared to observed fluxes at the Core Validation Sites, the V7 product shows 
stable performance albeit with a slight, statistically insignificant increase in RMSE and 
decrease in spatial correlations (Figure 2) for NEE, GPP, and RECO. Viewed over the 
entire, 8-year L4_C production record, however, NEE ubRMSE has generally improved 
with each new product version (Figure 3). 
 
 

 
Figure 1: Unbiased root-mean squared error (ubRMSE) against observations at eddy 
covariance (EC) flux towers, averaged for the entire set of 26 SMAP Core Validation 
Sites, for net ecosystem exchange (NEE), gross primary productivity (GPP), and total 
ecosystem respiration (RECO). Metrics are shown for the L4_C V6 and V7 products with 
Science Version Identifiers Vv6042 and Vv7042, respectively. 
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Figure 2: As in Figure 1 but for the time series correlation coefficient. 

 

We attempted to attribute the change in skill between V6 and V7 for L4_C 
component fluxes by analyzing the covariation in the change in RMSE (ΔRMSE) and the 
change in the relevant input driver data. This analysis was performed by pooling data 
from all tower Core Validation Sites on all available days. For GPP, ΔRMSE may be a 
function of change in vegetation fPAR (from MODIS fPAR in V6 to VIIRS fPAR in V7), 
change in L4_SM root-zone soil moisture (SMRZ), or change in the parameterization of 
the GPP response to SMRZ. For RECO, ΔRMSE may be a function of change in L4_SM 
soil temperature (Tsoil), L4_SM surface soil moisture (SMSF), or the parameterization of 
the RH response to either of these. 

The 20th and 80th percentiles of ΔRMSE were used as indicators of significant 
changes in predictive skill (worst increases in RMSE and best decreases in RMSE, 
respectively). Site-days where GPP skill improved in V7 have higher root-zone soil 
moisture than in V6 and show little to no change in fPAR between product versions; a 
decline in GPP skill in V7 is associated with large changes in fPAR as well as drier root-
zone soil moisture (not shown). 
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Figure 3: Unbiased root-mean squared error (ubRMSE) in NEE against 2015-2017 
observations at SMAP Core Validation Sites for each product version by release year, 
beginning with the initial Version 1 “beta” release in 2015-16.  Product generations 2021 
and 2022 correspond to L4_C V6 and V7, respectively.  For each version, the validation 
period is April 2015 through December 2017; ubRMSE for versions prior to 2018 have 
been re-validated against the 2015-2017 dataset, for consistency. 

 
The decline in GPP skill is partly due to the change from MODIS fPAR to VIIRS 

fPAR (not shown); the latter data are known to have different quality assurance (QA) 
flagging for clouds and aerosols (Yan et al. 2021), and the afternoon overpass of SNPP 
VIIRS leads to significantly different fPAR retrievals in the tropics (Xu et al. 2018). For 
optical remote sensing of vegetation conditions in humid or tropical regions, the morning 
overpass of Terra MODIS is preferable (Tang et al. 2020), and we expect that lower-
quality fPAR retrievals in these regions lead to lower-quality GPP estimates. As seen in 
Figure 4a, VIIRS fPAR shows early saturation at high values in most of the tropics (20 S 
through 10 N); lower latitudes are also areas where GPP differs the most between V6 and 
V7 GPP (Figure 4b). 

The change in GPP skill is also partly due to a change in the Emult constraint, which 
may reflect changes in SMRZ, the re-calibrated parameters related to SMRZ, or both (not 
shown). While site-days with higher GPP RMSE in V7 are often drier than in V6, they 
almost exclusively show higher Emult values as well, suggesting V7 SMRZ parameters 
should be re-examined (not shown). In particular, the increased GPP RMSE on drier site-
days in V7 is consistent with the reduced sensitivity to SMRZ at higher SMRZ values for 
deciduous broadleaf and cropland areas (not shown). 
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Figure 4: Comparison plots of (a) MODIS and VIIRS fPAR (percent units) and (b) L4_C 
V6 and V7 GPP, at FLUXNET sites, broken out by season (color-coded symbols). 
Subplots show results for 12 latitude bands between 50 degrees S latitude (-50) and 80 
degrees N latitude; dashed line denotes 1:1 line.  
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Examining RECO ΔRMSE, we found that site-days with the greatest increase in 
RECO RMSE between V6 and V7 are generally warmer and drier (not shown). RECO 
sensitivity to surface soil moisture generally increased in V7. Site-days where RECO 
RMSE increased most show the greatest changes in both L4_SM SMSF and L4_SM Tsoil 
between versions; site-days with RECO improvement are associated with virtually no 
change in the L4_SM data. However, both the best and the worst site-days in V7 show a 
similar pattern of change in the Wmult constraint. We conclude that while the Tsoil 
parameterization in L4_C V7 could likely be improved, part of the increase in RECO   
RMSE is due to upstream changes in L4_SM SMSF. 

4 Calibration and Climate Differences from Prior Release 
Model calibration (via non-linear optimization) using updated L4_SM and fPAR driver 
datasets results in changes to the ancillary BPLUT (Figure 5). Maximum light-use 
efficiency (εmax) increased for woody plant functional types (PFTs) other than deciduous 
needleleaf forest (DNF) but decreased for cropland types. This pattern of change can be 
seen in a map of global changes in mean annual GPP (Figure 6); most of the L4_C land 
domain shows an increase in mean annual GPP between product versions, but there are 
notable decreases in global croplands, particularly in Europe, Northeast China, and 
Central India. 

Changes to the SMRZ and vapor pressure deficit (VPD) constraints on GPP are 
more complicated than changes to εmax. They can be evaluated in terms of whether the 
linear ramp function became more or less steep between product versions. An increase in 
the ramp function’s slope is characterized by a minimum bound that increases and a 
maximum bound that decreases between V6 and V7 (Figure 5); a decrease in the slope is 
characterized by the opposite changes. An increased slope represents stronger sensitivity 
but over a narrower range. The range of sensitivity of GPP to VPD (MaxVPD minus 
MinVPD), as one example, increased significantly for DNF, but this also means that 
similar changes in VPD produce less of a response in DNF GPP. Croplands and 
deciduous broadleaf forest (DBF) have higher, narrower sensitivity to SMRZ in V7 than 
in V6. 

