@@ -210,11 +210,6 @@ class MinMaxScaler(BaseEstimator, TransformerMixin):
210
210
211
211
where min, max = feature_range.
212
212
213
- The transformation is calculated as::
214
-
215
- X_scaled = scale * X + min - X.min(axis=0) * scale
216
- where scale = (max - min) / (X.max(axis=0) - X.min(axis=0))
217
-
218
213
This transformation is often used as an alternative to zero mean,
219
214
unit variance scaling.
220
215
@@ -232,12 +227,10 @@ class MinMaxScaler(BaseEstimator, TransformerMixin):
232
227
Attributes
233
228
----------
234
229
min_ : ndarray, shape (n_features,)
235
- Per feature adjustment for minimum. Equivalent to
236
- ``min - X.min(axis=0) * self.scale_``
230
+ Per feature adjustment for minimum.
237
231
238
232
scale_ : ndarray, shape (n_features,)
239
- Per feature relative scaling of the data. Equivalent to
240
- ``(max - min) / (X.max(axis=0) - X.min(axis=0))``
233
+ Per feature relative scaling of the data.
241
234
242
235
.. versionadded:: 0.17
243
236
*scale_* attribute.
@@ -416,17 +409,12 @@ def minmax_scale(X, feature_range=(0, 1), axis=0, copy=True):
416
409
that it is in the given range on the training set, i.e. between
417
410
zero and one.
418
411
419
- The transformation is given by (when ``axis=0``) ::
412
+ The transformation is given by::
420
413
421
414
X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
422
415
X_scaled = X_std * (max - min) + min
423
416
424
417
where min, max = feature_range.
425
-
426
- The transformation is calculated as (when ``axis=0``)::
427
-
428
- X_scaled = scale * X + min - X.min(axis=0) * scale
429
- where scale = (max - min) / (X.max(axis=0) - X.min(axis=0))
430
418
431
419
This transformation is often used as an alternative to zero mean,
432
420
unit variance scaling.
0 commit comments