@@ -184,9 +184,9 @@ def _iter(self, with_final=True):
184
184
if not with_final :
185
185
stop -= 1
186
186
187
- for idx , ( name , trans ) in enumerate ( islice (self .steps , 0 , stop ) ):
187
+ for name , trans in islice (self .steps , 0 , stop ):
188
188
if trans is not None and trans != 'passthrough' :
189
- yield idx , name , trans
189
+ yield name , trans
190
190
191
191
@property
192
192
def _estimator_type (self ):
@@ -219,7 +219,8 @@ def _fit(self, X, y=None, **fit_params):
219
219
step , param = pname .split ('__' , 1 )
220
220
fit_params_steps [step ][param ] = pval
221
221
Xt = X
222
- for step_idx , name , transformer in self ._iter (with_final = False ):
222
+ for step_idx , (name , transformer ) in enumerate (
223
+ self ._iter (with_final = False )):
223
224
if hasattr (memory , 'location' ):
224
225
# joblib >= 0.12
225
226
if memory .location is None :
@@ -340,7 +341,7 @@ def predict(self, X, **predict_params):
340
341
y_pred : array-like
341
342
"""
342
343
Xt = X
343
- for _ , name , transform in self ._iter (with_final = False ):
344
+ for name , transform in self ._iter (with_final = False ):
344
345
Xt = transform .transform (Xt )
345
346
return self .steps [- 1 ][- 1 ].predict (Xt , ** predict_params )
346
347
@@ -389,7 +390,7 @@ def predict_proba(self, X):
389
390
y_proba : array-like, shape = [n_samples, n_classes]
390
391
"""
391
392
Xt = X
392
- for _ , name , transform in self ._iter (with_final = False ):
393
+ for name , transform in self ._iter (with_final = False ):
393
394
Xt = transform .transform (Xt )
394
395
return self .steps [- 1 ][- 1 ].predict_proba (Xt )
395
396
@@ -408,7 +409,7 @@ def decision_function(self, X):
408
409
y_score : array-like, shape = [n_samples, n_classes]
409
410
"""
410
411
Xt = X
411
- for _ , name , transform in self ._iter (with_final = False ):
412
+ for name , transform in self ._iter (with_final = False ):
412
413
Xt = transform .transform (Xt )
413
414
return self .steps [- 1 ][- 1 ].decision_function (Xt )
414
415
@@ -427,7 +428,7 @@ def predict_log_proba(self, X):
427
428
y_score : array-like, shape = [n_samples, n_classes]
428
429
"""
429
430
Xt = X
430
- for _ , name , transform in self ._iter (with_final = False ):
431
+ for name , transform in self ._iter (with_final = False ):
431
432
Xt = transform .transfor
8000
m (Xt )
432
433
return self .steps [- 1 ][- 1 ].predict_log_proba (Xt )
433
434
@@ -456,7 +457,7 @@ def transform(self):
456
457
457
458
def _transform (self , X ):
458
459
Xt = X
459
- for _ , _ , transform in self ._iter ():
460
+ for _ , transform in self ._iter ():
460
461
Xt = transform .transform (Xt )
461
462
return Xt
462
463
@@ -480,14 +481,14 @@ def inverse_transform(self):
480
481
"""
481
482
# raise AttributeError if necessary for hasattr behaviour
482
483
# XXX: Handling the None case means we can't use if_delegate_has_method
483
- for _ , _ , transform in self ._iter ():
484
+ for _ , transform in self ._iter ():
484
485
transform .inverse_transform
485
486
return self ._inverse_transform
486
487
487
488
def _inverse_transform (self , X ):
488
489
Xt = X
489
490
reverse_iter = reversed (list (self ._iter ()))
490
- for _ , _ , transform in reverse_iter :
491
+ for _ , transform in reverse_iter :
491
492
Xt = transform .inverse_transform (Xt )
492
493
return Xt
493
494
@@ -514,7 +515,7 @@ def score(self, X, y=None, sample_weight=None):
514
515
score : float
515
516
"""
516
517
Xt = X
517
- for _ , name , transform in self ._iter (with_final = False ):
518
+ for name , transform in self ._iter (with_final = False ):
518
519
Xt = transform .transform (Xt )
519
520
score_params = {}
520
521
if sample_weight is not None :
0 commit comments