The general increase in the BPLUT parameter MaxSM (Figure 5) indicates that the 
SMSF constraint on RH was slightly relaxed (lower sensitivity over broader range) in V7 
compared to V6. RH  declined slightly in tropical and southern temperate evergreen 
broadleaf forests (EBF) but increased elsewhere, compared to the previous version. RH 
strongly increased in high-northern latitude shrublands (≥55 N; Figure 7), despite a slight 
decrease in the decay rate (Kmx) because the temperature sensitivity of RH in shrublands 
(SHB) increased (Figure 5). This translates into lower surface SOC storage in V7 in this 
region (Figure 8).  
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Figure 5: Percent change in BPLUT parameters from V6 to V7. Descriptions of 
parameters can be found in Kimball et al. (2014, their Table 5). The abbreviations “ENF” 
through “BCR” refer to, respectively: Evergreen Needleaf, Evergreen Broadleaf, 
Deciduous Needleleaf, Deciduous Broadleaf, Shrublands, Grasslands, Cereal 
Croplands, and Broadleaf Croplands. 
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Figure 6: V7 minus V6 difference in mean annual gross primary productivity (GPP) for 
2016-2019 in (a) absolute and (b) relative carbon flux terms.  Relative fluxes are in terms 
of percentage of mean annual flux. Positive (red) values indicate greater GPP in V7 than 
in V6. 
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Figure 7: As in Figure 5 but for heterotrophic respiration (RH). Positive (red) values 
indicate greater RH in V7 than in V6. 

 
Calibration against tower fluxes resulted in a larger value of Topt in grasslands 

(GRS; Figure 5) and thus a narrowing of the range of the temperature sensitivity of RH 
(see equation 11 of Kimball et al. 2014). But the predicted SOC distribution in this land-
cover type was still higher than expected, so we manually adjusted Kmx, decreasing the 
turnover time. Despite these changes, there were no significant differences in annual RH 
flux or SOC magnitudes. Comparing L4_C SOC from both product versions (V6 and V7) 
with independent reference data from SoilGrids (v1) 250m surface layer (0-5 cm) SOC 
storage (Hengl et al. 2017), we find that GRS SOC storage is closer to the SoilGrids 
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estimate in V7 than in V6 whereas SHB SOC has diverged further (not shown). There is 
still a large under-estimate of SOC storage above 60 N latitude (Figure 8). See Section 
5.2 for further discussion. 
 

 

Figure 8: (Right) Latitude-band summary of surface soil organic carbon (SOC) storage in 
multiple products, including the three most recent L4_C versions (V5, V6 and V7), the 
SoilGrids 250m product’s top 5-cm layer, and the TRENDYv7 ensemble mean and 
spread. The ensemble mean from TRENDYv7, which is expected to represent the top 1 
meter of soil, has been interpolated to match the top 5-cm estimate of L4_C (Endsley et 
al. 2020). (Left) Latitudinal distribution of L4_C land area (km2). 
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4.1 Global Peatlands 
In L4_SM V7, soil moisture and soil temperature data are informed by a reassessment of 
the global distribution of, and soil porosity in, peatlands, which impacts L4_C V7 carbon 
flux and SOC estimates. Areas designated as peatlands in the new L4_SM product have 
greater soil porosity than in the previous version. This results in potentially significant 
changes in soil moisture (and, to a lesser degree, soil temperature) inputs in V7 compared 
to V6. A priori, it is expected that peatlands would be generally wetter and cooler than 
predominantly mineral soils when situated in otherwise similar climate conditions. 
However, because of their higher soil porosity in V7, peatlands in L4_C may be modeled 
as having stronger water limitations on RH and GPP than other soils, given the potentially 
lower relative saturation because, to first order, the same amount of water input from 
precipitation has more volume to fill. 

We compared L4_C V7 fluxes to L4_C V6 fluxes in high northern-latitude (≥50 N) 
peatlands at FLUXNET tower sites for each calendar month (not shown). Tower NEE 
observations indicate that peatland towers (N=21) have lower seasonal NEE amplitudes 
than non-peatland towers (N=83) above 50 N latitude. L4_C generally reproduces this 
pattern, except that the differences between peatland and non-peatland towers are much 
smaller and L4_C predicts a summer-time CO2 sink at peatland towers of equal or greater 
magnitude than non-peatland towers. When comparing V7 to V6, we find that the 
seasonal NEE cycle has a larger amplitude in V7 than in V6, and that the summertime 
CO2 sink strength is enhanced in July and August. 

We also compared L4_C V7 fluxes and environmental constraints in peatlands to 
those of non-peatlands for all pixels in the high-northern (≥50 N) EASE-Grid 2.0 land 
domain, where peatlands are defined by L4_SM land pixels with an increase in porosity 
between V6 and V7 (Figure 9). In contrast to both the observed and simulated NEE at 
FLUXNET sites, monthly NEE distributions for all northern land pixels show larger 
seasonal-cycle amplitudes in peatlands than in non-peatlands; i.e., peatlands are predicted 
to be a greater CO2 source in winter and a greater CO2 sink in summer than non-
peatlands. The greatest difference between peatlands and non-peatlands in V7 occurs 
during May, when peatlands are a significantly greater CO2 sink than non-peatlands. This 
difference is much less pronounced in summer and there is no difference between 
peatlands and non-peatlands NEE in late summer and fall. This summertime sink activity 
is enhanced in V7 relative to V6, which otherwise displays the same pattern. 

