|
820 | 820 | $$
|
821 | 821 | 所以$Φ(x) = (Φ_1(x), Φ_2(x))$的kernel为$K_1+K_2$
|
822 | 822 |
|
823 |
| -(b)$\Phi(x)$是$Φ_1(x)Φ_2(x)^T$每一行拼接而成的向量,设$Φ_1(x),Φ_2(x)\in R^n$,给出以下记号 |
| 823 | +(b)$\Phi(x)$是$Φ_1(x)Φ_2^T(x)$每一行拼接而成的向量,设$Φ_1(x),Φ_2(x)\in R^n$,给出以下记号 |
824 | 824 | $$
|
825 |
| -\Phi^i(x)=Φ_1^{i}(x)Φ_2(x)^T\in R^n\\ |
| 825 | +\Phi^i(x)=Φ_1^{i}(x)Φ^T_2(x)\in R^n\\ |
826 | 826 | Φ^{i}_1(x)为Φ_1(x)的第i个分量
|
827 | 827 | $$
|
828 | 828 | 那么
|
829 | 829 | $$
|
830 | 830 | \Phi(x) =(Φ^i(x),...,Φ^n(x))^T \in R^{n^2}\\
|
831 | 831 | $$
|
832 | 832 |
|
833 |
| -$$ |
834 |
| -\Phi^i(x)=Φ_1^{i}(x)Φ_2(x)^T\in R^n\\ |
835 |
| -\Phi(x) =(Φ^i(x),...,Φ^n(x))^T \in R^{n^2}\\ |
836 |
| -Φ^{i}_1(x)为Φ_1(x)的第i个分量 |
837 |
| -$$ |
838 |
| - |
839 |
| -接着计算$\Phi(x) \Phi^T(x) $,注意$\Phi^i(x)$为行向量 |
| 833 | +接着计算$\Phi(x) \Phi^T(x') $,注意$\Phi^i(x)$为行向量 |
840 | 834 | $$
|
841 | 835 | \begin{aligned}
|
842 |
| -(Φ(x) Φ(x^{'})^T) |
| 836 | +(Φ(x) Φ^T(x^{'})) |
843 | 837 | &=\sum_{i=1}^n (Φ^i(x))Φ^i(x^{'})^T\\
|
844 | 838 | &=\sum_{i=1}^n (Φ_1^{i}(x)Φ_2(x)^T)(Φ_1^{i}(x^{'})Φ_2(x^{'})^T)^T\\
|
845 |
| -&=\sum_{i=1}^nΦ_1^{i}(x)Φ_1^{i}(x^{'})Φ_2(x)^TΦ_2(x^{'})\\ |
| 839 | +&=\sum_{i=1}^nΦ_1^{i}(x)Φ_1^{i}(x^{'})Φ^T_2(x)Φ_2(x^{'})\\ |
846 | 840 | &=\sum_{i=1}^nΦ_1^{i}(x)Φ_1^{i}(x^{'})K_2(x,x^{'})\\
|
847 | 841 | &=K_2(x,x^{'})\sum_{i=1}^nΦ_1^{i}(x)Φ_1^{i}(x^{'})\\
|
848 | 842 | &=K_2(x,x^{'})K_1(x,x^{'})
|
849 | 843 | \end{aligned}
|
850 | 844 | $$
|
851 |
| -所以$Φ(x)$的kernel为$K_1(x,x^{'})K_2(x,x^{'})$ |
| 845 | +所以$Φ(x)$对应的kernel为$K_1(x,x^{'})K_2(x,x^{'})$ |
852 | 846 |
|
853 | 847 | (c)由(a),(b)可以直接推出
|
854 | 848 |
|
|
0 commit comments