|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# How to merge multiple CSV files with Python\n", |
| 8 | + "Python convert normal JSON to JSON separated lines 3 examples\n", |
| 9 | + "\n", |
| 10 | + "* Steps to merge multiple CSV(identical) files with Python\n", |
| 11 | + &quo
57A6
t;* Steps to merge multiple CSV(identical) files with Python with trace\n", |
| 12 | + "* Combine multiple CSV files when the columns are different\n", |
| 13 | + "* Bonus: Merge multiple files with Windows/Linux" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "markdown", |
| 18 | + "metadata": {}, |
| 19 | + "source": [ |
| 20 | + "## 1. Steps to merge multiple CSV(identical) files with Python" |
| 21 | + ] |
| 22 | + }, |
| 23 | + { |
| 24 | + "cell_type": "code", |
| 25 | + "execution_count": 1, |
| 26 | + "metadata": {}, |
| 27 | + "outputs": [], |
| 28 | + "source": [ |
| 29 | + "import os, glob\n", |
| 30 | + "import pandas as pd\n", |
| 31 | + "\n", |
| 32 | + "path = \"../../csv/\"\n", |
| 33 | + "\n", |
| 34 | + "all_files = glob.glob(os.path.join(path, \"data_2019*.csv\"))\n", |
| 35 | + "\n", |
| 36 | + "all_csv = (pd.read_csv(f, sep=',') for f in all_files)\n", |
| 37 | + "df_merged = pd.concat(all_csv, ignore_index=True)\n", |
| 38 | + "df_merged.to_csv( \"merged.csv\")" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "markdown", |
| 43 | + "metadata": {}, |
| 44 | + "source": [ |
| 45 | + "## 2. Steps to merge multiple CSV(identical) files with Python with trace" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": 2, |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [ |
| 53 | + { |
| 54 | + "data": { |
| 55 | + "text/html": [ |
| 56 | + "<div>\n", |
| 57 | + "<style scoped>\n", |
| 58 | + " .dataframe tbody tr th:only-of-type {\n", |
| 59 | + " vertical-align: middle;\n", |
| 60 | + " }\n", |
| 61 | + "\n", |
| 62 | + " .dataframe tbody tr th {\n", |
| 63 | + " vertical-align: top;\n", |
| 64 | + " }\n", |
| 65 | + "\n", |
| 66 | + " .dataframe thead th {\n", |
| 67 | + " text-align: right;\n", |
| 68 | + " }\n", |
| 69 | + "</style>\n", |
| 70 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 71 | + " <thead>\n", |
| 72 | + " <tr style=\"text-align: right;\">\n", |
| 73 | + " <th></th>\n", |
| 74 | + " <th>col1</th>\n", |
| 75 | + " <th>col2</th>\n", |
| 76 | + " <th>col3</th>\n", |
| 77 | + " <th>file</th>\n", |
| 78 | + " </tr>\n", |
| 79 | + " </thead>\n", |
| 80 | + " <tbody>\n", |
| 81 | + " <tr>\n", |
| 82 | + " <th>0</th>\n", |
| 83 | + " <td>C</td>\n", |
| 84 | + " <td>D</td>\n", |
| 85 | + " <td>3</td>\n", |
| 86 | + " <td>data_201902.csv</td>\n", |
| 87 | + " </tr>\n", |
| 88 | + " <tr>\n", |
| 89 | + " <th>1</th>\n", |
| 90 | + " <td>CC</td>\n", |
| 91 | + " <td>DD</td>\n", |
| 92 | + " <td>4</td>\n", |
| 93 | + " <td>data_201902.csv</td>\n", |
| 94 | + " </tr>\n", |
| 95 | + " <tr>\n", |
| 96 | + " <th>2</th>\n", |
| 97 | + " <td>A</td>\n", |
| 98 | + " <td>B</td>\n", |
| 99 | + " <td>1</td>\n", |
| 100 | + " <td>data_201901.csv</td>\n", |
| 101 | + " </tr>\n", |
| 102 | + " <tr>\n", |
| 103 | + " <th>3</th>\n", |
| 104 | + " <td>AA</td>\n", |
| 105 | + " <td>BB</td>\n", |
| 106 | + " <td>2</td>\n", |
| 107 | + " <td>data_201901.csv</td>\n", |
| 108 | + " </tr>\n", |
| 109 | + " </tbody>\n", |
| 110 | + "</table>\n", |
| 111 | + "</div>" |
| 112 | + ], |
| 113 | + "text/plain": [ |
| 114 | + " col1 col2 col3 file\n", |
| 115 | + "0 C D 3 data_201902.csv\n", |