Differences in NEE between northern peatlands and non-peatlands can be partly 
understood in terms of the RH flux. During the winter, peatlands are a slightly stronger 
source of CO2 to the atmosphere (i.e., more positive NEE) than non-peatlands (Figure 9) 
due to a greater RH flux. This greater, mean RH flux in northern peatlands is mostly a 
result of warmer peatland soil temperatures rather than of wetter soils, which are largely 
frozen during the northern winter. As winter progresses in northern latitudes, peatland 
soil temperatures decline more slowly than in non-peatlands and in some years may 
display short-term increases associated with warmer weather (not shown), likely because 
of the higher heat capacity associated with the higher water content in peatlands. 



15 
 
 

In northern spring, however, soil temperatures in non-peatlands increase faster and 
eventually overtake mean soil temperatures in peatlands. This results in a faster rise in 
non-peatland RH fluxes. In summary, northern peatlands have smaller amplitudes in the 
seasonal cycle of soil temperatures, compared to non-peatlands. The higher thermal 
inertia of peatlands causes them to become a stronger C source in winter and a stronger C 
sink in spring (Figure 9). By mid-to-late summer, mean peatland NEE is largely 
consistent with that of non-peatlands. When we compare the monthly NEE flux 
distributions (peatlands versus non-peatlands) in V7 to that of V6 (not shown), we find 
that these patterns are enhanced in V7 (lower seasonal-cycle amplitudes in peatlands in 
V7 than in V6), indicating that the upstream changes to L4_SM in peatlands have helped 
to differentiate respiration processes in northern peatlands. As peatlands have higher 
monthly Emult than non-peatlands throughout the year (not shown), we can infer that the 
particular difference in spring sink activity in peatlands is due to suppressed RH flux at 
that time, rather than enhanced GPP flux. 

5 Independent Assessments 
The L4_C carbon budget can be compared to similar estimates from terrestrial biosphere 
models, Dynamic Global Vegetation Models (DGVMs), and statistical upscaling models. 
In particular, we might ask how L4_C estimates compare to independent products in 
terms of the mean carbon (CO2) flux, its interannual variability, and trend. Here, we 
compared the L4_C V7 record with similar carbon flux estimates from other global 
reference data and assessments. 
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Figure 9: Monthly mean L4_C (V7) net ecosystem exchange (NEE) in all northern 
peatlands versus all other (non-peatland) northern lands. Peatlands are defined as those 
areas where the L4_SM land model’s total soil porosity increased between V6 and V7, 
which reflects the incorporation of a new peatlands map in V7 of this upstream product. 

 

5.1 Global Carbon Budget 
The mean global GPP flux estimated by L4_C V7, for the period 2016-2022, is 131.4±2 
Pg C year-1. Based on an informal literature review (Table 1), the L4_C estimate is close 
to the average annual GPP flux (128.9 Pg C year-1) estimated from 33 studies since about 
2003. These studies span multiple time periods, however, and there are several factors 
that could induce a trend in the global annual GPP (or NPP) flux (Zhao and Zeng 2014; 
Mao et al. 2016; Peñuelas et al. 2017; Chen et al. 2019). A recent validation of the latest 
MODIS MOD17 global productivity record arrived at a similar mean annual flux (for 
2012-2021) of 130.0±1.5 Pg C year-1 (Endsley et al. 2023). The same study found that 
this value agrees well with the TRENDYv7 DGVM ensemble mean (128.6±1.4 Pg C 
year-1) for the same period. 
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Table 1: Mean global GPP flux estimated in multiple studies, for different periods of 
assessment, based on an informal review of the literature. The period of assessment is 
denoted with “n.a.” when it could not be determined from the study. See the bibliography 
for each complete reference. 

Publication Total GPP (Pg C year-1) Period 

Ruimy et al. (1996) 133.0 n.a. 
Still et al. (2003) 150.0 n.a. 
Alton et al. (2007) 126.0 n.a. 
Sasai et al. (2007) 131.5 2001-2004 
Demarty et al. (2007) 129.0 n.a. 
Joiner et al. (2008) 140.8 2007 
Yuan et al. (2010) 110.0 2000-2003 
Beer et al. (2010) 123.0 1998-2005 
Ryu et al. (2011) 118.0 2001-2003 
Jung et al. (2011) 119.0 1982-2008 
Chen et al. (2012) 132.0 2003 
Koffi et al. (2012) 146.0 n.a. 
Mao et al. (2012) 146.3 2000-2009 
Piao et al. (2013) 133.0 n.a. 
Parazoo et al. (2014) 127.4 2010 
Cai et al. (2014) 119.4 n.a. 
Yan et al. (2015) 128.2 n.a. 
Yebra et al. (2015) 107.0 2000-2011 
Harper et al. (2016) 128.0 2016 
Zhang et al. (2016) 129.3 2007-2015 
Zhang et al. (2016) 134.2 2000-2007 
Wei & Yi (2017) 107.5 2001-2005 
Madani et al. (2018) 134.2 1950-2000 
Yu et al. (2018) 112.0 2004-2012 
Norton et al. (2019) 166.7 2015 
Li & Xiao (2019) 135.5 2000-2017 
Badgley et al. (2019) 147.0 n.a. 
Zheng et al. (2020) 106.2 1982-2017 
Tagesson et al. (2020) 121.8 1982-2015 
Madani et al. (2020) 130.0 1982-2016 
Wang et al. (2021) 128.3 1982-2019 
Bi et al. (2022) 125.0 1992-2020 
Zhang et al. (2023) 129.7 2001-2018 
AVERAGE ± Std Dev. 128.9 ± 13 n.a. 
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The mean annual NPP flux (2016-2022) estimated in L4_C V7 is 79.6±1.3 Pg C 
year-1. This is higher than the inter-model spread of the TRENDYv7 DGVM ensemble 
and about 20 Pg C year-1 higher than the ensemble median (Endsley et al. 2023). In 
L4_C, NPP is a fixed fraction of autotrophic C uptake (GPP). This fraction (the NPP:GPP 
ratio or plant carbon-use efficiency, CUE), with values ranging from 0.47 (Evergreen 
Broadleaf) to 0.79 (Deciduous Broadleaf), is higher in V7 than the oft-cited multi-biome 
mean of ~0.5 (DeLucia et al. 2007). A recent synthesis study suggests that the global 
mean NPP:GPP ratio is closer to 0.46 but varies widely, between 0.22 and 0.79 (Collalti 
and Prentice 2019). It is this range, [0.22, 0.79] that was used as the prior bounds on the 
NPP:GPP ratio during calibration of L4_C; that values are pushed to the higher end of 
this range suggests a model bias that cannot be overcome by the cost function when 
calibrating against tower fluxes. Our experience with L4_C, and the evidence that GPP is 
not itself overestimated (see above), suggests that the problem is a high bias in RH, which 
leads to a low bias in autotrophic respiration, RA (RA being the difference between GPP 
and NPP). The L4_C V7 mean annual RH flux (2016-2022) is 78.6±0.9 Pg C year-1, 
which is also higher than other independent estimates for recent periods (Zaehle 2013; 
Konings et al. 2019). 

