diff --git a/.gitignore b/.gitignore index b8bd026..1c4a1b0 100644 --- a/.gitignore +++ b/.gitignore @@ -26,3 +26,13 @@ *.exe *.out *.app + +# Logfiles +*.tlog +*.log + +# Build +/examples/build/* + +# vim temp files +*.sw* diff --git a/.travis.yml b/.travis.yml new file mode 100644 index 0000000..d6175a2 --- /dev/null +++ b/.travis.yml @@ -0,0 +1,6 @@ +language: minimal +dist: trusty +services: + - docker +script: + - make -C contrib docker_build diff --git a/CMakeLists.txt b/CMakeLists.txt new file mode 100644 index 0000000..bb2decd --- /dev/null +++ b/CMakeLists.txt @@ -0,0 +1,133 @@ +cmake_minimum_required(VERSION 3.8 FATAL_ERROR) +project(matplotlib_cpp LANGUAGES CXX) + +include(GNUInstallDirs) +set(PACKAGE_NAME matplotlib_cpp) +set(INSTALL_CONFIGDIR ${CMAKE_INSTALL_LIBDIR}/${PACKAGE_NAME}/cmake) + + +# Library target +add_library(matplotlib_cpp INTERFACE) +target_include_directories(matplotlib_cpp + INTERFACE + $ + $ +) +target_compile_features(matplotlib_cpp INTERFACE + cxx_std_11 +) +# TODO: Use `Development.Embed` component when requiring cmake >= 3.18 +find_package(Python3 COMPONENTS Interpreter Development REQUIRED) +target_link_libraries(matplotlib_cpp INTERFACE + Python3::Python + Python3::Module +) +find_package(Python3 COMPONENTS NumPy) +if(Python3_NumPy_FOUND) + target_link_libraries(matplotlib_cpp INTERFACE + Python3::NumPy + ) +else() + target_compile_definitions(matplotlib_cpp INTERFACE WITHOUT_NUMPY) +endif() +install( + TARGETS matplotlib_cpp + EXPORT install_targets +) + + +# Examples +add_executable(minimal examples/minimal.cpp) +target_link_libraries(minimal PRIVATE matplotlib_cpp) +set_target_properties(minimal PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") + +add_executable(basic examples/basic.cpp) +target_link_libraries(basic PRIVATE matplotlib_cpp) +set_target_properties(basic PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") + +add_executable(modern examples/modern.cpp) +target_link_libraries(modern PRIVATE matplotlib_cpp) +set_target_properties(modern PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") + +add_executable(animation examples/animation.cpp) +target_link_libraries(animation PRIVATE matplotlib_cpp) +set_target_properties(animation PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") + +add_executable(nonblock examples/nonblock.cpp) +target_link_libraries(nonblock PRIVATE matplotlib_cpp) +set_target_properties(nonblock PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") + +add_executable(xkcd examples/xkcd.cpp) +target_link_libraries(xkcd PRIVATE matplotlib_cpp) +set_target_properties(xkcd PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") + +add_executable(bar examples/bar.cpp) +target_link_libraries(bar PRIVATE matplotlib_cpp) +set_target_properties(bar PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") + +add_executable(fill_inbetween examples/fill_inbetween.cpp) +target_link_libraries(fill_inbetween PRIVATE matplotlib_cpp) +set_target_properties(fill_inbetween PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") + +add_executable(fill examples/fill.cpp) +target_link_libraries(fill PRIVATE matplotlib_cpp) +set_target_properties(fill PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") + +add_executable(update examples/update.cpp) +target_link_libraries(update PRIVATE matplotlib_cpp) +set_target_properties(update PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") + +add_executable(subplot2grid examples/subplot2grid.cpp) +target_link_libraries(subplot2grid PRIVATE matplotlib_cpp) +set_target_properties(subplot2grid PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") + +add_executable(lines3d examples/lines3d.cpp) +target_link_libraries(lines3d PRIVATE matplotlib_cpp) +set_target_properties(lines3d PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") + +if(Python3_NumPy_FOUND) + add_executable(surface examples/surface.cpp) + target_link_libraries(surface PRIVATE matplotlib_cpp) + set_target_properties(surface PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") + + add_executable(colorbar examples/colorbar.cpp) + target_link_libraries(colorbar PRIVATE matplotlib_cpp) + set_target_properties(colorbar PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") + add_executable(contour examples/contour.cpp) + target_link_libraries(contour PRIVATE matplotlib_cpp) + set_target_properties(contour PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") + + add_executable(spy examples/spy.cpp) + target_link_libraries(spy PRIVATE matplotlib_cpp) + set_target_properties(spy PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") +endif() + + +# Install headers +install(FILES + "${PROJECT_SOURCE_DIR}/matplotlibcpp.h" + DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}) + + +# Install targets file +install(EXPORT install_targets + FILE + ${PACKAGE_NAME}Targets.cmake + NAMESPACE + ${PACKAGE_NAME}:: + DESTINATION + ${INSTALL_CONFIGDIR} +) + + +# Install matplotlib_cppConfig.cmake +include(CMakePackageConfigHelpers) +configure_package_config_file( + ${CMAKE_CURRENT_SOURCE_DIR}/cmake/${PACKAGE_NAME}Config.cmake.in + ${CMAKE_CURRENT_BINARY_DIR}/${PACKAGE_NAME}Config.cmake + INSTALL_DESTINATION ${INSTALL_CONFIGDIR} +) +install(FILES + ${CMAKE_CURRENT_BINARY_DIR}/${PACKAGE_NAME}Config.cmake + DESTINATION ${INSTALL_CONFIGDIR} +) diff --git a/Makefile b/Makefile deleted file mode 100644 index 4164ee8..0000000 --- a/Makefile +++ /dev/null @@ -1,11 +0,0 @@ -examples: minimal basic modern - -minimal: examples/minimal.cpp matplotlibcpp.h - cd examples && g++ minimal.cpp -lpython2.7 -o minimal -std=c++11 - -basic: examples/basic.cpp matplotlibcpp.h - cd examples && g++ basic.cpp -lpython2.7 -o basic - -modern: examples/modern.cpp matplotlibcpp.h - cd examples && g++ modern.cpp -lpython2.7 -o modern -std=c++11 - diff --git a/README.md b/README.md index 1be0145..0f8479f 100644 --- a/README.md +++ b/README.md @@ -9,116 +9,266 @@ It is built to resemble the plotting API used by Matlab and matplotlib. Usage ----- Complete minimal example: +```cpp +#include "matplotlibcpp.h" +namespace plt = matplotlibcpp; +int main() { + plt::plot({1,3,2,4}); + plt::show(); +} +``` + g++ minimal.cpp -std=c++11 -I/usr/include/python2.7 -lpython2.7 - #include "matplotlibcpp.h" - namespace plt = matplotlibcpp; - int main() { - plt::plot({1,2,3,4}); - plt::show(); - } - - // g++ minimal.cpp -std=c++11 -lpython2.7 +**Result:** -Result: ![Minimal example](./examples/minimal.png) +![Minimal example](./examples/minimal.png) A more comprehensive example: +```cpp +#include "matplotlibcpp.h" +#include + +namespace plt = matplotlibcpp; + +int main() +{ + // Prepare data. + int n = 5000; + std::vector x(n), y(n), z(n), w(n,2); + for(int i=0; i + // Set the size of output image to 1200x780 pixels + plt::figure_size(1200, 780); + // Plot line from given x and y data. Color is selected automatically. + plt::plot(x, y); + // Plot a red dashed line from given x and y data. + plt::plot(x, w,"r--"); + // Plot a line whose name will show up as "log(x)" in the legend. + plt::named_plot("log(x)", x, z); + // Set x-axis to interval [0,1000000] + plt::xlim(0, 1000*1000); + // Add graph title + plt::title("Sample figure"); + // Enable legend. + plt::legend(); + // Save the image (file format is determined by the extension) + plt::save("./basic.png"); +} +``` + g++ basic.cpp -I/usr/include/python2.7 -lpython2.7 + +**Result:** + +![Basic example](./examples/basic.png) + +Alternatively, matplotlib-cpp also supports some C++11-powered syntactic sugar: +```cpp +#include +#include "matplotlibcpp.h" + +using namespace std; +namespace plt = matplotlibcpp; + +int main() +{ + // Prepare data. + int n = 5000; // number of data points + vector x(n),y(n); + for(int i=0; i x(n), y(n), z(n), w(n,2); - for(int i=0; i +#include + +namespace plt = matplotlibcpp; + +int main() { + std::vector t(1000); + std::vector x(t.size()); + + for(size_t i = 0; i < t.size(); i++) { + t[i] = i / 100.0; + x[i] = sin(2.0 * M_PI * 1.0 * t[i]); } - // g++ basic.cpp -lpython2.7 + plt::xkcd(); + plt::plot(t, x); + plt::title("AN ORDINARY SIN WAVE"); + plt::save("xkcd.png"); +} -Result: ![Basic example](./examples/basic.png) +``` + g++ xkcd.cpp -std=c++11 -I/usr/include/python2.7 -lpython2.7 -matplotlib-cpp doesn't require C++11, but will enable some additional syntactic sugar when available: +**Result:** - #include - #include "matplotlibcpp.h" +![xkcd example](./examples/xkcd.png) - using namespace std; - namespace plt = matplotlibcpp; +When working with vector fields, you might be interested in quiver plots: +```cpp +#include "../matplotlibcpp.h" - int main() - { - // Prepare data. - int n = 5000; // number of data points - vector x(n),y(n); - for(int i=0; i x, y, u, v; + for (int i = -5; i <= 5; i++) { + for (int j = -5; j <= 5; j++) { + x.push_back(i); + u.push_back(-i); + y.push_back(j); + v.push_back(-j); } + } + + plt::quiver(x, y, u, v); + plt::show(); +} +``` + g++ quiver.cpp -std=c++11 -I/usr/include/python2.7 -lpython2.7 + +**Result:** + +![quiver example](./examples/quiver.png) - // plot() takes an arbitrary number of (x,y,format)-triples. - // x must be iterable (that is, anything providing begin(x) and end(x)), - // y must either be callable (providing operator() const) or iterable. - plt::plot(x, y, "r-", x, [](double d) { return 12.5+abs(sin(d)); }, "k-"); +When working with 3d functions, you might be interested in 3d plots: +```cpp +#include "../matplotlibcpp.h" +namespace plt = matplotlibcpp; - // show plots - plt::show(); - } - - // g++ modern.cpp -std=c++11 -lpython +int main() +{ + std::vector> x, y, z; + for (double i = -5; i <= 5; i += 0.25) { + std::vector x_row, y_row, z_row; + for (double j = -5; j <= 5; j += 0.25) { + x_row.push_back(i); + y_row.push_back(j); + z_row.push_back(::std::sin(::std::hypot(i, j))); + } + x.push_back(x_row); + y.push_back(y_row); + z.push_back(z_row); + } + + plt::plot_surface(x, y, z); + plt::show(); +} +``` -Result: ![Modern example](./examples/modern.png) +**Result:** + +![surface example](./examples/surface.png) Installation ------------ + matplotlib-cpp works by wrapping the popular python plotting library matplotlib. (matplotlib.org) This means you have to have a working python installation, including development headers. On Ubuntu: - sudo aptitude install python-matplotlib python2.7-dev + sudo apt-get install python-matplotlib python-numpy python2.7-dev + +If, for some reason, you're unable to get a working installation of numpy on your system, +you can define the macro `WITHOUT_NUMPY` before including the header file to erase this +dependency. + +The C++-part of the library consists of the single header file `matplotlibcpp.h` which +can be placed anywhere. + +Since a python interpreter is opened internally, it is necessary to link +against `libpython` in order to user matplotlib-cpp. Most versions should +work, although python likes to randomly break compatibility from time to time +so some caution is advised when using the bleeding edge. + + +# CMake + +The C++ code is compatible to both python2 and python3. However, the `CMakeLists.txt` +file is currently set up to use python3 by default, so if python2 is required this +has to be changed manually. (a PR that adds a cmake option for this would be highly +welcomed) + +**NOTE**: By design (of python), only a single python interpreter can be created per +process. When using this library, *no other* library that is spawning a python +interpreter internally can be used. + +To compile the code without using cmake, the compiler invocation should look like +this: + + g++ example.cpp -I/usr/include/python2.7 -lpython2.7 + +This can also be used for linking against a custom build of python + + g++ example.cpp -I/usr/local/include/fancy-python4 -L/usr/local/lib -lfancy-python4 + +# Vcpkg + +You can download and install matplotlib-cpp using the [vcpkg](https://github.com/Microsoft/vcpkg) dependency manager: + + git clone https://github.com/Microsoft/vcpkg.git + cd vcpkg + ./bootstrap-vcpkg.sh + ./vcpkg integrate install + vcpkg install matplotlib-cpp + +The matplotlib-cpp port in vcpkg is kept up to date by Microsoft team members and community contributors. If the version is out of date, please [create an issue or pull request](https://github.com/Microsoft/vcpkg) on the vcpkg repository. + + +# C++11 + +Currently, c++11 is required to build matplotlib-cpp. The last working commit that did +not have this requirement was `717e98e752260245407c5329846f5d62605eff08`. + +Note that support for c++98 was dropped more or less accidentally, so if you have to work +with an ancient compiler and still want to enjoy the latest additional features, I'd +probably merge a PR that restores support. + -The C++-part of the library consists of the single header file `matplotlibcpp.h` which can be placed -anywhere. -Since a python interpreter is opened internally, it is necessary to link against `libpython2.7` in order to use -matplotlib-cpp. -(There should be no problems using python3 instead of python2.7, if desired) Why? ---- -I initially started this library during my diploma thesis. The usual approach of +I initially started this library during my diploma thesis. The usual approach of writing data from the c++ algorithm to a file and afterwards parsing and plotting it in python using matplotlib proved insufficient: Keeping the algorithm -and plotting code in sync requires a lot of effort when the C++ code frequently and substantially +and plotting code in sync requires a lot of effort when the C++ code frequently and substantially changes. Additionally, the python yaml parser was not able to cope with files that exceed a few hundred megabytes in size. -Therefore, I was looking for a C++ plotting library that