You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/math/base/ops/README.md
-3Lines changed: 0 additions & 3 deletions
Original file line number
Diff line number
Diff line change
@@ -45,7 +45,6 @@ The namespace contains the following functions:
45
45
46
46
<divclass="namespace-toc">
47
47
48
-
- <spanclass="signature">[`cnegf( z )`][@stdlib/complex/float32/base/neg]</span><spanclass="delimiter">: </span><spanclass="description">negate a single-precision complex floating-point number.</span>
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+6-6Lines changed: 6 additions & 6 deletions
Original file line number
Diff line number
Diff line change
@@ -81,12 +81,12 @@ The namespace contains the following statistical functions:
81
81
- <spanclass="signature">[`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskrange]</span><spanclass="delimiter">: </span><spanclass="description">calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
82
82
- <spanclass="signature">[`dnanrange( N, x, strideX )`][@stdlib/stats/base/dnanrange]</span><spanclass="delimiter">: </span><spanclass="description">calculate the range of a double-precision floating-point strided array, ignoring `NaN` values.</span>
83
83
- <spanclass="signature">[`dnanstdev( N, correction, x, stride )`][@stdlib/stats/base/dnanstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values.</span>
84
-
- <spanclass="signature">[`dnanstdevch( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevch]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
85
-
- <spanclass="signature">[`dnanstdevpn( N, correction, x, stride )`][@stdlib/stats/base/dnanstdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
84
+
- <spanclass="signature">[`dnanstdevch( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevch]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
85
+
- <spanclass="signature">[`dnanstdevpn( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array, ignoring `NaN` values and using a two-pass algorithm.</span>
86
86
- <spanclass="signature">[`dnanstdevtk( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevtk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
87
87
- <spanclass="signature">[`dnanstdevwd( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
88
88
- <spanclass="signature">[`dnanstdevyc( N, correction, x, strideX )`][@stdlib/stats/base/dnanstdevyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
89
-
- <spanclass="signature">[`dnanvariance( N, correction, x, stride )`][@stdlib/stats/base/dnanvariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values.</span>
89
+
- <spanclass="signature">[`dnanvariance( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values.</span>
90
90
- <spanclass="signature">[`dnanvariancech( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
91
91
- <spanclass="signature">[`dnanvariancepn( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm.</span>
92
92
- <spanclass="signature">[`dnanvariancetk( N, correction, x, strideX )`][@stdlib/stats/base/dnanvariancetk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
@@ -115,7 +115,7 @@ The namespace contains the following statistical functions:
115
115
- <spanclass="signature">[`dstdevwd( N, correction, x, strideX )`][@stdlib/stats/base/dstdevwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.</span>
116
116
- <spanclass="signature">[`dstdevyc( N, correction, x, strideX )`][@stdlib/stats/base/dstdevyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
117
117
- <spanclass="signature">[`dsvariance( N, correction, x, stride )`][@stdlib/stats/base/dsvariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.</span>
118
-
- <spanclass="signature">[`dsvariancepn( N, correction, x, stride )`][@stdlib/stats/base/dsvariancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.</span>
118
+
- <spanclass="signature">[`dsvariancepn( N, correction, x, strideX )`][@stdlib/stats/base/dsvariancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.</span>
119
119
- <spanclass="signature">[`dvariance( N, correction, x, strideX )`][@stdlib/stats/base/dvariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array.</span>
120
120
- <spanclass="signature">[`dvariancech( N, correction, x, strideX )`][@stdlib/stats/base/dvariancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
121
121
- <spanclass="signature">[`dvariancepn( N, correction, x, strideX )`][@stdlib/stats/base/dvariancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array using a two-pass algorithm.</span>
@@ -206,8 +206,8 @@ The namespace contains the following statistical functions:
206
206
- <spanclass="signature">[`snanmaxabs( N, x, strideX )`][@stdlib/stats/base/snanmaxabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum absolute value of a single-precision floating-point strided array, ignoring `NaN` values.</span>
207
207
- <spanclass="signature">[`snanmean( N, x, stride )`][@stdlib/stats/base/snanmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values.</span>
208
208
- <spanclass="signature">[`snanmeanors( N, x, strideX )`][@stdlib/stats/base/snanmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation.</span>
209
-
- <spanclass="signature">[`snanmeanpn( N, x, stride )`][@stdlib/stats/base/snanmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
210
-
- <spanclass="signature">[`snanmeanwd( N, x, stride )`][@stdlib/stats/base/snanmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm.</span>
209
+
- <spanclass="signature">[`snanmeanpn( N, x, strideX )`][@stdlib/stats/base/snanmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
210
+
- <spanclass="signature">[`snanmeanwd( N, x, strideX )`][@stdlib/stats/base/snanmeanwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm.</span>
211
211
- <spanclass="signature">[`snanmin( N, x, strideX )`][@stdlib/stats/base/snanmin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a single-precision floating-point strided array, ignoring `NaN` values.</span>
212
212
- <spanclass="signature">[`snanminabs( N, x, strideX )`][@stdlib/stats/base/snanminabs]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum absolute value of a single-precision floating-point strided array, ignoring `NaN` values.</span>
213
213
- <spanclass="signature">[`snanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/snanmskmax]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a single-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
0 commit comments