Finally, L4_C V7 estimates a global NEE land sink (2016-2019 average) of 2.3±0.9 
Pg C year-1, which is of comparable magnitude, though lower, than the Global Carbon 
Budget’s estimate for 2015-2019 of 3.3±0.5 Pg C year-1 (Friedlingstein et al. 2020). It is 
also lower than the estimated 2010-2019 mean (3.7±0.5 Pg C year-1) from the Global 
Carbon Assimilation System, version 2 (GCASv2), which is based on satellite 
observations of atmospheric CO2 concentration (Jiang et al. 2022). NOAA’s 
CarbonTracker (Jacobson et al. 2023) estimates a mean land C sink of 2.7 Pg C year-1 for 
2015-2020 (compare to Global Carbon Budget) and 3.2 Pg C year-1 for 2010-2019 
(compare to GCASv2).  

The global NEE flux estimated by L4_C V7 in each year is calculated as the 
difference between RECO and NPP; as a difference calculation, it is highly sensitive to 
small changes in NPP and RECO. In 2016, the earliest complete year available, L4_C V7 
estimates an unusually strong land C sink of -3.8 Pg C year-1, approximately twice as 
large as subsequent years and more than twice as large as the mean 2015-2016 sink 
estimated from the Orbiting Carbon Observatory-2 (OCO-2) satellite mission (Crowell et 
al. 2019). As the estimated 2016 RH flux is quite average, this strong, negative annual 
NEE appears to be due to an above-average annual GPP flux (141.4 Pg C year-1) in 2016 
(Figure 10). Breaking this flux out by TransCom region (Baker et al. 2006), the 2016 
GPP flux can be attributed to high GPP flux in northern mid-latitude regions: Europe, 
Eurasia Temperate, and North American Temperate regions, in particular (not shown).  
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Figure 10: Anomalies in the annual, global flux modeled in L4_C V7, by year. 

 
Mapping annual NEE fluxes indicates that, while the northern hemisphere land C 

sink usually shows high spatial heterogeneity, in 2016 most northern lands were 
synchronized in strong sink activity (Figure 11). It has been suggested that a strong 
northern-hemisphere land C sink may account for the recovery of the global net land sink 
following the 2015-2016 El Niño (Wigneron et al. 2020). L4_C V7, within this short 
period of record (2015-2022) that includes only one major El Niño phase, displays a 
stronger global land C sink during El Niño (see Section 6, “Global Teleconnections”), 
which is consistent with more recent studies (Hu et al. 2019; Cai et al. 2020; Du et al. 
2021) and suggests that increased moisture in some water-limited ecosystems and 
increased canopy-intercepted solar radiation in the tropics could contribute to the stronger 
land C sink in 2016. 
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Figure 11: Annual NEE flux per year in L4_C V7. Global L4_C NEE maps were 
resampled to 36 km prior to plotting. 

 

5.2 Mean Surface Soil Organic Carbon Stock 
Surface (0-5 cm) SOC content is the amount of soil C supporting the modeled RH flux 
from this most labile soil layer. We can compare L4_C surface SOC to similar estimates 
from other models. The TRENDYv7 DGVM ensemble includes an estimate of total soil 
column SOC content; using global soil profiles derived from SoilGrids 250m, the 
TRENDYv7 estimates can be scaled to produce an SOC estimate for the top 5 cm soil 
layer, similar to L4_C surface SOC (Endsley et al. 2020). As depicted in Figure 8, L4_C 
V7 reproduces the global surface SOC storage magnitudes seen in similar products and in 
the previous version of L4_C. In the tropics and extra-tropical northern latitudes, L4_C 
surface SOC closely matches the SoilGrids 250m estimate and is either within or close to 
the range of estimates from the TRENDYv7 ensemble of DGVMs. 

Systematic biases that have persisted through multiple product versions are still 
evident, however: Boreal and tundra SOC storage (≥50 N latitude) is under-estimated 
while southern temperate (below 20 deg S latitude) SOC storage is over-estimated. The 
latter is likely a consequence of the southern extratropics being dominated by two PFTs, 
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SHB and GRS, that are found throughout the L4_C global land domain and in varying 
climates. In model calibration, we regress to the mean. This results in overestimated SHB 
and GRS SOC storage in the southern extratropics but underestimated SOC storage for 
these same PFTs in the boreal and tundra regions, relative to SoilGrids. The global 
FLUXNET tower network is also particularly sparse in the southern extratropics 
(Schimel et al. 2015), which imposes a regional limitation on model calibration and 
validation. 