was extremely to use -and easy to add into an existing codebase, preferrably header-only. When I found +Therefore, I was looking for a C++ plotting library that was extremely easy to use +and to add into an existing codebase, preferably header-only. When I found none, I decided to write one myself, which is basically a C++ wrapper around matplotlib. As you can see from the above examples, plotting data and saving it -to an image file can be done is as few as two lines of code. +to an image file can be done as few as two lines of code. The general approach of providing a simple C++ API for utilizing python code was later generalized and extracted into a separate, more powerful @@ -137,4 +287,8 @@ Todo/Issues/Wishlist * Right now, only a small subset of matplotlibs functionality is exposed. Stuff like xlabel()/ylabel() etc. should be easy to add. -* A lot of copying could be avoided if we generate numpy arrays directly instead of python lists +* If you use Anaconda on Windows, you might need to set PYTHONHOME to Anaconda home directory and QT_QPA_PLATFORM_PLUGIN_PATH to %PYTHONHOME%Library/plugins/platforms. The latter is for especially when you get the error which says 'This application failed to start because it could not find or load the Qt platform plugin "windows" +in "".' + +* MacOS: `Unable to import matplotlib.pyplot`. Cause: In mac os image rendering back end of matplotlib (what-is-a-backend to render using the API of Cocoa by default). There is Qt4Agg and GTKAgg and as a back-end is not the default. Set the back end of macosx that is differ compare with other windows or linux os. +Solution is described [here](https://stackoverflow.com/questions/21784641/installation-issue-with-matplotlib-python?noredirect=1&lq=1), additional information can be found there too(see links in answers). diff --git a/cmake/matplotlib_cppConfig.cmake.in b/cmake/matplotlib_cppConfig.cmake.in new file mode 100644 index 0000000..86d25d0 --- /dev/null +++ b/cmake/matplotlib_cppConfig.cmake.in @@ -0,0 +1,10 @@ +get_filename_component(matplotlib_cpp_CMAKE_DIR "${CMAKE_CURRENT_LIST_FILE}" PATH) + +if(NOT TARGET matplotlib_cpp::matplotlib_cpp) + find_package(Python3 COMPONENTS Interpreter Development REQUIRED) + find_package(Python3 COMPONENTS NumPy) + include("${matplotlib_cpp_CMAKE_DIR}/matplotlib_cppTargets.cmake") + + get_target_property(matplotlib_cpp_INCLUDE_DIRS matplotlib_cpp::matplotlib_cpp INTERFACE_INCLUDE_DIRECTORIES) + +endif() diff --git a/contrib/Dockerfile b/contrib/Dockerfile new file mode 100644 index 0000000..850466f --- /dev/null +++ b/contrib/Dockerfile @@ -0,0 +1,27 @@ +FROM debian:10 AS builder +RUN apt-get update \ + && apt-get install --yes --no-install-recommends \ + g++ \ + libpython3-dev \ + make \ + python3 \ + python3-dev \ + python3-numpy + +ADD Makefile matplotlibcpp.h numpy_flags.py /opt/ +ADD examples/*.cpp /opt/examples/ +RUN cd /opt \ + && make PYTHON_BIN=python3 \ + && ls examples/build + +FROM debian:10 +RUN apt-get update \ + && apt-get install --yes --no-install-recommends \ + libpython3-dev \ + python3-matplotlib \ + python3-numpy + +COPY --from=builder /opt/examples/build /opt/ +RUN cd /opt \ + && ls \ + && ./basic diff --git a/contrib/Makefile b/contrib/Makefile new file mode 100644 index 0000000..f659cd9 --- /dev/null +++ b/contrib/Makefile @@ -0,0 +1,6 @@ +all: docker_build + +docker_build: + cd .. && \ + docker build . -f contrib/Dockerfile -t matplotlibcpp && \ + cd contrib diff --git a/contrib/README.md b/contrib/README.md new file mode 100644 index 0000000..0af8515 --- /dev/null +++ b/contrib/README.md @@ -0,0 +1,32 @@ +# contrib/ + +This folder contains contributions that may be useful to users of this library, but +have a too specialized audience to become part of the main tree. + +In particular, things in here will have a higher rate of bit-rot, since +contributors are not required to and may be unable to check whether their +changes break any of them. + +## Windows support +Tested on the following environment +* Windows 10 - 64bit +* Anaconda 4.3 (64 bit) +* Python 3.6.0 +* CMake 3.9.4 +* Visual Studio 2017, 2015, 2013 + +### Configuring and Building Samples +1. Edit WinBuild.cmd for your environment(Line:5-7) + if NOT DEFINED MSVC_VERSION set MSVC_VERSION=[Your Visual Studio Version(12, 14, 15)] + if NOT DEFINED CMAKE_CONFIG set CMAKE_CONFIG=Release + if NOT DEFINED PYTHONHOME set PYTHONHOME=[Your Python Path] + +2. Run WinBuild.cmd to build +```cmd +> cd contrib +> WinBuild.cmd +``` +The `WinBuild.cmd` will set up temporal ENV variables and build binaries in (matplotlib root)/examples with the Release configuration. + +3. Find exe files in examples/build/Release +Note: platforms folder is necessary to make qt works. diff --git a/contrib/WinBuild.cmd b/contrib/WinBuild.cmd new file mode 100644 index 0000000..9dfd627 --- /dev/null +++ b/contrib/WinBuild.cmd @@ -0,0 +1,61 @@ +@echo off +@setlocal EnableDelayedExpansion + +REM ------Set Your Environment------------------------------- +if NOT DEFINED MSVC_VERSION set MSVC_VERSION=15 +if NOT DEFINED CMAKE_CONFIG set CMAKE_CONFIG=Release +if NOT DEFINED PYTHONHOME set PYTHONHOME=C:/Users/%username%/Anaconda3 +REM --------------------------------------------------------- + +set KEY_NAME="HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Microsoft\VisualStudio\SxS\VS7" +set VALUE_NAME=15.0 + +if "%MSVC_VERSION%"=="14" ( + if "%processor_architecture%" == "AMD64" ( + set CMAKE_GENERATOR=Visual Studio 14 2015 Win64 + ) else ( + set CMAKE_GENERATOR=Visual Studio 14 2015 + ) +) else if "%MSVC_VERSION%"=="12" ( + if "%processor_architecture%" == "AMD64" ( + set CMAKE_GENERATOR=Visual Studio 12 2013 Win64 + ) else ( + set CMAKE_GENERATOR=Visual Studio 12 2013 + ) +) else if "%MSVC_VERSION%"=="15" ( + if "%processor_architecture%" == "AMD64" ( + set CMAKE_GENERATOR=Visual Studio 15 2017 Win64 + ) else ( + set CMAKE_GENERATOR=Visual Studio 15 2017 + ) +) +if "%MSVC_VERSION%"=="15" ( + for /F "usebackq tokens=1,2,*" %%A in (`REG QUERY %KEY_NAME% /v %VALUE_NAME%`) do ( + set batch_file=%%CVC\Auxiliary\Build\vcvarsall.bat + ) +) else ( + set batch_file=!VS%MSVC_VERSION%0COMNTOOLS!..\..\VC\vcvarsall.bat +) +call "%batch_file%" %processor_architecture% + +pushd .. +pushd examples +if NOT EXIST build mkdir build +pushd build + +cmake -G"!CMAKE_GENERATOR!" ^ + -DPYTHONHOME:STRING=%PYTHONHOME%^ + -DCMAKE_BUILD_TYPE:STRING=%CMAKE_CONFIG% ^ + %~dp0 +cmake --build . --config %CMAKE_CONFIG% + +pushd %CMAKE_CONFIG% +if not EXIST platforms mkdir platforms +if EXIST %PYTHONHOME%/Library/plugins/platforms/qwindows.dll ^ +cp %PYTHONHOME%/Library/plugins/platforms/qwindows.dll ./platforms/ +popd +REM move ./%CMAKE_CONFIG% ../ +popd +popd +popd +@endlocal diff --git a/examples/.gitignore b/examples/.gitignore new file mode 100644 index 0000000..3da8ad6 --- /dev/null +++ b/examples/.gitignore @@ -0,0 +1,14 @@ +animation +bar +basic +fill +fill_inbetween +imshow +minimal +modern +nonblock +quiver +subplot +surface +update +xkcd diff --git a/examples/animation.cpp b/examples/animation.cpp new file mode 100644 index 0000000..d979430 --- /dev/null +++ b/examples/animation.cpp @@ -0,0 +1,36 @@ +#define _USE_MATH_DEFINES +#include +#include "../matplotlibcpp.h" + +namespace plt = matplotlibcpp; + +int main() +{ + int n = 1000; + std::vector x, y, z; + + for(int i=0; i +#include +#include "../matplotlibcpp.h" +namespace plt = matplotlibcpp; + +int main(int argc, char **argv) { + std::vector test_data; + for (int i = 0; i < 20; i++) { + test_data.push_back(i); + } + + plt::bar(test_data); + plt::show(); + + return (0); +} diff --git a/examples/bar.png b/examples/bar.png new file mode 100644 index 0000000..be6af0f Binary files /dev/null and b/examples/bar.png differ diff --git a/examples/basic.cpp b/examples/basic.cpp index 9862d64..2dc34c7 100644 --- a/examples/basic.cpp +++ b/examples/basic.cpp @@ -1,34 +1,44 @@ -#include "../matplotlibcpp.h" - +#define _USE_MATH_DEFINES +#include #include +#include "../matplotlibcpp.h" namespace plt = matplotlibcpp; int main() { - // Prepare data. - int n = 5000; - std::vector x(n), y(n), z(n), w(n,2); - for(int i=0; i x(n), y(n), z(n), w(n,2); + for(int i=0; i +#include +#include "../matplotlibcpp.h" + +using namespace std; +namespace plt = matplotlibcpp; + +int main() +{ + // Prepare data + int ncols = 500, nrows = 300; + std::vector z(ncols * nrows); + for (int j=0; j + +namespace plt = matplotlibcpp; + +int main() +{ + std::vector> x, y, z; + for (double i = -5; i <= 5; i += 0.25) { + std::vector x_row, y_row, z_row; + for (double j = -5; j <= 5; j += 0.25) { + x_row.push_back(i); + y_row.push_back(j); + z_row.push_back(::std::sin(::std::hypot(i, j))); + } + x.push_back(x_row); + y.push_back(y_row); + z.push_back(z_row); + } + + plt::contour(x, y, z); + plt::show(); +} diff --git a/examples/fill.cpp b/examples/fill.cpp new file mode 100644 index 0000000..6059b47 --- /dev/null +++ b/examples/fill.cpp @@ -0,0 +1,35 @@ +#define _USE_MATH_DEFINES +#include "../matplotlibcpp.h" +#include + +using namespace std; +namespace plt = matplotlibcpp; + +// Example fill plot taken from: +// https://matplotlib.org/gallery/misc/fill_spiral.html +int main() { + // Prepare data. + vector theta; + for (double d = 0; d < 8 * M_PI; d += 0.1) + theta.push_back(d); + + const int a = 1; + const double b = 0.2; + + for (double dt = 0; dt < 2 * M_PI; dt += M_PI/2.0) { + vector x1, y1, x2, y2; + for (double th : theta) { + x1.push_back( a*cos(th + dt) * exp(b*th) ); + y1.push_back( a*sin(th + dt) * exp(b*th) ); + + x2.push_back( a*cos(th + dt + M_PI/4.0) * exp(b*th) ); + y2.push_back( a*sin(th + dt + M_PI/4.0) * exp(b*th) ); + } + + x1.insert(x1.end(), x2.rbegin(), x2.rend()); + y1.insert(y1.end(), y2.rbegin(), y2.rend()); + + plt::fill(x1, y1, {}); + } + plt::show(); +} diff --git a/examples/fill.png b/examples/fill.png new file mode 100644 index 0000000..aa1fc0d Binary files /dev/null and b/examples/fill.png differ diff --git a/examples/fill_between.png b/examples/fill_between.png new file mode 100644 index 0000000..a199423 Binary files /dev/null and b/examples/fill_between.png differ diff --git a/examples/fill_inbetween.cpp b/examples/fill_inbetween.cpp new file mode 100644 index 0000000..788d008 --- /dev/null +++ b/examples/fill_inbetween.cpp @@ -0,0 +1,28 @@ +#define _USE_MATH_DEFINES +#include "../matplotlibcpp.h" +#include +#include + +using namespace std; +namespace plt = matplotlibcpp; + +int main() { + // Prepare data. + int n = 5000; + std::vector x(n), y(n), z(n), w(n, 2); + for (int i = 0; i < n; ++i) { + x.at(i) = i * i; + y.at(i) = sin(2 * M_PI * i / 360.0); + z.at(i) = log(i); + } + + // Prepare keywords to pass to PolyCollection. See + // https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.fill_between.html + std::map keywords; + keywords["alpha"] = "0.4"; + keywords["color"] = "grey"; + keywords["hatch"] = "-"; + + plt::fill_between(x, y, z, keywords); + plt::show(); +} diff --git a/examples/imshow.cpp b/examples/imshow.cpp new file mode 100644 index 0000000..b11661e --- /dev/null +++ b/examples/imshow.cpp @@ -0,0 +1,29 @@ +#define _USE_MATH_DEFINES +#include +#include +#include "../matplotlibcpp.h" + +using namespace std; +namespace plt = matplotlibcpp; + +int main() +{ + // Prepare data + int ncols = 500, nrows = 300; + std::vector z(ncols * nrows); + for (int j=0; j + +namespace plt = matplotlibcpp; + +int main() +{ + std::vector x, y, z; + double theta, r; + double z_inc = 4.0/99.0; double theta_inc = (8.0 * M_PI)/99.0; + + for (double i = 0; i < 100; i += 1) { + theta = -4.0 * M_PI + theta_inc*i; + z.push_back(-2.0 + z_inc*i); + r = z[i]*z[i] + 1; + x.push_back(r * sin(theta)); + y.push_back(r * cos(theta)); + } + + std::map keywords; + keywords.insert(std::pair("label", "parametric curve") ); + + plt::plot3(x, y, z, keywords); + plt::xlabel("x label"); + plt::ylabel("y label"); + plt::set_zlabel("z label"); // set_zlabel rather than just zlabel, in accordance with the Axes3D method + plt::legend(); + plt::show(); +} diff --git a/examples/lines3d.png b/examples/lines3d.png new file mode 100644 index 0000000..7a0c478 Binary files /dev/null and b/examples/lines3d.png differ diff --git a/examples/minimal.cpp b/examples/minimal.cpp index 345a9b5..fbe1e1c 100644 --- a/examples/minimal.cpp +++ b/examples/minimal.cpp @@ -3,6 +3,6 @@ namespace plt = matplotlibcpp; int main() { - plt::plot({1,2,3,4}); + plt::plot({1,3,2,4}); plt::show(); } diff --git a/examples/minimal.png b/examples/minimal.png index bbb79aa..0f6cf37 100644 Binary files a/examples/minimal.png and b/examples/minimal.png differ diff --git a/examples/modern.cpp b/examples/modern.cpp index 9c15acd..871ef2b 100644 --- a/examples/modern.cpp +++ b/examples/modern.cpp @@ -1,6 +1,6 @@ -#include "../matplotlibcpp.h" - +#define _USE_MATH_DEFINES #include +#include "../matplotlibcpp.h" using namespace std; namespace plt = matplotlibcpp; @@ -24,6 +24,9 @@ int main() // y must either be callable (providing operator() const) or iterable. plt::plot(x, y, "r-", x, [](double d) { return 12.5+abs(sin(d)); }, "k-"); + //plt::set_aspect(0.5); + plt::set_aspect_equal(); + // show plots plt::show(); diff --git a/examples/nonblock.cpp b/examples/nonblock.cpp new file mode 100644 index 0000000..327d96c --- /dev/null +++ b/examples/nonblock.cpp @@ -0,0 +1,46 @@ +#define _USE_MATH_DEFINES +#include +#include "../matplotlibcpp.h" + +namespace plt = matplotlibcpp; + + +using namespace matplotlibcpp; +using namespace std; + +int main() +{ + // Prepare data. + int n = 5000; + std::vector x(n), y(n), z(n), w(n,2); + for(int i=0; i x, y, u, v; + for (int i = -5; i <= 5; i++) { + for (int j = -5; j <= 5; j++) { + x.push_back(i); + u.push_back(-i); + y.push_back(j); + v.push_back(-j); + } + } + + plt::quiver(x, y, u, v); + plt::show(); +} \ No newline at end of file diff --git a/examples/quiver.png b/examples/quiver.png new file mode 100644 index 0000000..9d7be1e Binary files /dev/null and b/examples/quiver.png differ diff --git a/examples/spy.cpp b/examples/spy.cpp new file mode 100644 index 0000000..6027a48 --- /dev/null +++ b/examples/spy.cpp @@ -0,0 +1,30 @@ +#include "../matplotlibcpp.h" + +#include +#include + +namespace plt = matplotlibcpp; + +int main() +{ + const int n = 20; + std::vector> matrix; + + for (int i = 0; i < n; ++i) { + std::vector row; + for (int j = 0; j < n; ++j) { + if (i == j) + row.push_back(-2); + else if (j == i - 1 || j == i + 1) + row.push_back(1); + else + row.push_back(0); + } + matrix.push_back(row); + } + + plt::spy(matrix, 5, {{"marker", "o"}}); + plt::show(); + + return 0; +} diff --git a/examples/subplot.cpp b/examples/subplot.cpp new file mode 100644 index 0000000..bee322e --- /dev/null +++ b/examples/subplot.cpp @@ -0,0 +1,31 @@ +#define _USE_MATH_DEFINES +#include +#include "../matplotlibcpp.h" + +using namespace std; +namespace plt = matplotlibcpp; + +int main() +{ + // Prepare data + int n = 500; + std::vector x(n), y(n), z(n), w(n,2); + for(int i=0; i +#include "../matplotlibcpp.h" + +using namespace std; +namespace plt = matplotlibcpp; + +int main() +{ + // Prepare data + int n = 500; + std::vector x(n), u(n), v(n), w(n); + for(int i=0; i + +namespace plt = matplotlibcpp; + +int main() +{ + std::vector> x, y, z; + for (double i = -5; i <= 5; i += 0.25) { + std::vector x_row, y_row, z_row; + for (double j = -5; j <= 5; j += 0.25) { + x_row.push_back(i); + y_row.push_back(j); + z_row.push_back(::std::sin(::std::hypot(i, j))); + } + x.push_back(x_row); + y.push_back(y_row); + z.push_back(z_row); + } + + plt::plot_surface(x, y, z); + plt::show(); +} diff --git a/examples/surface.png b/examples/surface.png new file mode 100644 index 0000000..6fc5fc7 Binary files /dev/null and b/examples/surface.png differ diff --git a/examples/update.cpp b/examples/update.cpp new file mode 100644 index 0000000..64f4906 --- /dev/null +++ b/examples/update.cpp @@ -0,0 +1,60 @@ +#define _USE_MATH_DEFINES +#include +#include "../matplotlibcpp.h" +#include + +namespace plt = matplotlibcpp; + +void update_window(const double x, const double y, const double t, + std::vector &xt, std::vector &yt) +{ + const double target_length = 300; + const double half_win = (target_length/(2.*sqrt(1.+t*t))); + + xt[0] = x - half_win; + xt[1] = x + half_win; + yt[0] = y - half_win*t; + yt[1] = y + half_win*t; +} + + +int main() +{ + size_t n = 1000; + std::vector x, y; + + const double w = 0.05; + const double a = n/2; + + for (size_t i=0; i xt(2), yt(2); + + plt::title("Tangent of a sine curve"); + plt::xlim(x.front(), x.back()); + plt::ylim(-a, a); + plt::axis("equal"); + + // Plot sin once and for all. + plt::named_plot("sin", x, y); + + // Prepare plotting the tangent. + plt::Plot plot("tangent"); + + plt::legend(); + + for (size_t i=0; i +#include "../matplotlibcpp.h" +#include + +namespace plt = matplotlibcpp; + +int main() { + std::vector t(1000); + std::vector x(t.size()); + + for(size_t i = 0; i < t.size(); i++) { + t[i] = i / 100.0; + x[i] = sin(2.0 * M_PI * 1.0 * t[i]); + } + + plt::xkcd(); + plt::plot(t, x); + plt::title("AN ORDINARY SIN WAVE"); + plt::show(); +} + diff --git a/examples/xkcd.png b/examples/xkcd.png new file mode 100644 index 0000000..c285e3d Binary files /dev/null and b/examples/xkcd.png differ diff --git a/matplotlibcpp.h b/matplotlibcpp.h index ce1ee8f..d95d46a 100644 --- a/matplotlibcpp.h +++ b/matplotlibcpp.h @@ -1,499 +1,2986 @@ #pragma once +// Python headers must be included before any system headers, since +// they define _POSIX_C_SOURCE +#include + #include #include +#include #include +#include #include #include - -#if __cplusplus > 199711L +#include // requires c++11 support #include +#include // std::stod + +#ifndef WITHOUT_NUMPY +# define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION +# include + +# ifdef WITH_OPENCV +# include +# endif // WITH_OPENCV + +/* + * A bunch of constants were removed in OpenCV 4 in favour of enum classes, so + * define the ones we need here. + */ +# if CV_MAJOR_VERSION > 3 +# define CV_BGR2RGB cv::COLOR_BGR2RGB +# define CV_BGRA2RGBA cv::COLOR_BGRA2RGBA +# endif +#endif // WITHOUT_NUMPY + +#if PY_MAJOR_VERSION >= 3 +# define PyString_FromString PyUnicode_FromString +# define PyInt_FromLong PyLong_FromLong +# define PyString_FromString PyUnicode_FromString #endif -#include namespace matplotlibcpp { +namespace detail { + +static std::string s_backend; + +struct _interpreter { + PyObject* s_python_function_arrow; + PyObject *s_python_function_show; + PyObject *s_python_function_close; + PyObject *s_python_function_draw; + PyObject *s_python_function_pause; + PyObject *s_python_function_save; + PyObject *s_python_function_figure; + PyObject *s_python_function_fignum_exists; + PyObject *s_python_function_plot; + PyObject *s_python_function_quiver; + PyObject* s_python_function_contour; + PyObject *s_python_function_semilogx; + PyObject *s_python_function_semilogy; + PyObject *s_python_function_loglog; + PyObject *s_python_function_fill; + PyObject *s_python_function_fill_between; + PyObject *s_python_function_hist; + PyObject *s_python_function_imshow; + PyObject *s_python_function_scatter; + PyObject *s_python_function_boxplot; + PyObject *s_python_function_subplot; + PyObject *s_python_function_subplot2grid; + PyObject *s_python_function_legend; + PyObject *s_python_function_xlim; + PyObject *s_python_function_ion; + PyObject *s_python_function_ginput; + PyObject *s_python_function_ylim; + PyObject *s_python_function_title; + PyObject *s_python_function_axis; + PyObject *s_python_function_axhline; + PyObject *s_python_function_axvline; + PyObject *s_python_function_axvspan; + PyObject *s_python_function_xlabel; + PyObject *s_python_function_ylabel; + PyObject *s_python_function_gca; + PyObject *s_python_function_xticks; + PyObject *s_python_function_yticks; + PyObject* s_python_function_margins; + PyObject *s_python_function_tick_params; + PyObject *s_python_function_grid; + PyObject* s_python_function_cla; + PyObject *s_python_function_clf; + PyObject *s_python_function_errorbar; + PyObject *s_python_function_annotate; + PyObject *s_python_function_tight_layout; + PyObject *s_python_colormap; + PyObject *s_python_empty_tuple; + PyObject *s_python_function_stem; + PyObject *s_python_function_xkcd; + PyObject *s_python_function_text; + PyObject *s_python_function_suptitle; + PyObject *s_python_function_bar; + PyObject *s_python_function_barh; + PyObject *s_python_function_colorbar; + PyObject *s_python_function_subplots_adjust; + PyObject *s_python_function_rcparams; + PyObject *s_python_function_spy; + + /* For now, _interpreter is implemented as a singleton since its currently not possible to have + multiple independent embedded python interpreters without patching the python source code + or starting a separate process for each. [1] + Furthermore, many python objects expect that they are destructed in the same thread as they + were constructed. [2] So for advanced usage, a `kill()` function is provided so that library + users can manually ensure that the interpreter is constructed and destroyed within the + same thread. + + 1: http://bytes.com/topic/python/answers/793370-multiple-independent-python-interpreters-c-c-program + 2: https://github.com/lava/matplotlib-cpp/pull/202#issue-436220256 + */ + + static _interpreter& get() { + return interkeeper(false); + } + + static _interpreter& kill() { + return interkeeper(true); + } + + // Stores the actual singleton object referenced by `get()` and `kill()`. + static _interpreter& interkeeper(bool should_kill) { + static _interpreter ctx; + if (should_kill) + ctx.~_interpreter(); + return ctx; + } + + PyObject* safe_import(PyObject* module, std::string fname) { + PyObject* fn = PyObject_GetAttrString(module, fname.c_str()); + + if (!fn) + throw std::runtime_error(std::string("Couldn't find required function: ") + fname); + + if (!PyFunction_Check(fn)) + throw std::runtime_error(fname + std::string(" is unexpectedly not a PyFunction.")); + + return fn; + } + +private: + +#ifndef WITHOUT_NUMPY +# if PY_MAJOR_VERSION >= 3 + + void *import_numpy() { + import_array(); // initialize C-API + return NULL; + } + +# else + + void import_numpy() { + import_array(); // initialize C-API + } + +# endif +#endif + + _interpreter() { + + // optional but recommended +#if PY_MAJOR_VERSION >= 3 + wchar_t name[] = L"plotting"; +#else + char name[] = "plotting"; +#endif + Py_SetProgramName(name); + Py_Initialize(); + + wchar_t const *dummy_args[] = {L"Python", NULL}; // const is needed because literals must not be modified + wchar_t const **argv = dummy_args; + int argc = sizeof(dummy_args)/sizeof(dummy_args[0])-1; + +#if PY_MAJOR_VERSION >= 3 + PySys_SetArgv(argc, const_cast(argv)); +#else + PySys_SetArgv(argc, (char **)(argv)); +#endif + +#ifndef WITHOUT_NUMPY + import_numpy(); // initialize numpy C-API +#endif + + PyObject* matplotlibname = PyString_FromString("matplotlib"); + PyObject* pyplotname = PyString_FromString("matplotlib.pyplot"); + PyObject* cmname = PyString_FromString("matplotlib.cm"); + PyObject* pylabname = PyString_FromString("pylab"); + if (!pyplotname || !pylabname || !matplotlibname || !cmname) { + throw std::runtime_error("couldnt create string"); + } + + PyObject* matplotlib = PyImport_Import(matplotlibname); + + Py_DECREF(matplotlibname); + if (!matplotlib) { + PyErr_Print(); + throw std::runtime_error("Error loading module matplotlib!"); + } + + // matplotlib.use() must be called *before* pylab, matplotlib.pyplot, + // or matplotlib.backends is imported for the first time + if (!s_backend.empty()) { + PyObject_CallMethod(matplotlib, const_cast("use"), const_cast("s"), s_backend.c_str()); + } + + + + PyObject* pymod = PyImport_Import(pyplotname); + Py_DECREF(pyplotname); + if (!pymod) { throw std::runtime_error("Error loading module matplotlib.pyplot!"); } + + s_python_colormap = PyImport_Import(cmname); + Py_DECREF(cmname); + if (!s_python_colormap) { throw std::runtime_error("Error loading module matplotlib.cm!"); } + + PyObject* pylabmod = PyImport_Import(pylabname); + Py_DECREF(pylabname); + if (!pylabmod) { throw std::runtime_error("Error loading module pylab!"); } + + s_python_function_arrow = safe_import(pymod, "arrow"); + s_python_function_show = safe_import(pymod, "show"); + s_python_function_close = safe_import(pymod, "close"); + s_python_function_draw = safe_import(pymod, "draw"); + s_python_function_pause = safe_import(pymod, "pause"); + s_python_function_figure = safe_import(pymod, "figure"); + s_python_function_fignum_exists = safe_import(pymod, "fignum_exists"); + s_python_function_plot = safe_import(pymod, "plot"); + s_python_function_quiver = safe_import(pymod, "quiver"); + s_python_function_contour = safe_import(pymod, "contour"); + s_python_function_semilogx = safe_import(pymod, "semilogx"); + s_python_function_semilogy = safe_import(pymod, "semilogy"); + s_python_function_loglog = safe_import(pymod, "loglog"); + s_python_function_fill = safe_import(pymod, "fill"); + s_python_function_fill_between = safe_import(pymod, "fill_between"); + s_python_function_hist = safe_import(pymod,"hist"); + s_python_function_scatter = safe_import(pymod,"scatter"); + s_python_function_boxplot = safe_import(pymod,"boxplot"); + s_python_function_subplot = safe_import(pymod, "subplot"); + s_python_function_subplot2grid = safe_import(pymod, "subplot2grid"); + s_python_function_legend = safe_import(pymod, "legend"); + s_python_function_xlim = safe_import(pymod, "xlim"); + s_python_function_ylim = safe_import(pymod, "ylim"); + s_python_function_title = safe_import(pymod, "title"); + s_python_function_axis = safe_import(pymod, "axis"); + s_python_function_axhline = safe_import(pymod, "axhline"); + s_python_function_axvline = safe_import(pymod, "axvline"); + s_python_function_axvspan = safe_import(pymod, "axvspan"); + s_python_function_xlabel = safe_import(pymod, "xlabel"); + s_python_function_ylabel = safe_import(pymod, "ylabel"); + s_python_function_gca = safe_import(pymod, "gca"); + s_python_function_xticks = safe_import(pymod, "xticks"); + s_python_function_yticks = safe_import(pymod, "yticks"); + s_python_function_margins = safe_import(pymod, "margins"); + s_python_function_tick_params = safe_import(pymod, "tick_params"); + s_python_function_grid = safe_import(pymod, "grid"); + s_python_function_ion = safe_import(pymod, "ion"); + s_python_function_ginput = safe_import(pymod, "ginput"); + s_python_function_save = safe_import(pylabmod, "savefig"); + s_python_function_annotate = safe_import(pymod,"annotate"); + s_python_function_cla = safe_import(pymod, "cla"); + s_python_function_clf = safe_import(pymod, "clf"); + s_python_function_errorbar = safe_import(pymod, "errorbar"); + s_python_function_tight_layout = safe_import(pymod, "tight_layout"); + s_python_function_stem = safe_import(pymod, "stem"); + s_python_function_xkcd = safe_import(pymod, "xkcd"); + s_python_function_text = safe_import(pymod, "text"); + s_python_function_suptitle = safe_import(pymod, "suptitle"); + s_python_function_bar = safe_import(pymod,"bar"); + s_python_function_barh = safe_import(pymod, "barh"); + s_python_function_colorbar = PyObject_GetAttrString(pymod, "colorbar"); + s_python_function_subplots_adjust = safe_import(pymod,"subplots_adjust"); + s_python_function_rcparams = PyObject_GetAttrString(pymod, "rcParams"); + s_python_function_spy = PyObject_GetAttrString(pymod, "spy"); +#ifndef WITHOUT_NUMPY + s_python_function_imshow = safe_import(pymod, "imshow"); +#endif + s_python_empty_tuple = PyTuple_New(0); + } + + ~_interpreter() { + Py_Finalize(); + } +}; + +} // end namespace detail + +/// Select the backend +/// +/// **NOTE:** This must be called before the first plot command to have +/// any effect. +/// +/// Mainly useful to select the non-interactive 'Agg' backend when running +/// matplotlibcpp in headless mode, for example on a machine with no display. +/// +/// See also: https://matplotlib.org/2.0.2/api/matplotlib_configuration_api.html#matplotlib.use +inline void backend(const std::string& name) +{ + detail::s_backend = name; +} + +inline bool annotate(std::string annotation, double x, double y) +{ + detail::_interpreter::get(); + + PyObject * xy = PyTuple_New(2); + PyObject * str = PyString_FromString(annotation.c_str()); + + PyTuple_SetItem(xy,0,PyFloat_FromDouble(x)); + PyTuple_SetItem(xy,1,PyFloat_FromDouble(y)); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "xy", xy); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, str); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_annotate, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if(res) Py_DECREF(res); + + return res; +} + +namespace detail { + +#ifndef WITHOUT_NUMPY +// Type selector for numpy array conversion +template struct select_npy_type { const static NPY_TYPES type = NPY_NOTYPE; }; //Default +template <> struct select_npy_type { const static NPY_TYPES type = NPY_DOUBLE; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_FLOAT; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_BOOL; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_INT8; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_SHORT; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_INT; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_INT64; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_UINT8; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_USHORT; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_ULONG; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_UINT64; }; + +// Sanity checks; comment them out or change the numpy type below if you're compiling on +// a platform where they don't apply +static_assert(sizeof(long long) == 8); +template <> struct select_npy_type { const static NPY_TYPES type = NPY_INT64; }; +static_assert(sizeof(unsigned long long) == 8); +template <> struct select_npy_type { const static NPY_TYPES type = NPY_UINT64; }; + +template +PyObject* get_array(const std::vector& v) +{ + npy_intp vsize = v.size(); + NPY_TYPES type = select_npy_type::type; + if (type == NPY_NOTYPE) { + size_t memsize = v.size()*sizeof(double); + double* dp = static_cast(::malloc(memsize)); + for (size_t i=0; i(varray), NPY_ARRAY_OWNDATA); + return varray; + } + + PyObject* varray = PyArray_SimpleNewFromData(1, &vsize, type, (void*)(v.data())); + return varray; +} + + +template +PyObject* get_2darray(const std::vector<::std::vector>& v) +{ + if (v.size() < 1) throw std::runtime_error("get_2d_array v too small"); + + npy_intp vsize[2] = {static_cast(v.size()), + static_cast(v[0].size())}; + + PyArrayObject *varray = + (PyArrayObject *)PyArray_SimpleNew(2, vsize, NPY_DOUBLE); + + double *vd_begin = static_cast(PyArray_DATA(varray)); + + for (const ::std::vector &v_row : v) { + if (v_row.size() != static_cast(vsize[1])) + throw std::runtime_error("Missmatched array size"); + std::copy(v_row.begin(), v_row.end(), vd_begin); + vd_begin += vsize[1]; + } + + return reinterpret_cast(varray); +} + +#else // fallback if we don't have numpy: copy every element of the given vector + +template +PyObject* get_array(const std::vector& v) +{ + PyObject* list = PyList_New(v.size()); + for(size_t i = 0; i < v.size(); ++i) { + PyList_SetItem(list, i, PyFloat_FromDouble(v.at(i))); + } + return list; +} + +#endif // WITHOUT_NUMPY + +// sometimes, for labels and such, we need string arrays +inline PyObject * get_array(const std::vector& strings) +{ + PyObject* list = PyList_New(strings.size()); + for (std::size_t i = 0; i < strings.size(); ++i) { + PyList_SetItem(list, i, PyString_FromString(strings[i].c_str())); + } + return list; +} + +// not all matplotlib need 2d arrays, some prefer lists of lists +template +PyObject* get_listlist(const std::vector>& ll) +{ + PyObject* listlist = PyList_New(ll.size()); + for (std::size_t i = 0; i < ll.size(); ++i) { + PyList_SetItem(listlist, i, get_array(ll[i])); + } + return listlist; +} + +} // namespace detail + +/// Plot a line through the given x and y data points.. +/// +/// See: https://matplotlib.org/3.2.1/api/_as_gen/matplotlib.pyplot.plot.html +template +bool plot(const std::vector &x, const std::vector &y, const std::map& keywords) +{ + assert(x.size() == y.size()); + + detail::_interpreter::get(); + + // using numpy arrays + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + // construct positional args + PyObject* args = PyTuple_New(2); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +// TODO - it should be possible to make this work by implementing +// a non-numpy alternative for `detail::get_2darray()`. +#ifndef WITHOUT_NUMPY +template +void plot_surface(const std::vector<::std::vector> &x, + const std::vector<::std::vector> &y, + const std::vector<::std::vector> &z, + const std::map &keywords = + std::map(), + const long fig_number=0) +{ + detail::_interpreter::get(); + + // We lazily load the modules here the first time this function is called + // because I'm not sure that we can assume "matplotlib installed" implies + // "mpl_toolkits installed" on all platforms, and we don't want to require + // it for people who don't need 3d plots. + static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; + if (!mpl_toolkitsmod) { + detail::_interpreter::get(); + + PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); + PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); + if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } + + mpl_toolkitsmod = PyImport_Import(mpl_toolkits); + Py_DECREF(mpl_toolkits); + if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } + + axis3dmod = PyImport_Import(axis3d); + Py_DECREF(axis3d); + if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } + } + + assert(x.size() == y.size()); + assert(y.size() == z.size()); + + // using numpy arrays + PyObject *xarray = detail::get_2darray(x); + PyObject *yarray = detail::get_2darray(y); + PyObject *zarray = detail::get_2darray(z); + + // construct positional args + PyObject *args = PyTuple_New(3); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + PyTuple_SetItem(args, 2, zarray); + + // Build up the kw args. + PyObject *kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "rstride", PyInt_FromLong(1)); + PyDict_SetItemString(kwargs, "cstride", PyInt_FromLong(1)); + + PyObject *python_colormap_coolwarm = PyObject_GetAttrString( + detail::_interpreter::get().s_python_colormap, "coolwarm"); + + PyDict_SetItemString(kwargs, "cmap", python_colormap_coolwarm); + + for (std::map::const_iterator it = keywords.begin(); + it != keywords.end(); ++it) { + if (it->first == "linewidth" || it->first == "alpha") { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyFloat_FromDouble(std::stod(it->second))); + } else { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + } + + PyObject *fig_args = PyTuple_New(1); + PyObject* fig = nullptr; + PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number)); + PyObject *fig_exists = + PyObject_CallObject( + detail::_interpreter::get().s_python_function_fignum_exists, fig_args); + if (!PyObject_IsTrue(fig_exists)) { + fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, + detail::_interpreter::get().s_python_empty_tuple); + } else { + fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, + fig_args); + } + Py_DECREF(fig_exists); + if (!fig) throw std::runtime_error("Call to figure() failed."); + + PyObject *gca_kwargs = PyDict_New(); + PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d")); + + PyObject *gca = PyObject_GetAttrString(fig, "gca"); + if (!gca) throw std::runtime_error("No gca"); + Py_INCREF(gca); + PyObject *axis = PyObject_Call( + gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs); + + if (!axis) throw std::runtime_error("No axis"); + Py_INCREF(axis); + + Py_DECREF(gca); + Py_DECREF(gca_kwargs); + + PyObject *plot_surface = PyObject_GetAttrString(axis, "plot_surface"); + if (!plot_surface) throw std::runtime_error("No surface"); + Py_INCREF(plot_surface); + PyObject *res = PyObject_Call(plot_surface, args, kwargs); + if (!res) throw std::runtime_error("failed surface"); + Py_DECREF(plot_surface); + + Py_DECREF(axis); + Py_DECREF(args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); +} + +template +void contour(const std::vector<::std::vector> &x, + const std::vector<::std::vector> &y, + const std::vector<::std::vector> &z, + const std::map &keywords = {}) +{ + detail::_interpreter::get(); + + // using numpy arrays + PyObject *xarray = detail::get_2darray(x); + PyObject *yarray = detail::get_2darray(y); + PyObject *zarray = detail::get_2darray(z); + + // construct positional args + PyObject *args = PyTuple_New(3); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + PyTuple_SetItem(args, 2, zarray); + + // Build up the kw args. + PyObject *kwargs = PyDict_New(); + + PyObject *python_colormap_coolwarm = PyObject_GetAttrString( + detail::_interpreter::get().s_python_colormap, "coolwarm"); + + PyDict_SetItemString(kwargs, "cmap", python_colormap_coolwarm); + + for (std::map::const_iterator it = keywords.begin(); + it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + + PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_contour, args, kwargs); + if (!res) + throw std::runtime_error("failed contour"); + + Py_DECREF(args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); +} + +template +void spy(const std::vector<::std::vector> &x, + const double markersize = -1, // -1 for default matplotlib size + const std::map &keywords = {}) +{ + detail::_interpreter::get(); + + PyObject *xarray = detail::get_2darray(x); + + PyObject *kwargs = PyDict_New(); + if (markersize != -1) { + PyDict_SetItemString(kwargs, "markersize", PyFloat_FromDouble(markersize)); + } + for (std::map::const_iterator it = keywords.begin(); + it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + + PyObject *plot_args = PyTuple_New(1); + PyTuple_SetItem(plot_args, 0, xarray); + + PyObject *res = PyObject_Call( + detail::_interpreter::get().s_python_function_spy, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); +} +#endif // WITHOUT_NUMPY + +template +void plot3(const std::vector &x, + const std::vector &y, + const std::vector &z, + const std::map &keywords = + std::map(), + const long fig_number=0) +{ + detail::_interpreter::get(); + + // Same as with plot_surface: We lazily load the modules here the first time + // this function is called because I'm not sure that we can assume "matplotlib + // installed" implies "mpl_toolkits installed" on all platforms, and we don't + // want to require it for people who don't need 3d plots. + static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; + if (!mpl_toolkitsmod) { + detail::_interpreter::get(); + + PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); + PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); + if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } + + mpl_toolkitsmod = PyImport_Import(mpl_toolkits); + Py_DECREF(mpl_toolkits); + if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } + + axis3dmod = PyImport_Import(axis3d); + Py_DECREF(axis3d); + if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } + } + + assert(x.size() == y.size()); + assert(y.size() == z.size()); + + PyObject *xarray = detail::get_array(x); + PyObject *yarray = detail::get_array(y); + PyObject *zarray = detail::get_array(z); + + // construct positional args + PyObject *args = PyTuple_New(3); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + PyTuple_SetItem(args, 2, zarray); + + // Build up the kw args. + PyObject *kwargs = PyDict_New(); + + for (std::map::const_iterator it = keywords.begin(); + it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + + PyObject *fig_args = PyTuple_New(1); + PyObject* fig = nullptr; + PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number)); + PyObject *fig_exists = + PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, fig_args); + if (!PyObject_IsTrue(fig_exists)) { + fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, + detail::_interpreter::get().s_python_empty_tuple); + } else { + fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, + fig_args); + } + if (!fig) throw std::runtime_error("Call to figure() failed."); + + PyObject *gca_kwargs = PyDict_New(); + PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d")); + + PyObject *gca = PyObject_GetAttrString(fig, "gca"); + if (!gca) throw std::runtime_error("No gca"); + Py_INCREF(gca); + PyObject *axis = PyObject_Call( + gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs); + + if (!axis) throw std::runtime_error("No axis"); + Py_INCREF(axis); + + Py_DECREF(gca); + Py_DECREF(gca_kwargs); + + PyObject *plot3 = PyObject_GetAttrString(axis, "plot"); + if (!plot3) throw std::runtime_error("No 3D line plot"); + Py_INCREF(plot3); + PyObject *res = PyObject_Call(plot3, args, kwargs); + if (!res) throw std::runtime_error("Failed 3D line plot"); + Py_DECREF(plot3); + + Py_DECREF(axis); + Py_DECREF(args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); +} + +template +bool stem(const std::vector &x, const std::vector &y, const std::map& keywords) +{ + assert(x.size() == y.size()); + + detail::_interpreter::get(); + + // using numpy arrays + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + // construct positional args + PyObject* args = PyTuple_New(2); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for (std::map::const_iterator it = + keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call( + detail::_interpreter::get().s_python_function_stem, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if (res) + Py_DECREF(res); + + return res; +} + +template< typename Numeric > +bool fill(const std::vector& x, const std::vector& y, const std::map& keywords) +{ + assert(x.size() == y.size()); + + detail::_interpreter::get(); + + // using numpy arrays + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + // construct positional args + PyObject* args = PyTuple_New(2); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_fill, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if (res) Py_DECREF(res); + + return res; +} + +template< typename Numeric > +bool fill_between(const std::vector& x, const std::vector& y1, const std::vector& y2, const std::map& keywords) +{ + assert(x.size() == y1.size()); + assert(x.size() == y2.size()); + + detail::_interpreter::get(); + + // using numpy arrays + PyObject* xarray = detail::get_array(x); + PyObject* y1array = detail::get_array(y1); + PyObject* y2array = detail::get_array(y2); + + // construct positional args + PyObject* args = PyTuple_New(3); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, y1array); + PyTuple_SetItem(args, 2, y2array); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_fill_between, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +template +bool arrow(Numeric x, Numeric y, Numeric end_x, Numeric end_y, const std::string& fc = "r", + const std::string ec = "k", Numeric head_length = 0.25, Numeric head_width = 0.1625) { + PyObject* obj_x = PyFloat_FromDouble(x); + PyObject* obj_y = PyFloat_FromDouble(y); + PyObject* obj_end_x = PyFloat_FromDouble(end_x); + PyObject* obj_end_y = PyFloat_FromDouble(end_y); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "fc", PyString_FromString(fc.c_str())); + PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str())); + PyDict_SetItemString(kwargs, "head_width", PyFloat_FromDouble(head_width)); + PyDict_SetItemString(kwargs, "head_length", PyFloat_FromDouble(head_length)); + + PyObject* plot_args = PyTuple_New(4); + PyTuple_SetItem(plot_args, 0, obj_x); + PyTuple_SetItem(plot_args, 1, obj_y); + PyTuple_SetItem(plot_args, 2, obj_end_x); + PyTuple_SetItem(plot_args, 3, obj_end_y); + + PyObject* res = + PyObject_Call(detail::_interpreter::get().s_python_function_arrow, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if (res) + Py_DECREF(res); + + return res; +} + +template< typename Numeric> +bool hist(const std::vector& y, long bins=10,std::string color="b", + double alpha=1.0, bool cumulative=false) +{ + detail::_interpreter::get(); + + PyObject* yarray = detail::get_array(y); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins)); + PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str())); + PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha)); + PyDict_SetItemString(kwargs, "cumulative", cumulative ? Py_True : Py_False); + + PyObject* plot_args = PyTuple_New(1); + + PyTuple_SetItem(plot_args, 0, yarray); + + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs); + + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +#ifndef WITHOUT_NUMPY +namespace detail { + +inline void imshow(void *ptr, const NPY_TYPES type, const int rows, const int columns, const int colors, const std::map &keywords, PyObject** out) +{ + assert(type == NPY_UINT8 || type == NPY_FLOAT); + assert(colors == 1 || colors == 3 || colors == 4); + + detail::_interpreter::get(); + + // construct args + npy_intp dims[3] = { rows, columns, colors }; + PyObject *args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyArray_SimpleNewFromData(colors == 1 ? 2 : 3, dims, type, ptr)); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_imshow, args, kwargs); + Py_DECREF(args); + Py_DECREF(kwargs); + if (!res) + throw std::runtime_error("Call to imshow() failed"); + if (out) + *out = res; + else + Py_DECREF(res); +} + +} // namespace detail + +inline void imshow(const unsigned char *ptr, const int rows, const int columns, const int colors, const std::map &keywords = {}, PyObject** out = nullptr) +{ + detail::imshow((void *) ptr, NPY_UINT8, rows, columns, colors, keywords, out); +} + +inline void imshow(const float *ptr, const int rows, const int columns, const int colors, const std::map &keywords = {}, PyObject** out = nullptr) +{ + detail::imshow((void *) ptr, NPY_FLOAT, rows, columns, colors, keywords, out); +} + +#ifdef WITH_OPENCV +void imshow(const cv::Mat &image, const std::map &keywords = {}) +{ + // Convert underlying type of matrix, if needed + cv::Mat image2; + NPY_TYPES npy_type = NPY_UINT8; + switch (image.type() & CV_MAT_DEPTH_MASK) { + case CV_8U: + image2 = image; + break; + case CV_32F: + image2 = image; + npy_type = NPY_FLOAT; + break; + default: + image.convertTo(image2, CV_MAKETYPE(CV_8U, image.channels())); + } + + // If color image, convert from BGR to RGB + switch (image2.channels()) { + case 3: + cv::cvtColor(image2, image2, CV_BGR2RGB); + break; + case 4: + cv::cvtColor(image2, image2, CV_BGRA2RGBA); + } + + detail::imshow(image2.data, npy_type, image2.rows, image2.cols, image2.channels(), keywords); +} +#endif // WITH_OPENCV +#endif // WITHOUT_NUMPY + +template +bool scatter(const std::vector& x, + const std::vector& y, + const double s=1.0, // The marker size in points**2 + const std::map & keywords = {}) +{ + detail::_interpreter::get(); + + assert(x.size() == y.size()); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "s", PyLong_FromLong(s)); + for (const auto& it : keywords) + { + PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str())); + } + + PyObject* plot_args = PyTuple_New(2); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_scatter, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +template + bool scatter_colored(const std::vector& x, + const std::vector& y, + const std::vector& colors, + const double s=1.0, // The marker size in points**2 + const std::map & keywords = {}) + { + detail::_interpreter::get(); + + assert(x.size() == y.size()); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + PyObject* colors_array = detail::get_array(colors); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "s", PyLong_FromLong(s)); + PyDict_SetItemString(kwargs, "c", colors_array); + + for (const auto& it : keywords) + { + PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str())); + } + + PyObject* plot_args = PyTuple_New(2); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_scatter, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; + } + + +template +bool scatter(const std::vector& x, + const std::vector& y, + const std::vector& z, + const double s=1.0, // The marker size in points**2 + const std::map & keywords = {}, + const long fig_number=0) { + detail::_interpreter::get(); + + // Same as with plot_surface: We lazily load the modules here the first time + // this function is called because I'm not sure that we can assume "matplotlib + // installed" implies "mpl_toolkits installed" on all platforms, and we don't + // want to require it for people who don't need 3d plots. + static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; + if (!mpl_toolkitsmod) { + detail::_interpreter::get(); + + PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); + PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); + if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } + + mpl_toolkitsmod = PyImport_Import(mpl_toolkits); + Py_DECREF(mpl_toolkits); + if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } + + axis3dmod = PyImport_Import(axis3d); + Py_DECREF(axis3d); + if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } + } + + assert(x.size() == y.size()); + assert(y.size() == z.size()); + + PyObject *xarray = detail::get_array(x); + PyObject *yarray = detail::get_array(y); + PyObject *zarray = detail::get_array(z); + + // construct positional args + PyObject *args = PyTuple_New(3); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + PyTuple_SetItem(args, 2, zarray); + + // Build up the kw args. + PyObject *kwargs = PyDict_New(); + + for (std::map::const_iterator it = keywords.begin(); + it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + PyObject *fig_args = PyTuple_New(1); + PyObject* fig = nullptr; + PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number)); + PyObject *fig_exists = + PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, fig_args); + if (!PyObject_IsTrue(fig_exists)) { + fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, + detail::_interpreter::get().s_python_empty_tuple); + } else { + fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, + fig_args); + } + Py_DECREF(fig_exists); + if (!fig) throw std::runtime_error("Call to figure() failed."); + + PyObject *gca_kwargs = PyDict_New(); + PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d")); + + PyObject *gca = PyObject_GetAttrString(fig, "gca"); + if (!gca) throw std::runtime_error("No gca"); + Py_INCREF(gca); + PyObject *axis = PyObject_Call( + gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs); + + if (!axis) throw std::runtime_error("No axis"); + Py_INCREF(axis); + + Py_DECREF(gca); + Py_DECREF(gca_kwargs); + + PyObject *plot3 = PyObject_GetAttrString(axis, "scatter"); + if (!plot3) throw std::runtime_error("No 3D line plot"); + Py_INCREF(plot3); + PyObject *res = PyObject_Call(plot3, args, kwargs); + if (!res) throw std::runtime_error("Failed 3D line plot"); + Py_DECREF(plot3); + + Py_DECREF(axis); + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(fig); + if (res) Py_DECREF(res); + return res; + +} + +template +bool boxplot(const std::vector>& data, + const std::vector& labels = {}, + const std::map & keywords = {}) +{ + detail::_interpreter::get(); + + PyObject* listlist = detail::get_listlist(data); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, listlist); + + PyObject* kwargs = PyDict_New(); + + // kwargs needs the labels, if there are (the correct number of) labels + if (!labels.empty() && labels.size() == data.size()) { + PyDict_SetItemString(kwargs, "labels", detail::get_array(labels)); + } + + // take care of the remaining keywords + for (const auto& it : keywords) + { + PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_boxplot, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if(res) Py_DECREF(res); + + return res; +} + +template +bool boxplot(const std::vector& data, + const std::map & keywords = {}) +{ + detail::_interpreter::get(); + + PyObject* vector = detail::get_array(data); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, vector); + + PyObject* kwargs = PyDict_New(); + for (const auto& it : keywords) + { + PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_boxplot, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if(res) Py_DECREF(res); + + return res; +} + +template +bool bar(const std::vector & x, + const std::vector & y, + std::string ec = "black", + std::string ls = "-", + double lw = 1.0, + const std::map & keywords = {}) +{ + detail::_interpreter::get(); + + PyObject * xarray = detail::get_array(x); + PyObject * yarray = detail::get_array(y); + + PyObject * kwargs = PyDict_New(); + + PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str())); + PyDict_SetItemString(kwargs, "ls", PyString_FromString(ls.c_str())); + PyDict_SetItemString(kwargs, "lw", PyFloat_FromDouble(lw)); + + for (std::map::const_iterator it = + keywords.begin(); + it != keywords.end(); + ++it) { + PyDict_SetItemString( + kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject * plot_args = PyTuple_New(2); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + + PyObject * res = PyObject_Call( + detail::_interpreter::get().s_python_function_bar, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); + + return res; +} + +template +bool bar(const std::vector & y, + std::string ec = "black", + std::string ls = "-", + double lw = 1.0, + const std::map & keywords = {}) +{ + using T = typename std::remove_reference::type::value_type; + + detail::_interpreter::get(); + + std::vector x; + for (std::size_t i = 0; i < y.size(); i++) { x.push_back(i); } + + return bar(x, y, ec, ls, lw, keywords); +} + + +template +bool barh(const std::vector &x, const std::vector &y, std::string ec = "black", std::string ls = "-", double lw = 1.0, const std::map &keywords = { }) { + PyObject *xarray = detail::get_array(x); + PyObject *yarray = detail::get_array(y); + + PyObject *kwargs = PyDict_New(); + + PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str())); + PyDict_SetItemString(kwargs, "ls", PyString_FromString(ls.c_str())); + PyDict_SetItemString(kwargs, "lw", PyFloat_FromDouble(lw)); - namespace detail { - struct _interpreter { - PyObject *s_python_function_show; - PyObject *s_python_function_save; - PyObject *s_python_function_figure; - PyObject *s_python_function_plot; - PyObject *s_python_function_legend; - PyObject *s_python_function_xlim; - PyObject *s_python_function_ylim; - PyObject *s_python_function_title; - PyObject *s_python_function_axis; - PyObject *s_python_function_xlabel; - PyObject *s_python_function_ylabel; - PyObject *s_python_function_grid; - PyObject *s_python_empty_tuple; - - /* For now, _interpreter is implemented as a singleton since its currently not possible to have - multiple independent embedded python interpreters without patching the python source code - or starting a seperate process for each. - - http://bytes.com/topic/python/answers/793370-multiple-independent-python-interpreters-c-c-program - */ - - static _interpreter& get() { - static _interpreter ctx; - return ctx; - } - - private: - _interpreter() { - char name[] = "plotting"; // silence compiler warning abount