@@ -81,7 +81,7 @@ Congratulations! You are done! Now you can train your model with your favorite f
81
81
#### Encoders <a name =" encoders " ></a >
82
82
83
83
<details >
84
- <summary >Table with ALL avaliable encoders (click to expand) </summary >
84
+ <summary >ResNet </summary >
85
85
86
86
| Encoder | Weights | Params, M |
87
87
| --------------------------------| :------------------------------:| :------------------------------:|
@@ -90,18 +90,42 @@ Congratulations! You are done! Now you can train your model with your favorite f
90
90
| resnet50 | imagenet / ssl / swsl | 23M |
91
91
| resnet101 | imagenet | 42M |
92
92
| resnet152 | imagenet | 58M |
93
+
94
+ </details >
95
+
96
+ <details >
97
+ <summary >ResNeXt</summary >
98
+
99
+ | Encoder | Weights | Params, M |
100
+ | --------------------------------| :------------------------------:| :------------------------------:|
93
101
| resnext50_32x4d | imagenet / ssl / swsl | 22M |
94
102
| resnext101_32x4d | ssl / swsl | 42M |
95
103
| resnext101_32x8d | imagenet / instagram / ssl / swsl| 86M |
96
104
| resnext101_32x16d | instagram / ssl / swsl | 191M |
97
105
| resnext101_32x32d | instagram | 466M |
98
106
| resnext101_32x48d | instagram | 826M |
107
+
108
+ </details >
109
+
110
+ <details >
111
+ <summary >DPN</summary >
112
+
113
+ | Encoder | Weights | Params, M |
114
+ | --------------------------------| :------------------------------:| :------------------------------:|
99
115
| dpn68 | imagenet | 11M |
100
116
| dpn68b | imagenet+5k | 11M |
101
117
| dpn92 | imagenet+5k | 34M |
102
118
| dpn98 | imagenet | 58M |
103
119
| dpn107 | imagenet+5k | 84M |
104
120
| dpn131 | imagenet | 76M |
121
+
122
+ </details >
123
+
124
+ <details >
125
+ <summary >VGG</summary >
126
+
127
+ | Encoder | Weights | Params, M |
128
+ | --------------------------------| :------------------------------:| :------------------------------:|
105
129
| vgg11 | imagenet | 9M |
106
130
| vgg11_bn | imagenet | 9M |
107
131
| vgg13 | imagenet | 9M |
@@ -110,18 +134,51 @@ Congratulations! You are done! Now you can train your model with your favorite f
110
134
| vgg16_bn | imagenet | 14M |
111
135
| vgg19 | imagenet | 20M |
112
136
| vgg19_bn | imagenet | 20M |
137
+
138
+ </details >
139
+
140
+ <details >
141
+ <summary >SE-Net</summary >
142
+
143
+ | Encoder | Weights | Params, M |
144
+ | --------------------------------| :------------------------------:| :------------------------------:|
113
145
| senet154 | imagenet | 113M |
114
146
| se_resnet50 | imagenet | 26M |
115
147
| se_resnet101 | imagenet | 47M |
116
148
| se_resnet152 | imagenet | 64M |
117
149
| se_resnext50_32x4d | imagenet | 25M |
118
150
| se_resnext101_32x4d | imagenet | 46M |
151
+
152
+ </details >
153
+
154
+ <details >
155
+ <summary >DenseNet</summary >
156
+
157
+ | Encoder | Weights | Params, M |
158
+ | --------------------------------| :------------------------------:| :------------------------------:|
119
159
| densenet121 | imagenet | 6M |
120
160
| densenet169 | imagenet | 12M |
121
161
| densenet201 | imagenet | 18M |
122
162
| densenet161 | imagenet | 26M |
163
+
164
+ </details >
165
+
166
+ <details >
167
+ <summary >Inception</summary >
168
+
169
+ | Encoder | Weights | Params, M |
170
+ | --------------------------------| :------------------------------:| :------------------------------:|
123
171
| inceptionresnetv2 | imagenet / imagenet+background | 54M |
124
172
| inceptionv4 | imagenet / imagenet+background | 41M |
173
+ | xception | imagenet | 22M |
174
+
175
+ </details >
176
+
177
+ <details >
178
+ <summary >EfficientNet</summary >
179
+
180
+ | Encoder | Weights | Params, M |
181
+ | --------------------------------| :------------------------------:| :------------------------------:|
125
182
| efficientnet-b0 | imagenet | 4M |
126
183
| efficientnet-b1 | imagenet | 6M |
127
184
| efficientnet-b2 | imagenet | 7M |
@@ -130,8 +187,6 @@ Congratulations! You are done! Now you can train your model with your favorite f
130
187
| efficientnet-b5 | imagenet | 28M |
131
188
| efficientnet-b6 | imagenet | 40M |
132
189
| efficientnet-b7 | imagenet | 63M |
133
- | mobilenet_v2 | imagenet | 2M |
134
- | xception | imagenet | 22M |
135
190
| timm-efficientnet-b0 | imagenet / advprop / noisy-student| 4M |
136
191
| timm-efficientnet-b1 | imagenet / advprop / noisy-student| 6M |
137
192
| timm-efficientnet-b2 | imagenet / advprop / noisy-student| 7M |
@@ -142,6 +197,23 @@ Congratulations! You are done! Now you can train your model with your favorite f
142
197
| timm-efficientnet-b7 | imagenet / advprop / noisy-student| 63M |