5.3 Mean and Interannual Variability 
We compared L4_C monthly total GPP and RECO fluxes to those of two ensemble 
estimates of terrestrial carbon fluxes: the TRENDYv7 ensemble mean’s “S3” simulation, 
which includes varying atmospheric CO2, climate, and land use; and the FLUXCOM 
RS+METEO ensemble (hereinafter referred to simply as FLUXCOM) of statistical 
learning models trained on FLUXNET data. TRENDYv7 mean monthly GPP displays a 
phase shift to earlier in the year (not shown), relative to L4_C, though L4_C’s estimate of 
the seasonal cycle is likely accurate, given that it is constrained by satellite observations 
of vegetation cover. Indeed, the L4_C GPP seasonal cycle aligns well with that of 
FLUXCOM across most TransCom regions (Figure 12). TRENDYv7 and L4_C show 
very similar magnitudes of GPP in the northern hemisphere but a strong phase shift in the 
southern hemisphere, where L4_C GPP can be more than 50 g C m-2 month-1 higher than 
the TRENDYv7 estimate. L4_C GPP is also higher than the FLUXCOM estimates for the 
southern hemisphere (Figure 12).  



22 
 
 

Figure 12: Monthly GPP flux from (red) L4_C V7 and (black) the data-driven, upscaled 
FLUXCOM RS+METEO product averaged over TransCom regions. Shaded regions 
show the interquartile range (range between 25th and 75th percentiles) among pixels in 
each region. 

 
Similarly, L4_C GPP shows excellent agreement with satellite-based solar-induced 

chlorophyll fluorescence (SIF, mW m-2 nm-1 sr-1) derived from the OCO-2 mission 
(Figure 13), where SIF is a byproduct of photosynthesis and an observational proxy for 
GPP (Joiner et al. 2014). Global, spatially contiguous SIF (CSIF) data based on OCO-2 
retrievals, available at 0.05-degree resolution on 4-day intervals (Zhang et al. 2018), were 
resampled onto the global 9-km EASE-Grid 2.0, summarized by TransCom region, and 
converted to Z-scores for the SMAP post-launch period through the end of 2019. For 
most of the global land domain, L4_C GPP is strongly correlated with SIF (Pearson’s 
r≥0.84). The apparent smoothness of the CSIF time series, compared to that of L4_C, is 
likely due to multiple factors: the CSIF data have been subjected to greater spatial and 
temporal aggregation; they are derived from a neural network trained on aggregated 
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OCO-2 SIF retrievals under cloud-free conditions and informed by 16-day MODIS nadir 
bi-directional reflectance distribution-adjusted reflectance (NBAR) composites; and “a 
gap-filling and smoothing algorithm” (Zhang et al. 2018) is applied to the MODIS NBAR 
data. 

 

Figure 13: 4-day Z-scores of contiguous solar-induced chlorophyll fluorescence (CSIF) 
and L4_C GPP, summarized by TransCom region, with Pearson’s correlation 
coefficients indicated at top-right.  

 
However, in two regions, L4_C GPP fails to match the productivity time series seen 

in the SIF data. In the South American Tropical region (Figure 13), SIF shows a biannual 
cycle of productivity; L4_C only reproduces the larger peak in productivity and with an 
approximate 3-month lag. This is likely a reflection of the weak seasonality of satellite-
based fPAR in this region. In Northern Africa, L4_C predicts a very different seasonal 
pattern than indicated from the SIF observations. However, both SIF and L4_C GPP 
show a distinct increasing productivity trend in this region, which is consistent with 
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previous satellite vegetation and field biomass studies (Leroux et al. 2017; Anchang et al. 
2019). 

 

Figure 14: As in Figure 12 but for RECO. 

 
We also compared L4_C V7 ecosystem respiration (RECO) to FLUXCOM and 

both RH and RECO to TRENDYv7. The L4_C RECO seasonal cycle matches that of 
FLUXCOM at monthly time scales though L4_C RECO has much higher spatial 
variability than FLUXCOM (Figure 14). L4_C RECO is also generally higher than 
FLUXCOM RECO, except in Tropical Asia. L4_C RH shows a phase shift toward later in 
the year in some regions, relative to TRENDYv7, at monthly time scales (not shown). 
Again, L4_C RH is a better match with TRENDYv7 in the northern hemisphere, though 
the amplitude of the RH seasonal cycle is high, relative to TRENDYv7, in most regions 
(not shown). 

Monthly NEE was calculated from FLUXCOM RECO and GPP data as RECO 
minus GPP. L4_C V7 NEE shows a slight phase shift toward later in the year at the 
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monthly scale, relative to FLUXCOM (Figure 15), which is similar to the reported phase 
shift in L4_C V6 daily NEE (Endsley et al. 2022). However, L4_C NEE is a good match 
for the seasonal NEE amplitude in the northern hemisphere. In the southern extratropics, 
FLUXCOM predicts a stronger seasonal cycle, and greater magnitude, of the land carbon 
sink than L4_C V7. 

 

Figure 15: As in Figure 12 but for NEE. 

 
Using the methodology of Ahlström et al. (2015), we computed the relative 

contribution of different regions to the interannual variability of fluxes in L4_C V7. 
South America and Southern Africa contribute approximately 43% of the global 
interannual variability in GPP in L4_C V7, and Tropical Asia and Australia contribute an 
additional, combined 8%. This is consistent with reports about the significance of 
seasonal moisture variability in the semi-arid tropics (Poulter et al. 2014; Ahlström et al. 
2015). South America and Southern Africa also contribute 33% of the global interannual 
variability in RH in L4_C V7. Despite the importance of these regions to both land CO2 
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uptake (GPP) and soil CO2 losses (RH), however, these regions contribute little to the 
global interannual variability in NEE in L4_C V7, which is dominated by contributions 
from northern temperate regions that are inconsistent between years. This suggests that 
modeled GPP and RH fluxes are incorrectly timed or biased in L4_C V7, as multiple lines 
of evidence point to the importance of southern, semi-arid regions to the land sink 
interannual variability (Piao et al. 2020). 

