8000 CLN Adjust name · thomasjpfan/scikit-learn@063c3f7 · GitHub
[go: up one dir, main page]

Skip to content 8000

Commit 063c3f7

Browse files
committed
CLN Adjust name
1 parent bdc4c89 commit 063c3f7

File tree

1 file changed

+8
-8
lines changed

1 file changed

+8
-8
lines changed

sklearn/utils/_encode.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ def _encode(values, *, uniques, check_unknown=True):
9393
return np.searchsorted(uniques, values)
9494

9595

96-
def _check_unknown(values, uniques, return_mask=False):
96+
def _check_unknown(values, known_values, return_mask=False):
9797
"""
9898
Helper function to check for unknowns in values to be encoded.
9999
@@ -104,23 +104,22 @@ def _check_unknown(values, uniques, return_mask=False):
104104
----------
105105
values : array
106106
Values to check for unknowns.
107-
uniques : array
108-
Allowed uniques values.
107+
known_values : array
108+
Known values. Must be unique.
109109
return_mask : bool, default False
110110
If True, return a mask of the same shape as `values` indicating
111111
the valid values.
112112
113113
Returns
114114
-------
115115
diff : list
116-
The unique values present in `values` and not in `uniques` (the
117-
unknown values).
116+
The unique values present in `values` and not in `know_values`.
118117
valid_mask : boolean array
119118
Additionally returned if ``return_mask=True``.
120119
121120
"""
122121
if values.dtype == object:
123-
uniques_set = set(uniques)
122+
uniques_set = set(known_values)
124123
diff = list(set(values) - uniques_set)
125124
if return_mask:
126125
if diff:
@@ -132,10 +131,11 @@ def _check_unknown(values, uniques, return_mask=False):
132131
return diff
133132
else:
134133
unique_values = np.unique(values)
135-
diff = list(np.setdiff1d(unique_values, uniques, assume_unique=True))
134+
diff = list(np.setdiff1d(uni 64BE que_values, known_values,
135+
assume_unique=True))
136136
if return_mask:
137137
if diff:
138-
valid_mask = np.in1d(values, uniques)
138+
valid_mask = np.in1d(values, known_values)
139139
else:
140140
valid_mask = np.ones(len(values), dtype=bool)
141141
return diff, valid_mask

0 commit comments

Comments
 (0)
0