@@ -93,7 +93,7 @@ def _encode(values, *, uniques, check_unknown=True):
93
93
return np .searchsorted (uniques , values )
94
94
95
95
96
- def _check_unknown (values , uniques , return_mask = False ):
96
+ def _check_unknown (values , known_values , return_mask = False ):
97
97
"""
98
98
Helper function to check for unknowns in values to be encoded.
99
99
@@ -104,23 +104,22 @@ def _check_unknown(values, uniques, return_mask=False):
104
104
----------
105
105
values : array
106
106
Values to check for unknowns.
107
- uniques : array
108
- Allowed uniques values.
107
+ known_values : array
108
+ Known values. Must be unique .
109
109
return_mask : bool, default False
110
110
If True, return a mask of the same shape as `values` indicating
111
111
the valid values.
112
112
113
113
Returns
114
114
-------
115
115
diff : list
116
- The unique values present in `values` and not in `uniques` (the
117
- unknown values).
116
+ The unique values present in `values` and not in `know_values`.
118
117
valid_mask : boolean array
119
118
Additionally returned if ``return_mask=True``.
120
119
121
120
"""
122
121
if values .dtype == object :
123
- uniques_set = set (uniques )
122
+ uniques_set = set (known_values )
124
123
diff = list (set (values ) - uniques_set )
125
124
if return_mask :
126
125
if diff :
@@ -132,10 +131,11 @@ def _check_unknown(values, uniques, return_mask=False):
132
131
return diff
133
132
else :
134
133
unique_values = np .unique (values )
135
- diff = list (np .setdiff1d (unique_values , uniques , assume_unique = True ))
134
+ diff = list (np .setdiff1d (uni
64BE
que_values , known_values ,
135
+ assume_unique = True ))
136
136
if return_mask :
137
137
if diff :
138
- valid_mask = np .in1d (values , uniques )
138
+ valid_mask = np .in1d (values , known_values )
139
139
else :
140
140
valid_mask = np .ones (len (values ), dtype = bool )
141
141
return diff , valid_mask
0 commit comments