5.4 Variability in Surface Soil Organic Carbon 
A distinguishing factor of the L4_C product is that it provides what is likely the only 
global, daily, satellite-based estimates of surface SOC content. While SOC stocks do 
indeed vary on sub-annual time scales (Cagnarini et al. 2019; Padarian et al. 2022), there 
is no established method for validating dynamic SOC estimates. Field-based estimates of 
SOC content are destructive, which prevents longitudinal assessment of change in SOC 
stocks. However, modeled changes in SOC, such as those provided by L4_C, can be 
correlated with known climatic variation. A time series of surface SOC residuals from 
L4_C V7, with the seasonal cycle and long-term trend removed, reveals interesting 
interannual variation that corresponds well with short-term climatic variation (Figure 16). 
While northern-hemisphere regions exhibit little systematic variation, southern-
hemisphere regions show a strong response to the 2015-2016 El Niño, which brought 
warm and dry conditions that likely suppressed soil decomposition and the RH flux, 
leading to a build-up of surface SOC stocks of between 2-4% of their 2015 magnitudes. 
More recently, persistent La Niña conditions seem to have reversed this trend, with 
surface SOC stocks returning to their 2015 values. In Australia, 2019 was both the 
warmest and driest year in that country’s record and it was followed, in 2020, with 
above-average rainfall commencing immediately in January 2020 (Australia Bureau of 
Meteorology 2021). This pattern of climate variability likely explains the sharp increase 
in surface SOC stocks followed by rapid SOC loss at the beginning of 2020. 
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Figure 16: Detrended residuals from a harmonic regression of regional surface SOC 
stocks, shown for select TransCom regions; the seasonal cycle and long-term trend are 
removed. Residuals are added to the initial March 31, 2015) surface SOC stock size and 
expressed as a percentage of the initial stock size. The regular oscillations seen in the 
subplots for regions with low (e.g., Southern Africa) or essentially no residual SOC 
change (e.g., North American Boreal) are an artifact of harmonic regression. 

 

5.5 Recent Trends 
While the L4_C record (2015-present) is not yet long enough for statistically robust 
trends to be inferred, examining the trends apparent in L4_C V7 can provide an 
indication as to how climate trends captured in the L4_C meteorological inputs are 
driving carbon fluxes. Based on harmonic regression of daily total fluxes, at global 
extent, L4_C V7 displays a significant (p-value<0.001), upward trend in NEE 
(diminishing global land CO2 sink strength) of 1.3 Tg C year-2 (not shown). This appears 
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to be explained by increasing ecosystem respiration (0.9 Tg C year-2, p-value<0.001), 
mostly due to increasing RH (1.0 Tg C year-2, p-value<0.001), which is consistent with 
previous reports based on field data (Bond-Lamberty et al. 2018; Lei et al. 2021). Naidu 
and Bagchi (2021) recently suggested that upward trends in NPP (demonstrated 
elsewhere) are not sufficient to counter-balance rising soil RH. 

L4_C V7 displays insignificant (p-value>0.1), weak negative trends in GPP and 
NPP over 2015-2022 (not shown). However, these trends, as well as the trends in other 
fluxes, are affected by the strong response of the modeled carbon cycle to the 2015-2016 
El Niño (Figure 11). If data from 2015-2016 are discarded, we find upward trends in all 
fluxes, including GPP and NPP, with RECO increasing fastest. These upward trends 
across the modeled carbon budget are consistent with reports of an increase in the 
seasonal amplitude of the terrestrial carbon sink (Forkel et al. 2016; He et al. 2022). 
Broken out by TransCom region, we find divergent trends in GPP, with significant (p-
value <0.001), upward trends in southern temperate regions and significant (p-value 
<0.0002) downward trends in northern temperate regions (not shown). Similarly, 
northern temperate regions show a strong, upward trend (p-value <0.001) in NEE since 
2017, with diminishing land sink amplitudes in recent years. 

6 Global Teleconnections 
L4_C fluxes respond to short-term climate variability (Jones et al. 2017; Wurster et al. 
2021), particularly in global drylands, where rates of RH are sensitive to SMAP-derived 
surface soil moisture estimates (Endsley et al. 2020). Regional and global climate 
oscillations, such as the El Niño Southern Oscillation (ENSO), should therefore influence 
the L4_C carbon budget through underlying model environmental constraints and be 
represented in the 8-year SMAP satellite record.  

ENSO is a bimodal oscillation with two phases. The “warm” El Niño phase is 
associated with drought in the Amazon forest, Southern Africa, and Australia (Holmgren 
et al. 2001; Bastos et al. 2018) while the “cool” La Niña phase generally brings wetter 
conditions to these regions, and the associations are reversed in parts of the northern 
hemisphere (Zhang et al. 2019). A warm El Niño has also been associated with decreased 
GPP world-wide (Hashimoto et al. 2004; Zhu et al. 2017; Bastos et al. 2018) but 
particularly in the tropics, southern Africa, and Australia (Bastos et al. 2013); a cool La 
Niña phase is associated with a stronger land C sink, particularly in tropical drylands 
(Ahlström et al. 2015). Tropical ecosystem productivity is characterized by a response to 
warmer temperatures during El Niño and a response to higher precipitation during La 
Niña (Fang et al. 2017). Global atmospheric moisture patterns are also affected: warm-
dry ENSO fluctuations are associated with higher VPD in the Amazon forest, Africa, and 
Australia but lower VPD in the southwest U.S., temperate South America, and parts of 
Siberia (Hashimoto et al. 2004). Similarly, Du et al. (2021) recently found associations 
between the El Niño phase and increased land surface wetness in the southwest U.S. and 
temperate South America; drier conditions associated with El Niño were found in the 
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Amazon forest, Southern Africa, southeast Asia, and much of Australia. Increased 
moisture associated with El Niño in North America is also consistent with a recent report 
by Hu et al. (2019) that this phase enhances the land C sink of this region. South 
America, which experiences the strongest direct effects of ENSO, generally receives less 
precipitation in the Amazon and more precipitation in the south, over Argentina, during a 
warm ENSO phase (Cai et al. 2020). 

