8000 Revert "DOC More details about the attributes in MinMaxScaler (#13029)" · xhluca/scikit-learn@710c54b · GitHub
[go: up one dir, main page]

Skip to content

Commit 710 8000 c54b

Browse files
author
Xing
committed
Revert "DOC More details about the attributes in MinMaxScaler (scikit-learn#13029)"
This reverts commit 65435bf.
1 parent 6917048 commit 710c54b

File tree

1 file changed

+3
-15
lines changed

1 file changed

+3
-15
lines changed

sklearn/preprocessing/data.py

Lines changed: 3 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -210,11 +210,6 @@ class MinMaxScaler(BaseEstimator, TransformerMixin):
210210
211211
where min, max = feature_range.
212212
213-
The transformation is calculated as::
214-
215-
X_scaled = scale * X + min - X.min(axis=0) * scale
216-
where scale = (max - min) / (X.max(axis=0) - X.min(axis=0))
217-
218213
This transformation is often used as an alternative to zero mean,
219214
unit variance scaling.
220215
@@ -232,12 +227,10 @@ class MinMaxScaler(BaseEstimator, TransformerMixin):
232227
Attributes
233228
----------
234229
min_ : ndarray, shape (n_features,)
235-
Per feature adjustment for minimum. Equivalent to
236-
``min - X.min(axis=0) * self.scale_``
230+
Per feature adjustment for minimum.
237231
238232
scale_ : ndarray, shape (n_features,)
239-
Per feature relative scaling of the data. Equivalent to
240-
``(max - min) / (X.max(axis=0) - X.min(axis=0))``
233+
Per feature relative scaling of the data.
241234
242235
.. versionadded:: 0.17
243236
*scale_* attribute.
@@ -416,17 +409,12 @@ def minmax_scale(X, feature_range=(0, 1), axis=0, copy=True):
416409
that it is in the given range on the training set, i.e. between
417410
zero and one.
418411
419-
The transformation is given by (when ``axis=0``)::
412+
The transformation is given by::
420413
421414
X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
422415
X_scaled = X_std * (max - min) + min
423416
424417
where min, max = feature_range.
425-
426-
The transformation is calculated as (when ``axis=0``)::
427-
428-
X_scaled = scale * X + min - X.min(axis=0) * scale
429-
where scale = (max - min) / (X.max(axis=0) - X.min(axis=0))
430418
431419
This transformation is often used as an alternative to zero mean,
432420
unit variance scaling.

0 commit comments

Comments
 (0)
0