| 116 | + "1 CC DD 4 data_201902.csv\n", |
| 117 | + "2 A B 1 data_201901.csv\n", |
| 118 | + "3 AA BB 2 data_201901.csv" |
| 119 | + ] |
| 120 | + }, |
| 121 | + "execution_count": 2, |
| 122 | + "metadata": {}, |
| 123 | + "output_type": "execute_result" |
| 124 | + } |
| 125 | + ], |
| 126 | + "source": [ |
| 127 | + "import os, glob\n", |
| 128 | + "import pandas as pd\n", |
| 129 | + "\n", |
| 130 | + "path = \"../../csv/\"\n", |
| 131 | + "\n", |
| 132 | + "all_files = glob.glob(os.path.join(path, \"data_2019*.csv\"))\n", |
| 133 | + "\n", |
| 134 | + "all_df = []\n", |
| 135 | + "for f in all_files:\n", |
| 136 | + " df = pd.read_csv(f, sep=',')\n", |
| 137 | + " df['file'] = f.split('/')[-1]\n", |
| 138 | + " all_df.append(df)\n", |
| 139 | + " \n", |
| 140 | + "merged_df = pd.concat(all_df, ignore_index=True)\n", |
| 141 | + "merged_df" |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_type": "markdown", |
| 146 | + "metadata": {}, |
| 147 | + "source": [ |
| 148 | + "## 3. Combine multiple CSV files when the columns are different" |
| 149 | + ] |
| 150 | + }, |
| 151 | + { |
| 152 | + "cell_type": "code", |
| 153 | + "execution_count": 7, |
| 154 | + "metadata": {}, |
| 155 | + "outputs": [ |
| 156 | + { |
| 157 | + "data": { |
| 158 | + "text/html": [ |
| 159 | + "<div>\n", |
| 160 | + "<style scoped>\n", |
| 161 | + " .dataframe tbody tr th:only-of-type {\n", |
| 162 | + " vertical-align: middle;\n", |
| 163 | + " }\n", |
| 164 | + "\n", |
| 165 | + " .dataframe tbody tr th {\n", |
| 166 | + " vertical-align: top;\n", |
| 167 | + " }\n", |
| 168 | + "\n", |
| 169 | + " .dataframe thead th {\n", |
| 170 | + " text-align: right;\n", |
| 171 | + " }\n", |
| 172 | + "</style>\n", |
| 173 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 174 | + " <thead>\n", |
| 175 | + " <tr style=\"text-align: right;\">\n", |
| 176 | + " <th></th>\n", |
| 177 | + " <th>col1</th>\n", |
| 178 | + " <th>col2</th>\n", |
| 179 | + " <th>col3</th>\n", |
| 180 | + " <th>col4</th>\n", |
| 181 | + " <th>col5</th>\n", |
| 182 | + " <th>file</th>\n", |
| 183 | + " </tr>\n", |
| 184 | + " </thead>\n", |
| 185 | + " <tbody>\n", |
| 186 | + " <tr>\n", |
| 187 | + " <th>0</th>\n", |
| 188 | + " <td>E</td>\n", |
| 189 | + " <td>F</td>\n", |
| 190 | + " <td>5</td>\n", |
| 191 | + " <td>e5</td>\n", |
| 192 | + " <td>NaN</td>\n", |
| 193 | + " <td>data_202001.csv</td>\n", |
| 194 | + " </tr>\n", |
| 195 | + " <tr>\n", |
| 196 | + " <th>1</th>\n", |
| 197 | + " <td>EE</td>\n", |
| 198 | + " <td>FF</td>\n", |
| 199 | + " <td>6</td>\n", |
| 200 | + " <td>ee6</td>\n", |
| 201 | + " <td>NaN</td>\n", |
| 202 | + " <td>data_202001.csv</td>\n", |
| 203 | + " </tr>\n", |
| 204 | + " <tr>\n", |
| 205 | + " <th>2</th>\n", |
| 206 | + " <td>H</td>\n", |
| 207 | + " <td>J</td>\n", |
| 208 | + " <td>7</td>\n", |
| 209 | + " <td>NaN</td>\n", |
| 210 | + " <td>77.0</td>\n", |
| 211 | + " <td>data_202002.csv</td>\n", |
| 212 | + " </tr>\n", |
| 213 | + " <tr>\n", |
| 214 | + " <th>3</th>\n", |
| 215 | + " <td>HH</td>\n", |
| 216 | + " <td>JJ</td>\n", |
| 217 | + " <td>8</td>\n", |
| 218 | + " <td>NaN</td>\n", |
| 219 | + " <td>88.0</td>\n", |
| 220 | + " <td>data_202002.csv</td>\n", |
| 221 | + " </tr>\n", |
| 222 | + " <tr>\n", |
| 223 | + " <th>4</th>\n", |
| 224 | + " <td>C</td>\n", |
| 225 | + " <td>D</td>\n", |
| 226 | + " <td>3</td>\n", |
| 227 | + " <td>NaN</td>\n", |
| 228 | + " <td>NaN</td>\n", |
| 229 | + " <td>data_201902.csv</td>\n", |