SOI and OLR, as measures of the bimodal ENSO oscillation, are negative during 
the El Niño phase and positive during the La Niña phase. We did not attempt to define a 
neutral phase in the SOI and OLR data, instead using all available monthly values in 
lagged correlations, allowing for up to a 3-month lag in SOI/OLR or L4_C. As both 
ENSO and terrestrial C fluxes are oscillating, Pearson’s correlations between L4_C 
variables and SOI or OLR are best interpreted as “in-phase” (positive correlation) with 
ENSO or “out-of-phase” (negative correlation). As terrestrial ecosystems are generally 
more strongly affected by the warm-dry El Niño phase (Teckentrup et al. 2021), our 
discussion of ENSO associations emphasizes this phase. Seasonal associations are 
discussed in terms of the northern hemisphere (NH) summer or winter, for simplicity. We 
can separate these phases but the resulting estimates have reduced statistical power (56 
months of La Niña conditions and 37 months of El Niño conditions during the 93-month 
assessment period, based on SOI). 

We compared L4_C to two measures of ENSO fluctuations: the Southern 
Oscillation Index (SOI), compiled monthly by NOAA (2023), and the Outgoing 
Longwave Radiation (OLR) index (Chiodi and Harrison 2013). L4_C data included 
detrended, mean monthly L4_C NEE, GPP, RH, and environmental constraint 
diagnostics: Tmult, Wmult, and Emult which describe the normalized impact of Tsoil on RH, 
the normalized impact of SMSF on RH, and the combined, normalized impact of 
minimum temperature, SMRZ, and VPD on GPP, respectively. 

The L4_C environmental constraint diagnostics largely reproduce the 
aforementioned reported patterns. Emult is associated with warm ENSO fluctuations in the 
Amazon, Southern Africa, Australia, and most of Tropical Asia; in these regions, warm 
ENSO fluctuations are associated with more limiting conditions for GPP, likely lower 
root-zone soil moisture or higher VPD (not shown). These correlations are generally 
weaker in the L4_C GPP data, except for Western Australia, which indicates strong (r ≈ 
0.5) declines in GPP with the onset of a warm El Niño (Figure 17). However, we do see 
weak out-of-phase correlations between GPP and ENSO throughout light-limited tropical 
forests, which may be explained by decreased cloud cover during El Niño leading to 
increased GPP despite drier conditions (Zhu et al. 2018). GPP in Southern Africa 
decreased strongly (r ≈ 0.6) during the 2015-2016 El Niño, which included the driest 
precipitation period for the region in 35 years (Rembold et al. 2016); a similarly strong 
decline in Australia is associated with increased aridity (Bastos et al. 2018). 



30 
 
 

Figure 17: Time series correlation coefficient (2015-2022) between monthly, detrended 
L4_C GPP and the Outgoing Longwave Radiation (OLR) index, which is negative during 
the El Niño phase. Only significant (p-value≤0.05) correlations are shown (critical r ≈ 
±0.2). Positive correlations (red) generally indicate decreased GPP during El Niño but 
possibly increased GPP during La Niña. 

 

Significant, strong (r ≥0.5) correlations are found between SMSF and ENSO 
fluctuations throughout southeast Asia, indicating drier surface soils during El Niño (not 
shown). Warm ENSO fluctuations are associated with drier surface soil conditions across 
much of the global land domain, including the Amazon forest, Central Europe, Southern 
Africa, Australia, the North American Boreal forest, and parts of India and Central Asia. 
Conversely, cool ENSO fluctuations, such as the recent, multi-year La Niña phase, are 
associated with wetter surface soil conditions in Western North America and temperate 
South America.  

The effect of ENSO on ephemeral Tsoil appears to be dampened at monthly 
timescales, yet there are significant, moderate (r ≈ -0.4), negative correlations between 
Tsoil and ENSO throughout the Andes of South America (not shown), which reflect 
warmer December-through-February near-surface air temperatures associated with El 
Niño (Cai et al. 2020). The OLR index shows stronger correlations than SOI with the Tsoil 
environmental constraint (not shown). 

These ENSO impacts on surface soils seem to induce periodic changes in soil 
decomposition, though the link is complicated by the positive response of RH to both 
warmer (during El Niño) and wetter (during La Niña) conditions. The warm-dry El Niño 
phase is associated with decreased RH in much of the southern hemisphere (Figure 18), 
but North America (by OLR and SOI) and India (by SOI only) show weak (r ≈ -0.25) 
negative correlations with ENSO, suggesting the opposite. The decline in tropical RH 
associated with El Niño occurs mostly in during the NH winter months. The OLR index 
shows moderately strong (r ≈ 0.5) positive correlations with ENSO in the Amazon, 
Central Australia, and southeast Asia, indicating lower RH during the warm El Niño 
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phase. SOI correlations broken out by ENSO phase also suggest that RH may increase in 
the Southeast U.S. and parts of Mexico during La Niña. 

 
 

Figure 18: As in Figure 17 but for correlation between monthly, detrended L4_C RH and 
the Outgoing Longwave Radiation (OLR) index. Positive correlations (red) generally 
indicate decreased RH during El Niño but possibly increased RH during La Niña. 

 

Correlations between NEE and ENSO fluctuations are further complicated by the 
countervailing impacts of RH and primary productivity, yet some generalizations can be 
made. In Southern Africa and most of Australia, NEE is weakly (r ≈ -0.3) anti-correlated 
with ENSO (Figure 19), suggesting an enhanced land C sink during the cool-wet La Niña 
phase. Indeed, using an annual index of La Niña events (Chiodi and Harrison 2013, 
2015), albeit a short record, we find annual L4_C NEE anomalies in Australia (and 
Tropical Asia) are strongly associated with La Niña (Figure 20). 
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Figure 19: As in Figure 17 but for correlation between monthly, detrended L4_C NEE 
and the Outgoing Longwave Radiation (OLR) index. Positive correlations (red) generally 
indicate decreased NEE during El Niño but possibly increased NEE during La Niña. 