143
198
| timm-efficientnet-b8 | imagenet / advprop | 84M |
144
199
| timm-efficientnet-l2 | noisy-student | 474M |
200
+
201
+ </details >
202
+
203
+ <details >
204
+ <summary >MobileNet</summary >
205
+
206
+ | Encoder | Weights | Params, M |
207
+ | --------------------------------| :------------------------------:| :------------------------------:|
208
+ | mobilenet_v2 | imagenet | 2M |
209
+
210
+ </details >
211
+
212
+ <details >
213
+ <summary >ResNeSt</summary >
214
+
215
+ | Encoder | Weights | Params, M |
216
+ | --------------------------------| :------------------------------:| :------------------------------:|
145
217
| timm-resnest14d | imagenet | 8M |
146
218
| timm-resnest26d | imagenet | 15M |
147
219
| timm-resnest50d | imagenet | 25M |
@@ -150,13 +222,29 @@ Congratulations! You are done! Now you can train your model with your favorite f
150
222
| timm-resnest269e | imagenet | 108M |
151
223
| timm-resnest50d_4s2x40d | imagenet | 28M |
152
224
| timm-resnest50d_1s4x24d | imagenet | 23M |
225
+
226
+ </details >
227
+
228
+ <details >
229
+ <summary >Res2Ne(X)t</summary >
230
+
231
+ | Encoder | Weights | Params, M |
232
+ | --------------------------------| :------------------------------:| :------------------------------:|
153
233
| timm-res2net50_26w_4s | imagenet | 23M |
154
234
| timm-res2net101_26w_4s | imagenet | 43M |
155
235
| timm-res2net50_26w_6s | imagenet | 35M |
156
236
| timm-res2net50_26w_8s | imagenet | 46M |
157
237
| timm-res2net50_48w_2s | imagenet | 23M |
158
238
| timm-res2net50_14w_8s | imagenet | 23M |
159
239
| timm-res2next50 | imagenet | 22M |
240
+
241
+ </details >
242
+
243
+ <details >
244
+ <summary >RegNet(x/y)</summary >
245
+
246
+ | Encoder | Weights | Params, M |
247
+ | --------------------------------| :------------------------------:| :------------------------------:|
160
248
| timm-regnetx_002 | imagenet | 2M |
161
249
| timm-regnetx_004 | imagenet | 4M |
162
250
| timm-regnetx_006 | imagenet | 5M |
@@ -181,42 +269,21 @@ Congratulations! You are done! Now you can train your model with your favorite f
181
269
| timm-regnety_120 | imagenet | 49M |
182
270
| timm-regnety_160 | imagenet | 80M |
183
271
| timm-regnety_320 | imagenet | 141M |
184
- | timm-skresnet18 | imagenet | 11M |
185
- | timm-skresnet34 | imagenet | 21M |
186
- | timm-skresnext50_32x4d | imagenet | 25M |
187
-
188
- \* ` ssl ` , ` wsl ` - semi-supervised and weakly-supervised learning on ImageNet ([ repo] ( https://github.com/facebookresearch/semi-supervised-ImageNet1K-models ) ).
189
272
190
273
</details >
191
274
192
- Just commonly used encoders
275
+ <details >
276
+ <summary >SK-ResNe(X)t</summary >
193
277
194
278
| Encoder | Weights | Params, M |
195
279
| --------------------------------| :------------------------------:| :------------------------------:|
196
- | resnet18 | imagenet / ssl / swsl | 11M |
197
- | resnet34 | imagenet | 21M |
198
- | resnet50 | imagenet / ssl / swsl | 23M |
199
- | resnet101 | imagenet | 42M |
200
- | resnext50_32x4d | imagenet / ssl / swsl | 22M |
201
- | resnext101_32x4d | ssl / swsl | 42M |
202
- | resnext101_32x8d | imagenet / instagram / ssl / swsl| 86M |
203
- | senet154 | imagenet | 113M |
204
- | se_resnext50_32x4d | imagenet | 25M |
205
- | se_resnext101_32x4d | imagenet | 46M |
206
- | densenet121 | imagenet | 6M |
207
- | densenet169 | imagenet | 12M |
208
- | densenet201 | imagenet | 18M |
209
- | inceptionresnetv2 | imagenet / imagenet+background | 54M |
210
- | inceptionv4 | imagenet / imagenet+background | 41M |
211
- | mobilenet_v2 | imagenet | 2M |
212
- | timm-efficientnet-b0 | imagenet / advprop / noisy-student| 4M |
213
- | timm-efficientnet-b1 | imagenet / advprop / noisy-student| 6M |
214
- | timm-efficientnet-b2 | imagenet / advprop / noisy-student| 7M |
215
- | timm-efficientnet-b3 | imagenet / advprop / noisy-student| 10M |
216
- | timm-efficientnet-b4 | imagenet / advprop / noisy-student| 17M |
217
- | timm-efficientnet-b5 | imagenet / advprop / noisy-student| 28M |
218
- | timm-efficientnet-b6 | imagenet / advprop / noisy-student| 40M |
219
- | timm-efficientnet-b7 | imagenet / advprop / noisy-student| 63M |
280
+ | timm-skresnet18 | imagenet | 11M |
281
+ | timm-skresnet34 | imagenet | 21M |
282
+ | timm-skresnext50_32x4d | imagenet | 25M |
283
+
284
+ </details >
285
+ <br >
286
+ \* ` ssl ` , ` wsl ` - semi-supervised and weakly-supervised learning on ImageNet ([ repo] ( https://github.com/facebookresearch/semi-supervised-ImageNet1K-models ) ).
220
287
221
288
222
289
### 🔁 Models API <a name =" api " ></a >
0 commit comments