@@ -126,8 +126,7 @@ def mean_variance_axis(X, axis, weights=None, return_sum_weights=False):
126
126
127
127
128
128
def incr_mean_variance_axis (X , * , axis , last_mean , last_var , last_n , weights = None ):
129
- """Compute incremental mean and variance along an axis on a CSR or
130
- CSC matrix.
129
+ """Compute incremental mean and variance along an axis on a CSR or CSC matrix.
131
130
132
131
last_mean, last_var are the statistics computed at the last step by this
133
132
function. Both must be initialized to 0-arrays of the proper size, i.e.
@@ -153,8 +152,8 @@ def incr_mean_variance_axis(X, *, axis, last_mean, last_var, last_n, weights=Non
153
152
last_n : float or ndarray of shape (n_features,) or (n_samples,), \
154
153
dtype=floating
155
154
Sum of the weights seen so far, excluding the current weights
156
- If not float, it should be of shape (n_samples ,) if
157
- axis=0 or (n_features ,) if axis=1. If float it corresponds to
155
+ If not float, it should be of shape (n_features ,) if
156
+ axis=0 or (n_samples ,) if axis=1. If float it corresponds to
158
157
having same weights for all samples (or features).
159
158
160
159
weights : ndarray of shape (n_samples,) or (n_features,), default=None
0 commit comments