 

 

 
Figure 20: Annual OLR-Event (La Niña) and NEE Z-scores compared for 2015-2022. 

 

Australia showed strong, positive (in-phase) correlations between ENSO and both 
GPP and RH, suggesting both are suppressed during the warm-dry El Niño phase; the sign 
of the correlation with NEE suggests that GPP is suppressed (enhanced) to a greater 
degree than RH by El Niño (La Niña). When correlations are computed by TransCom 
region (Figure 21), Australia GPP and RH also show moderate, positive correlations (r = 
0.358 for GPP using the SOI, r = 0.391 for RH); weak anti-correlation in NEE can also be 
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seen at the regional scale. Much of the tropics, particularly the Amazon basin, show 
positive correlations between NEE and ENSO, which is unexpected. This could partly be 
explained by a stronger land C sink in tropical drylands during the cool-wet La Niña 
phase (Ahlström et al. 2015). However, the South American Tropical region exhibits a 
moderately strong positive correlation with regionally integrated NEE (r = 0.531), driven 
mostly by a tight link between ENSO and RH (r = 0.703). The OLR time series instead 
indicates that the recent, multi-year La Niña is associated with increased RH in the tropics 
and Southern Africa, while RH decreased during the 2015-2016 El Niño (Figure 21). Yet, 
it should be mentioned that a lagged spike in RH in Southern Africa is also evident, 
consistent with other reports (Liu et al. 2017). Taken together, these results suggest that 
the impact of ENSO fluctuations on the modeled land C sink in the tropics and Southern 
Africa are largely due to changes in RH, while moisture-driven GPP fluctuations are a 
stronger impact in Australia. These regions are especially sensitive to ENSO fluctuations 
of the Central Pacific region (Dannenberg et al. 2021). 

 

Figure 21: L4_C V7 seasonally adjusted Z-scores (red lines) of GPP, NEE, RH, and Wmult 
(columns) by TransCom region (rows) compared to the global Outgoing Longwave 
Radiation (OLR) index (black line) for April 2015-December 2022. Pearson correlation 
coefficients (r) are shown in the bottom right of each subplot. A 2-month, low-pass, 
moving-window filter was applied to all time series for clarity of the display; Pearson 
correlations are computed from the raw (unsmoothed) data. 
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7 Summary and Potential Future L4_C Product Updates 
Based on the multiple assessments described here, the L4_C V7 product continues to 
provide a level of performance and accuracy consistent with the product’s science 
objectives. The L4_C estimated global carbon budget shows mean annual GPP and NEE 
fluxes that are consistent with independent estimates, while the estimated seasonal cycle 
and interannual variability are also comparable to independent reference datasets. L4_C 
simulated NEE and SOC display the expected sensitivity to short-term climatic variation, 
as evaluated by our comparisons to recent ENSO events and some reported extreme 
weather events. The relatively short record of L4_C limits our analysis, while the global 
extent of the product obliges us to use broad-scale climate indices and reports for 
comparison. The slight (not statistically significant) increase in V7 NEE RMSE 
compared to the previous version is largely due to the unavoidable change in fPAR 
source data. The L4_C product continues to exceed the targeted accuracy requirements 
for NEE (mean RMSE ≤ 1.6 g C m-2 d-1) and continues to show favorable accuracy for 
GPP and RECO. 

Future releases of the SMAP L4_C operational product will incorporate ongoing 
refinements and improvements to upstream inputs, including in the L4_SM algorithm. In 
addition, there are multiple options to improve the realism and performance of the L4_C 
algorithm, based on the assessments conducted here: 

• Currently, L4_C is calibrated on EC tower flux data from the FLUXNET2015 and 
La Thuile datasets, which are only available through 2017. New EC tower flux data 
are available in the northern hemisphere from the NSF Arctic Data Center and 
individual Principal Investigators. Incorporating the CO2 fluxes from these sites into 
the L4_C calibration dataset should improve model fit and the simulated carbon-
cycle response to recent climatic variation. Some of the sites may also be located in 
deciduous needleleaf forests, which are under-represented in the current calibration 
dataset. 

• Performance in peatlands and other regions with seasonal soil saturation could be 
enhanced by adding an upper limit on the response of RH to soil moisture, 
effectively representing how limited soil O2 diffusion constrains microbial 
respiration. We have previously evaluated the impact of this limitation on L4_C RH 
and RECO performance but have not found an improvement when compared to 
available EC tower flux data. But more recent work (Endsley et al. 2022) suggests 
that some form of an O2 diffusion limitation can improve the L4_C soil 
decomposition and RH model. New tower data and the use of a second linear ramp 
function on the response of RH to increasing soil moisture, rather than a quadratic 
curve (as used previously), could improve model performance. 

• Currently, litterfall in L4_C is a fixed fraction of the annual, climatological NPP in 
each pixel. This assumption makes for easy model representation but ignores real 
seasonal variation in C inputs to soil, particularly in deciduous forests and 
grasslands where there is strong seasonal variation in leaf shedding. L4_C could be 
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more useful as a prior for atmospheric inversions if it instead used a litterfall 
schedule based on satellite-observed leaf-area index (Endsley et al. 2022), which is 
included as part of the input fPAR dataset (VIIRS VNP15A2H). 

• As indicated in this assessment, the plant carbon use efficiency (CUE, or the 
NPP:GPP ratio) is likely too high in L4_C V7. CUE has been elevated in previous 
versions of L4_C as well, suggesting a persistent model bias, despite reasonable 
bounds on this value during calibration. Reducing CUE could help to reduce the 
high RH bias as well, as any reduction in CUE must be accompanied by an increase 
in autotrophic respiration. Several studies and datasets are now available describing 
the global variation of CUE with plant traits. We could either fix optimal CUE 
values for each PFT or use an environmental filtering approach, where plant CUE is 
a function of bioclimatic covariates. 
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