| 230 | + " </tr>\n", |
| 231 | + " <tr>\n", |
| 232 | + " <th>5</th>\n", |
| 233 | + " <td>CC</td>\n", |
| 234 | + " <td>DD</td>\n", |
| 235 | + " <td>4</td>\n", |
| 236 | + " <td>NaN</td>\n", |
| 237 | + " <td>NaN</td>\n", |
| 238 | + " <td>data_201902.csv</td>\n", |
| 239 | + " </tr>\n", |
| 240 | + " <tr>\n", |
| 241 | + " <th>6</th>\n", |
| 242 | + " <td>A</td>\n", |
| 243 | + " <td>B</td>\n", |
| 244 | + " <td>1</td>\n", |
| 245 | + " <td>NaN</td>\n", |
| 246 | + " <td>NaN</td>\n", |
| 247 | + " <td>data_201901.csv</td>\n", |
| 248 | + " </tr>\n", |
| 249 | + " <tr>\n", |
| 250 | + " <th>7</th>\n", |
| 251 | + " <td>AA</td>\n", |
| 252 | + " <td>BB</td>\n", |
| 253 | + " <td>2</td>\n", |
| 254 | + " <td>NaN</td>\n", |
| 255 | + " <td>NaN</td>\n", |
| 256 | + " <td>data_201901.csv</td>\n", |
| 257 | + " </tr>\n", |
| 258 | + " </tbody>\n", |
| 259 | + "</table>\n", |
| 260 | + "</div>" |
| 261 | + ], |
| 262 | + "text/plain": [ |
| 263 | + " col1 col2 col3 col4 col5 file\n", |
| 264 | + "0 E F 5 e5 NaN data_202001.csv\n", |
| 265 | + "1 EE FF 6 ee6 NaN data_202001.csv\n", |
| 266 | + "2 H J 7 NaN 77.0 data_202002.csv\n", |
| 267 | + "3 HH JJ 8 NaN 88.0 data_202002.csv\n", |
| 268 | + "4 C D 3 NaN NaN data_201902.csv\n", |
| 269 | + "5 CC DD 4 NaN NaN data_201902.csv\n", |
| 270 | + "6 A B 1 NaN NaN data_201901.csv\n", |
| 271 | + "7 AA BB 2 NaN NaN data_201901.csv" |
| 272 | + ] |
| 273 | + }, |
| 274 | + "execution_count": 7, |
| 275 | + "metadata": {}, |
| 276 | + "output_type": "execute_result" |
| 277 | + } |
| 278 | + ], |
| 279 | + "source": [ |
| 280 | + "import os, glob\n", |
| 281 | + "import pandas as pd\n", |
| 282 | + "\n", |
| 283 | + "path = \"../../csv/\"\n", |
| 284 | + "\n", |
| 285 | + "all_files = glob.glob(os.path.join(path, \"data_*.csv\"))\n", |
| 286 | + "\n", |
| 287 | + "\n", |
| 288 | + "all_df = []\n", |
| 289 | + "for f in all_files:\n", |
| 290 | + " df = pd.read_csv(f, sep=',')\n", |
| 291 | + " df['file'] = f.split('/')[-1]\n", |
| 292 | + " all_df.append(df)\n", |
| 293 | + " \n", |
| 294 | + "merged_df = pd.concat(all_df, ignore_index=True, sort=True)\n", |
| 295 | + "merged_df" |
| 296 | + ] |
| 297 | + }, |
| 298 | + { |
| 299 | + "cell_type": "markdown", |
| 300 | + "metadata": {}, |
| 301 | + "source": [ |
| 302 | + "## 4. Bonus: Merge multiple files with Windows/Linux\n", |
| 303 | + "\n", |
| 304 | + "Linux\n", |
| 305 | + "\n", |
| 306 | + "`sed 1d data_*.csv > merged.csv`\n", |
| 307 | + "\n", |
| 308 | + "Windows\n", |
| 309 | + "\n", |
| 310 | + "`C:\\> copy data_*.csv merged.csv `" |
| 311 | + ] |
| 312 | + }, |
| 313 | + { |
| 314 | + "cell_type": "code", |
| 315 | + "execution_count": null, |
| 316 | + "metadata": {}, |
| 317 | + "outputs": [], |
| 318 | + "source": [] |
| 319 | + } |
| 320 | + ], |
| 321 | + "metadata": { |
| 322 | + "kernelspec": { |
| 323 | + "display_name": "Python 3", |
| 324 | + "language": "python", |
| 325 | + "name": "python3" |
| 326 | + }, |
| 327 | + "language_info": { |
| 328 | + "codemirror_mode": { |
| 329 | + "name": "ipython", |
| 330 | + "version": 3 |
| 331 | + }, |
| 332 | + "file_extension": ".py", |
| 333 | + "mimetype": "text/x-python", |
| 334 | + "name": "python", |
| 335 | + "nbconvert_exporter": "python", |
| 336 | + "pygments_lexer": "ipython3", |
| 337 | + "version": "3.6.9" |
| 338 | + } |
| 339 | + }, |
| 340 | + "nbformat": 4, |
| 341 | + "nbformat_minor": 2 |
| 342 | +} |
0 commit comments