const strings - Py_SetProgramName(name); // optional but recommended - Py_Initialize(); - - PyObject* pyplotname = PyString_FromString("matplotlib.pyplot"); - PyObject* pylabname = PyString_FromString("pylab"); - if(!pyplotname || !pylabname) { throw std::runtime_error("couldnt create string"); } - - PyObject* pymod = PyImport_Import(pyplotname); - Py_DECREF(pyplotname); - if(!pymod) { throw std::runtime_error("Error loading module matplotlib.pyplot!"); } - - PyObject* pylabmod = PyImport_Import(pylabname); - Py_DECREF(pylabname); - if(!pymod) { throw std::runtime_error("Error loading module pylab!"); } - - s_python_function_show = PyObject_GetAttrString(pymod, "show"); - s_python_function_figure = PyObject_GetAttrString(pymod, "figure"); - s_python_function_plot = PyObject_GetAttrString(pymod, "plot"); - s_python_function_legend = PyObject_GetAttrString(pymod, "legend"); - s_python_function_ylim = PyObject_GetAttrString(pymod, "ylim"); - s_python_function_title = PyObject_GetAttrString(pymod, "title"); - s_python_function_axis = PyObject_GetAttrString(pymod, "axis"); - s_python_function_xlabel = PyObject_GetAttrString(pymod, "xlabel"); - s_python_function_ylabel = PyObject_GetAttrString(pymod, "ylabel"); - s_python_function_grid = PyObject_GetAttrString(pymod, "grid"); - s_python_function_xlim = PyObject_GetAttrString(pymod, "xlim"); - - s_python_function_save = PyObject_GetAttrString(pylabmod, "savefig"); - - if(!s_python_function_show - || !s_python_function_save - || !s_python_function_figure - || !s_python_function_plot - || !s_python_function_legend - || !s_python_function_xlim - || !s_python_function_ylim - || !s_python_function_title - || !s_python_function_axis - || !s_python_function_xlabel - || !s_python_function_ylabel - || !s_python_function_grid - ) - { throw std::runtime_error("Couldnt find required function!"); } - - if(!PyFunction_Check(s_python_function_show) - || !PyFunction_Check(s_python_function_save) - || !PyFunction_Check(s_python_function_figure) - || !PyFunction_Check(s_python_function_plot) - || !PyFunction_Check(s_python_function_legend) - || !PyFunction_Check(s_python_function_xlim) - || !PyFunction_Check(s_python_function_ylim) - || !PyFunction_Check(s_python_function_title) - || !PyFunction_Check(s_python_function_axis) - || !PyFunction_Check(s_python_function_xlabel) - || !PyFunction_Check(s_python_function_ylabel) - || !PyFunction_Check(s_python_function_grid) - ) - { throw std::runtime_error("Python object is unexpectedly not a PyFunction."); } - - s_python_empty_tuple = PyTuple_New(0); - } - - ~_interpreter() { - Py_Finalize(); - } - }; - } - - - - template - bool plot(const std::vector &x, const std::vector &y, const std::map& keywords) - { - assert(x.size() == y.size()); - - // using python lists - PyObject* xlist = PyList_New(x.size()); - PyObject* ylist = PyList_New(y.size()); - - for(size_t i = 0; i < x.size(); ++i) { - PyList_SetItem(xlist, i, PyFloat_FromDouble(x.at(i))); - PyList_SetItem(ylist, i, PyFloat_FromDouble(y.at(i))); - } - - // construct positional args - PyObject* args = PyTuple_New(2); - PyTuple_SetItem(args, 0, xlist); - PyTuple_SetItem(args, 1, ylist); - - Py_DECREF(xlist); - Py_DECREF(ylist); - - // construct keyword args - PyObject* kwargs = PyDict_New(); - for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) - { - PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); - } - - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, args, kwargs); - - Py_DECREF(args); - Py_DECREF(kwargs); - if(res) Py_DECREF(res); - - return res; - } - - - template - bool plot(const std::vector& x, const std::vector& y, const std::string& s = "") - { - assert(x.size() == y.size()); - - PyObject* xlist = PyList_New(x.size()); - PyObject* ylist = PyList_New(y.size()); - PyObject* pystring = PyString_FromString(s.c_str()); - - for(size_t i = 0; i < x.size(); ++i) { - PyList_SetItem(xlist, i, PyFloat_FromDouble(x.at(i))); - PyList_SetItem(ylist, i, PyFloat_FromDouble(y.at(i))); - } - - PyObject* plot_args = PyTuple_New(3); - PyTuple_SetItem(plot_args, 0, xlist); - PyTuple_SetItem(plot_args, 1, ylist); - PyTuple_SetItem(plot_args, 2, pystring); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args); - - Py_DECREF(xlist); - Py_DECREF(ylist); - Py_DECREF(plot_args); - if(res) Py_DECREF(res); - - return res; - } - - - template - bool named_plot(const std::string& name, const std::vector& x, const std::vector& y, const std::string& format = "") { - PyObject* kwargs = PyDict_New(); - PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); - - PyObject* xlist = PyList_New(x.size()); - PyObject* ylist = PyList_New(y.size()); - PyObject* pystring = PyString_FromString(format.c_str()); - - for(size_t i = 0; i < x.size(); ++i) { - PyList_SetItem(xlist, i, PyFloat_FromDouble(x.at(i))); - PyList_SetItem(ylist, i, PyFloat_FromDouble(y.at(i))); - } - - PyObject* plot_args = PyTuple_New(3); - PyTuple_SetItem(plot_args, 0, xlist); - PyTuple_SetItem(plot_args, 1, ylist); - PyTuple_SetItem(plot_args, 2, pystring); + for (std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } - PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs); + PyObject *plot_args = PyTuple_New(2); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); - Py_DECREF(kwargs); - Py_DECREF(xlist); - Py_DECREF(ylist); - Py_DECREF(plot_args); - if(res) Py_DECREF(res); + PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_barh, plot_args, kwargs); - return res; - } + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); - template - bool plot(const std::vector& y, const std::string& format = "") - { - std::vector x(y.size()); - for(size_t i=0; i& keywords = {}) +{ + detail::_interpreter::get(); + + PyObject* kwargs = PyDict_New(); + for (std::map::const_iterator it = + keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyFloat_FromDouble(it->second)); + } + + + PyObject* plot_args = PyTuple_New(0); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_subplots_adjust, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +template< typename Numeric> +bool named_hist(std::string label,const std::vector& y, long bins=10, std::string color="b", double alpha=1.0) +{ + detail::_interpreter::get(); + + PyObject* yarray = detail::get_array(y); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(label.c_str())); + PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins)); + PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str())); + PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha)); + + + PyObject* plot_args = PyTuple_New(1); + PyTuple_SetItem(plot_args, 0, yarray); + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs); - inline void legend() { - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_legend, detail::_interpreter::get().s_python_empty_tuple); - if(!res) throw std::runtime_error("Call to legend() failed."); + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); - Py_DECREF(res); - } + return res; +} + +template +bool plot(const std::vector& x, const std::vector& y, const std::string& s = "") +{ + assert(x.size() == y.size()); + + detail::_interpreter::get(); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); - template - void ylim(Numeric left, Numeric right) - { - PyObject* list = PyList_New(2); - PyList_SetItem(list, 0, PyFloat_FromDouble(left)); - PyList_SetItem(list, 1, PyFloat_FromDouble(right)); + PyObject* pystring = PyString_FromString(s.c_str()); - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, list); + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args); - if(!res) throw std::runtime_error("Call to ylim() failed."); + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args); - Py_DECREF(list); - Py_DECREF(args); - Py_DECREF(res); - } + Py_DECREF(plot_args); + if(res) Py_DECREF(res); + + return res; +} + +template +bool contour(const std::vector& x, const std::vector& y, + const std::vector& z, + const std::map& keywords = {}) { + assert(x.size() == y.size() && x.size() == z.size()); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + PyObject* zarray = detail::get_array(z); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, zarray); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for (std::map::const_iterator it = keywords.begin(); + it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = + PyObject_Call(detail::_interpreter::get().s_python_function_contour, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) + Py_DECREF(res); + + return res; +} - template - void xlim(Numeric left, Numeric right) - { - PyObject* list = PyList_New(2); - PyList_SetItem(list, 0, PyFloat_FromDouble(left)); - PyList_SetItem(list, 1, PyFloat_FromDouble(right)); - - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, list); +template +bool quiver(const std::vector& x, const std::vector& y, const std::vector& u, const std::vector& w, const std::map& keywords = {}) +{ + assert(x.size() == y.size() && x.size() == u.size() && u.size() == w.size()); - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args); - if(!res) throw std::runtime_error("Call to xlim() failed."); + detail::_interpreter::get(); - Py_DECREF(list); - Py_DECREF(args); - Py_DECREF(res); - } + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + PyObject* uarray = detail::get_array(u); + PyObject* warray = detail::get_array(w); + PyObject* plot_args = PyTuple_New(4); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, uarray); + PyTuple_SetItem(plot_args, 3, warray); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call( + detail::_interpreter::get().s_python_function_quiver, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) + Py_DECREF(res); + + return res; +} + +template +bool quiver(const std::vector& x, const std::vector& y, const std::vector& z, const std::vector& u, const std::vector& w, const std::vector& v, const std::map& keywords = {}) +{ + //set up 3d axes stuff + static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; + if (!mpl_toolkitsmod) { + detail::_interpreter::get(); + + PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); + PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); + if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } + + mpl_toolkitsmod = PyImport_Import(mpl_toolkits); + Py_DECREF(mpl_toolkits); + if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } + + axis3dmod = PyImport_Import(axis3d); + Py_DECREF(axis3d); + if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } + } + + //assert sizes match up + assert(x.size() == y.size() && x.size() == u.size() && u.size() == w.size() && x.size() == z.size() && x.size() == v.size() && u.size() == v.size()); + + //set up parameters + detail::_interpreter::get(); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + PyObject* zarray = detail::get_array(z); + PyObject* uarray = detail::get_array(u); + PyObject* warray = detail::get_array(w); + PyObject* varray = detail::get_array(v); + + PyObject* plot_args = PyTuple_New(6); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, zarray); + PyTuple_SetItem(plot_args, 3, uarray); + PyTuple_SetItem(plot_args, 4, warray); + PyTuple_SetItem(plot_args, 5, varray); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + //get figure gca to enable 3d projection + PyObject *fig = + PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, + detail::_interpreter::get().s_python_empty_tuple); + if (!fig) throw std::runtime_error("Call to figure() failed."); + + PyObject *gca_kwargs = PyDict_New(); + PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d")); + + PyObject *gca = PyObject_GetAttrString(fig, "gca"); + if (!gca) throw std::runtime_error("No gca"); + Py_INCREF(gca); + PyObject *axis = PyObject_Call( + gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs); + + if (!axis) throw std::runtime_error("No axis"); + Py_INCREF(axis); + Py_DECREF(gca); + Py_DECREF(gca_kwargs); - inline void title(const std::string &titlestr) - { - PyObject* pytitlestr = PyString_FromString(titlestr.c_str()); - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, pytitlestr); + //plot our boys bravely, plot them strongly, plot them with a wink and clap + PyObject *plot3 = PyObject_GetAttrString(axis, "quiver"); + if (!plot3) throw std::runtime_error("No 3D line plot"); + Py_INCREF(plot3); + PyObject* res = PyObject_Call( + plot3, plot_args, kwargs); + if (!res) throw std::runtime_error("Failed 3D plot"); + Py_DECREF(plot3); + Py_DECREF(axis); + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) + Py_DECREF(res); + + return res; +} + +template +bool stem(const std::vector& x, const std::vector& y, const std::string& s = "") +{ + assert(x.size() == y.size()); - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_title, args); - if(!res) throw std::runtime_error("Call to title() failed."); + detail::_interpreter::get(); - // if PyDeCRFF, the function doesn't work on Mac OS - } + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); - inline void axis(const std::string &axisstr) - { - PyObject* str = PyString_FromString(axisstr.c_str()); - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, str); + PyObject* pystring = PyString_FromString(s.c_str()); - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_axis, args); - if(!res) throw std::runtime_error("Call to title() failed."); + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); - // if PyDeCRFF, the function doesn't work on Mac OS - } + PyObject* res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_stem, plot_args); + Py_DECREF(plot_args); + if (res) + Py_DECREF(res); + + return res; +} +template +bool semilogx(const std::vector& x, const std::vector& y, const std::string& s = "") +{ + assert(x.size() == y.size()); - inline void xlabel(const std::string &str) - { - PyObject* pystr = PyString_FromString(str.c_str()); - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, pystr); + detail::_interpreter::get(); - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlabel, args); - if(!res) throw std::runtime_error("Call to xlabel() failed."); + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); - // if PyDeCRFF, the function doesn't work on Mac OS - } + PyObject* pystring = PyString_FromString(s.c_str()); - inline void ylabel(const std::string &str) - { - PyObject* pystr = PyString_FromString(str.c_str()); - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, pystr); + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylabel, args); - if(!res) throw std::runtime_error("Call to ylabel() failed."); + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_semilogx, plot_args); - // if PyDeCRFF, the function doesn't work on Mac OS - } + Py_DECREF(plot_args); + if(res) Py_DECREF(res); - inline void grid(bool flag) - { - PyObject* pyflag = flag ? Py_True : Py_False; + return res; +} - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, pyflag); +template +bool semilogy(const std::vector& x, const std::vector& y, const std::string& s = "") +{ + assert(x.size() == y.size()); - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_grid, args); - if(!res) throw std::runtime_error("Call to grid() failed."); + detail::_interpreter::get(); - // if PyDeCRFF, the function doesn't work on Mac OS - } + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + PyObject* pystring = PyString_FromString(s.c_str()); + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); - inline void show() - { - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_show, detail::_interpreter::get().s_python_empty_tuple); - if(!res) throw std::runtime_error("Call to show() failed."); + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_semilogy, plot_args); - Py_DECREF(res); - } + Py_DECREF(plot_args); + if(res) Py_DECREF(res); - inline void save(const std::string& filename) - { - PyObject* pyfilename = PyString_FromString(filename.c_str()); + return res; +} - PyObject* args = PyTuple_New(1); - PyTuple_SetItem(args, 0, pyfilename); +template +bool loglog(const std::vector& x, const std::vector& y, const std::string& s = "") +{ + assert(x.size() == y.size()); - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_save, args); - if(!res) throw std::runtime_error("Call to save() failed."); + detail::_interpreter::get(); - Py_DECREF(pyfilename); - Py_DECREF(args); - Py_DECREF(res); - } + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); -#if __cplusplus > 199711L - // C++11-exclusive content starts here (variadic plot() and initializer list support) + PyObject* pystring = PyString_FromString(s.c_str()); - namespace detail { - template - using is_function = typename std::is_function>>::type; + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); - template - struct is_callable_impl; + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_loglog, plot_args); - template - struct is_callable_impl - { - typedef is_function type; - }; // a non-object is callable iff it is a function + Py_DECREF(plot_args); + if(res) Py_DECREF(res); - template - struct is_callable_impl - { - struct Fallback { void operator()(); }; - struct Derived : T, Fallback { }; - - template struct Check; - - template - static std::true_type test( ... ); // use a variadic function to make sure (1) it accepts everything and (2) its always the worst match - - template - static std::false_type test( Check* ); - - public: - typedef decltype(test(nullptr)) type; - typedef decltype(&Fallback::operator()) dtype; - static constexpr bool value = type::value; - }; // an object is callable iff it defines operator() - - template - struct is_callable - { - // dispatch to is_callable_impl or is_callable_impl depending on whether T is of class type or not - typedef typename is_callable_impl::value, T>::type type; - }; - - template - struct plot_impl { }; - - template<> - struct plot_impl - { - template - bool operator()(const IterableX& x, const IterableY& y, const std::string& format) - { - // 2-phase lookup for distance, begin, end - using std::distance; - using std::begin; - using std::end; - - auto xs = distance(begin(x), end(x)); - auto ys = distance(begin(y), end(y)); - assert(xs == ys && "x and y data must have the same number of elements!"); - - PyObject* xlist = PyList_New(xs); - PyObject* ylist = PyList_New(ys); - PyObject* pystring = PyString_FromString(format.c_str()); - - auto itx = begin(x), ity = begin(y); - for(size_t i = 0; i < xs; ++i) { - PyList_SetItem(xlist, i, PyFloat_FromDouble(*itx++)); - PyList_SetItem(ylist, i, PyFloat_FromDouble(*ity++)); - } - - PyObject* plot_args = PyTuple_New(3); - PyTuple_SetItem(plot_args, 0, xlist); - PyTuple_SetItem(plot_args, 1, ylist); - PyTuple_SetItem(plot_args, 2, pystring); - - PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args); - - Py_DECREF(xlist); - Py_DECREF(ylist); - Py_DECREF(plot_args); - if(res) Py_DECREF(res); - - return res; - } - }; - - template<> - struct plot_impl - { - template - bool operator()(const Iterable& ticks, const Callable& f, const std::string& format) - { - //std::cout << "Callable impl called" << std::endl; - - if(begin(ticks) == end(ticks)) return true; - - // We could use additional meta-programming to deduce the correct element type of y, - // but all values have to be convertible to double anyways - std::vector y; - for(auto x : ticks) y.push_back(f(x)); - return plot_impl()(ticks,y,format); - } - }; - } - - // recursion stop for the above - template - bool plot() { return true; } - - template - bool plot(const A& a, const B& b, const std::string& format, Args... args) - { - return detail::plot_impl::type>()(a,b,format) && plot(args...); - } - - /* - * This group of plot() functions is needed to support initializer lists, i.e. calling - * plot( {1,2,3,4} ) - */ - bool plot(const std::vector& x, const std::vector& y, const std::string& format = "") { - return plot(x,y,format); - } - - bool plot(const std::vector& y, const std::string& format = "") { - return plot(y,format); - } - - bool plot(const std::vector& x, const std::vector& y, const std::map& keywords) { - return plot(x,y,keywords); - } - - bool named_plot(const std::string& name, const std::vector& x, const std::vector& y, const std::string& format = "") { - return named_plot(name,x,y,format); - } + return res; +} -#endif +template +bool errorbar(const std::vector &x, const std::vector &y, const std::vector &yerr, const std::map &keywords = {}) +{ + assert(x.size() == y.size()); + + detail::_interpreter::get(); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + PyObject* yerrarray = detail::get_array(yerr); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyDict_SetItemString(kwargs, "yerr", yerrarray); + + PyObject *plot_args = PyTuple_New(2); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + + PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_errorbar, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + + if (res) + Py_DECREF(res); + else + throw std::runtime_error("Call to errorbar() failed."); + + return res; +} + +template +bool named_plot(const std::string& name, const std::vector& y, const std::string& format = "") +{ + detail::_interpreter::get(); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(2); + + PyTuple_SetItem(plot_args, 0, yarray); + PyTuple_SetItem(plot_args, 1, pystring); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) Py_DECREF(res); + + return res; +} + +template +bool named_plot(const std::string& name, const std::vector& x, const std::vector& y, const std::string& format = "") +{ + detail::_interpreter::get(); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) Py_DECREF(res); + + return res; +} + +template +bool named_semilogx(const std::string& name, const std::vector& x, const std::vector& y, const std::string& format = "") +{ + detail::_interpreter::get(); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_semilogx, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) Py_DECREF(res); + + return res; +} + +template +bool named_semilogy(const std::string& name, const std::vector& x, const std::vector& y, const std::string& format = "") +{ + detail::_interpreter::get(); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_semilogy, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) Py_DECREF(res); + + return res; +} + +template +bool named_loglog(const std::string& name, const std::vector& x, const std::vector& y, const std::string& format = "") +{ + detail::_interpreter::get(); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_loglog, plot_args, kwargs); + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) Py_DECREF(res); + return res; +} + +template +bool plot(const std::vector& y, const std::string& format = "") +{ + std::vector x(y.size()); + for(size_t i=0; i +bool plot(const std::vector& y, const std::map& keywords) +{ + std::vector x(y.size()); + for(size_t i=0; i +bool stem(const std::vector& y, const std::string& format = "") +{ + std::vector x(y.size()); + for (size_t i = 0; i < x.size(); ++i) x.at(i) = i; + return stem(x, y, format); +} + +template +void text(Numeric x, Numeric y, const std::string& s = "") +{ + detail::_interpreter::get(); + + PyObject* args = PyTuple_New(3); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(x)); + PyTuple_SetItem(args, 1, PyFloat_FromDouble(y)); + PyTuple_SetItem(args, 2, PyString_FromString(s.c_str())); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_text, args); + if(!res) throw std::runtime_error("Call to text() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +inline void colorbar(PyObject* mappable = NULL, const std::map& keywords = {}) +{ + if (mappable == NULL) + throw std::runtime_error("Must call colorbar with PyObject* returned from an image, contour, surface, etc."); + + detail::_interpreter::get(); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, mappable); + + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyFloat_FromDouble(it->second)); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_colorbar, args, kwargs); + if(!res) throw std::runtime_error("Call to colorbar() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + + +inline long figure(long number = -1) +{ + detail::_interpreter::get(); + + PyObject *res; + if (number == -1) + res = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, detail::_interpreter::get().s_python_empty_tuple); + else { + assert(number > 0); + + // Make sure interpreter is initialised + detail::_interpreter::get(); + + PyObject *args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyLong_FromLong(number)); + res = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, args); + Py_DECREF(args); + } + + if(!res) throw std::runtime_error("Call to figure() failed."); + + PyObject* num = PyObject_GetAttrString(res, "number"); + if (!num) throw std::runtime_error("Could not get number attribute of figure object"); + const long figureNumber = PyLong_AsLong(num); + + Py_DECREF(num); + Py_DECREF(res); + + return figureNumber; +} + +inline bool fignum_exists(long number) +{ + detail::_interpreter::get(); + + PyObject *args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyLong_FromLong(number)); + PyObject *res = PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, args); + if(!res) throw std::runtime_error("Call to fignum_exists() failed."); + + bool ret = PyObject_IsTrue(res); + Py_DECREF(res); + Py_DECREF(args); + + return ret; +} + +inline void figure_size(size_t w, size_t h) +{ + detail::_interpreter::get(); + + const size_t dpi = 100; + PyObject* size = PyTuple_New(2); + PyTuple_SetItem(size, 0, PyFloat_FromDouble((double)w / dpi)); + PyTuple_SetItem(size, 1, PyFloat_FromDouble((double)h / dpi)); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "figsize", size); + PyDict_SetItemString(kwargs, "dpi", PyLong_FromSize_t(dpi)); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_figure, + detail::_interpreter::get().s_python_empty_tuple, kwargs); + + Py_DECREF(kwargs); + + if(!res) throw std::runtime_error("Call to figure_size() failed."); + Py_DECREF(res); +} + +inline void legend() +{ + detail::_interpreter::get(); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_legend, detail::_interpreter::get().s_python_empty_tuple); + if(!res) throw std::runtime_error("Call to legend() failed."); + + Py_DECREF(res); +} + +inline void legend(const std::map& keywords) +{ + detail::_interpreter::get(); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_legend, detail::_interpreter::get().s_python_empty_tuple, kwargs); + if(!res) throw std::runtime_error("Call to legend() failed."); + + Py_DECREF(kwargs); + Py_DECREF(res); +} + +template +inline void set_aspect(Numeric ratio) +{ + detail::_interpreter::get(); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(ratio)); + PyObject* kwargs = PyDict_New(); + + PyObject *ax = + PyObject_CallObject(detail::_interpreter::get().s_python_function_gca, + detail::_interpreter::get().s_python_empty_tuple); + if (!ax) throw std::runtime_error("Call to gca() failed."); + Py_INCREF(ax); + + PyObject *set_aspect = PyObject_GetAttrString(ax, "set_aspect"); + if (!set_aspect) throw std::runtime_error("Attribute set_aspect not found."); + Py_INCREF(set_aspect); + + PyObject *res = PyObject_Call(set_aspect, args, kwargs); + if (!res) throw std::runtime_error("Call to set_aspect() failed."); + Py_DECREF(set_aspect); + + Py_DECREF(ax); + Py_DECREF(args); + Py_DECREF(kwargs); +} + +inline void set_aspect_equal() +{ + // expect ratio == "equal". Leaving error handling to matplotlib. + detail::_interpreter::get(); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyString_FromString("equal")); + PyObject* kwargs = PyDict_New(); + + PyObject *ax = + PyObject_CallObject(detail::_interpreter::get().s_python_function_gca, + detail::_interpreter::get().s_python_empty_tuple); + if (!ax) throw std::runtime_error("Call to gca() failed."); + Py_INCREF(ax); + + PyObject *set_aspect = PyObject_GetAttrString(ax, "set_aspect"); + if (!set_aspect) throw std::runtime_error("Attribute set_aspect not found."); + Py_INCREF(set_aspect); + + PyObject *res = PyObject_Call(set_aspect, args, kwargs); + if (!res) throw std::runtime_error("Call to set_aspect() failed."); + Py_DECREF(set_aspect); + + Py_DECREF(ax); + Py_DECREF(args); + Py_DECREF(kwargs); +} + +template +void ylim(Numeric left, Numeric right) +{ + detail::_interpreter::get(); + + PyObject* list = PyList_New(2); + PyList_SetItem(list, 0, PyFloat_FromDouble(left)); + PyList_SetItem(list, 1, PyFloat_FromDouble(right)); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, list); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args); + if(!res) throw std::runtime_error("Call to ylim() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +template +void xlim(Numeric left, Numeric right) +{ + detail::_interpreter::get(); + + PyObject* list = PyList_New(2); + PyList_SetItem(list, 0, PyFloat_FromDouble(left)); + PyList_SetItem(list, 1, PyFloat_FromDouble(right)); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, list); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args); + if(!res) throw std::runtime_error("Call to xlim() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + + +inline std::array xlim() +{ + PyObject* args = PyTuple_New(0); + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args); + + if(!res) throw std::runtime_error("Call to xlim() failed."); + + Py_DECREF(res); + + PyObject* left = PyTuple_GetItem(res,0); + PyObject* right = PyTuple_GetItem(res,1); + return { PyFloat_AsDouble(left), PyFloat_AsDouble(right) }; +} + + +inline std::array ylim() +{ + PyObject* args = PyTuple_New(0); + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args); + + if(!res) throw std::runtime_error("Call to ylim() failed."); + + Py_DECREF(res); + + PyObject* left = PyTuple_GetItem(res,0); + PyObject* right = PyTuple_GetItem(res,1); + return { PyFloat_AsDouble(left), PyFloat_AsDouble(right) }; +} + +template +inline void xticks(const std::vector &ticks, const std::vector &labels = {}, const std::map& keywords = {}) +{ + assert(labels.size() == 0 || ticks.size() == labels.size()); + + detail::_interpreter::get(); + + // using numpy array + PyObject* ticksarray = detail::get_array(ticks); + + PyObject* args; + if(labels.size() == 0) { + // construct positional args + args = PyTuple_New(1); + PyTuple_SetItem(args, 0, ticksarray); + } else { + // make tuple of tick labels + PyObject* labelstuple = PyTuple_New(labels.size()); + for (size_t i = 0; i < labels.size(); i++) + PyTuple_SetItem(labelstuple, i, PyUnicode_FromString(labels[i].c_str())); + + // construct positional args + args = PyTuple_New(2); + PyTuple_SetItem(args, 0, ticksarray); + PyTuple_SetItem(args, 1, labelstuple); + } + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_xticks, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if(!res) throw std::runtime_error("Call to xticks() failed"); + + Py_DECREF(res); +} + +template +inline void xticks(const std::vector &ticks, const std::map& keywords) +{ + xticks(ticks, {}, keywords); +} + +template +inline void yticks(const std::vector &ticks, const std::vector &labels = {}, const std::map& keywords = {}) +{ + assert(labels.size() == 0 || ticks.size() == labels.size()); + + detail::_interpreter::get(); + + // using numpy array + PyObject* ticksarray = detail::get_array(ticks); + + PyObject* args; + if(labels.size() == 0) { + // construct positional args + args = PyTuple_New(1); + PyTuple_SetItem(args, 0, ticksarray); + } else { + // make tuple of tick labels + PyObject* labelstuple = PyTuple_New(labels.size()); + for (size_t i = 0; i < labels.size(); i++) + PyTuple_SetItem(labelstuple, i, PyUnicode_FromString(labels[i].c_str())); + + // construct positional args + args = PyTuple_New(2); + PyTuple_SetItem(args, 0, ticksarray); + PyTuple_SetItem(args, 1, labelstuple); + } + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_yticks, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if(!res) throw std::runtime_error("Call to yticks() failed"); + + Py_DECREF(res); +} + +template +inline void yticks(const std::vector &ticks, const std::map& keywords) +{ + yticks(ticks, {}, keywords); +} + +template inline void margins(Numeric margin) +{ + // construct positional args + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(margin)); + + PyObject* res = + PyObject_CallObject(detail::_interpreter::get().s_python_function_margins, args); + if (!res) + throw std::runtime_error("Call to margins() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +template inline void margins(Numeric margin_x, Numeric margin_y) +{ + // construct positional args + PyObject* args = PyTuple_New(2); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(margin_x)); + PyTuple_SetItem(args, 1, PyFloat_FromDouble(margin_y)); + + PyObject* res = + PyObject_CallObject(detail::_interpreter::get().s_python_function_margins, args); + if (!res) + throw std::runtime_error("Call to margins() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + + +inline void tick_params(const std::map& keywords, const std::string axis = "both") +{ + detail::_interpreter::get(); + + // construct positional args + PyObject* args; + args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyString_FromString(axis.c_str())); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for (std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_tick_params, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if (!res) throw std::runtime_error("Call to tick_params() failed"); + + Py_DECREF(res); +} + +inline void subplot(long nrows, long ncols, long plot_number) +{ + detail::_interpreter::get(); + + // construct positional args + PyObject* args = PyTuple_New(3); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(nrows)); + PyTuple_SetItem(args, 1, PyFloat_FromDouble(ncols)); + PyTuple_SetItem(args, 2, PyFloat_FromDouble(plot_number)); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_subplot, args); + if(!res) throw std::runtime_error("Call to subplot() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +inline void subplot2grid(long nrows, long ncols, long rowid=0, long colid=0, long rowspan=1, long colspan=1) +{ + detail::_interpreter::get(); + + PyObject* shape = PyTuple_New(2); + PyTuple_SetItem(shape, 0, PyLong_FromLong(nrows)); + PyTuple_SetItem(shape, 1, PyLong_FromLong(ncols)); + PyObject* loc = PyTuple_New(2); + PyTuple_SetItem(loc, 0, PyLong_FromLong(rowid)); + PyTuple_SetItem(loc, 1, PyLong_FromLong(colid)); + PyObject* args = PyTuple_New(4); + PyTuple_SetItem(args, 0, shape); + PyTuple_SetItem(args, 1, loc); + PyTuple_SetItem(args, 2, PyLong_FromLong(rowspan)); + PyTuple_SetItem(args, 3, PyLong_FromLong(colspan)); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_subplot2grid, args); + if(!res) throw std::runtime_error("Call to subplot2grid() failed."); + + Py_DECREF(shape); + Py_DECREF(loc); + Py_DECREF(args); + Py_DECREF(res); +} + +inline void title(const std::string &titlestr, const std::map &keywords = {}) +{ + detail::_interpreter::get(); + + PyObject* pytitlestr = PyString_FromString(titlestr.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pytitlestr); + + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_title, args, kwargs); + if(!res) throw std::runtime_error("Call to title() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + +inline void suptitle(const std::string &suptitlestr, const std::map &keywords = {}) +{ + detail::_interpreter::get(); + + PyObject* pysuptitlestr = PyString_FromString(suptitlestr.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pysuptitlestr); + + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_suptitle, args, kwargs); + if(!res) throw std::runtime_error("Call to suptitle() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + +inline void axis(const std::string &axisstr) +{ + detail::_interpreter::get(); + + PyObject* str = PyString_FromString(axisstr.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, str); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_axis, args); + if(!res) throw std::runtime_error("Call to title() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +inline void axhline(double y, double xmin = 0., double xmax = 1., const std::map& keywords = std::map()) +{ + detail::_interpreter::get(); + + // construct positional args + PyObject* args = PyTuple_New(3); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(y)); + PyTuple_SetItem(args, 1, PyFloat_FromDouble(xmin)); + PyTuple_SetItem(args, 2, PyFloat_FromDouble(xmax)); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axhline, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if(res) Py_DECREF(res); +} + +inline void axvline(double x, double ymin = 0., double ymax = 1., const std::map& keywords = std::map()) +{ + detail::_interpreter::get(); + + // construct positional args + PyObject* args = PyTuple_New(3); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(x)); + PyTuple_SetItem(args, 1, PyFloat_FromDouble(ymin)); + PyTuple_SetItem(args, 2, PyFloat_FromDouble(ymax)); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axvline, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if(res) Py_DECREF(res); +} + +inline void axvspan(double xmin, double xmax, double ymin = 0., double ymax = 1., const std::map& keywords = std::map()) +{ + // construct positional args + PyObject* args = PyTuple_New(4); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(xmin)); + PyTuple_SetItem(args, 1, PyFloat_FromDouble(xmax)); + PyTuple_SetItem(args, 2, PyFloat_FromDouble(ymin)); + PyTuple_SetItem(args, 3, PyFloat_FromDouble(ymax)); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + if (it->first == "linewidth" || it->first == "alpha") { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyFloat_FromDouble(std::stod(it->second))); + } else { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axvspan, args, kwargs); + Py_DECREF(args); + Py_DECREF(kwargs); + + if(res) Py_DECREF(res); +} + +inline void xlabel(const std::string &str, const std::map &keywords = {}) +{ + detail::_interpreter::get(); + + PyObject* pystr = PyString_FromString(str.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pystr); + + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_xlabel, args, kwargs); + if(!res) throw std::runtime_error("Call to xlabel() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + +inline void ylabel(const std::string &str, const std::map& keywords = {}) +{ + detail::_interpreter::get(); + + PyObject* pystr = PyString_FromString(str.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pystr); + + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_ylabel, args, kwargs); + if(!res) throw std::runtime_error("Call to ylabel() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + +inline void set_zlabel(const std::string &str, const std::map& keywords = {}) +{ + detail::_interpreter::get(); + + // Same as with plot_surface: We lazily load the modules here the first time + // this function is called because I'm not sure that we can assume "matplotlib + // installed" implies "mpl_toolkits installed" on all platforms, and we don't + // want to require it for people who don't need 3d plots. + static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; + if (!mpl_toolkitsmod) { + PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); + PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); + if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } + + mpl_toolkitsmod = PyImport_Import(mpl_toolkits); + Py_DECREF(mpl_toolkits); + if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } + + axis3dmod = PyImport_Import(axis3d); + Py_DECREF(axis3d); + if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } + } + + PyObject* pystr = PyString_FromString(str.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pystr); + + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject *ax = + PyObject_CallObject(detail::_interpreter::get().s_python_function_gca, + detail::_interpreter::get().s_python_empty_tuple); + if (!ax) throw std::runtime_error("Call to gca() failed."); + Py_INCREF(ax); + + PyObject *zlabel = PyObject_GetAttrString(ax, "set_zlabel"); + if (!zlabel) throw std::runtime_error("Attribute set_zlabel not found."); + Py_INCREF(zlabel); + + PyObject *res = PyObject_Call(zlabel, args, kwargs); + if (!res) throw std::runtime_error("Call to set_zlabel() failed."); + Py_DECREF(zlabel); + + Py_DECREF(ax); + Py_DECREF(args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); +} + +inline void grid(bool flag) +{ + detail::_interpreter::get(); + + PyObject* pyflag = flag ? Py_True : Py_False; + Py_INCREF(pyflag); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pyflag); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_grid, args); + if(!res) throw std::runtime_error("Call to grid() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +inline void show(const bool block = true) +{ + detail::_interpreter::get(); + + PyObject* res; + if(block) + { + res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_show, + detail::_interpreter::get().s_python_empty_tuple); + } + else + { + PyObject *kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "block", Py_False); + res = PyObject_Call( detail::_interpreter::get().s_python_function_show, detail::_interpreter::get().s_python_empty_tuple, kwargs); + Py_DECREF(kwargs); + } + + + if (!res) throw std::runtime_error("Call to show() failed."); + + Py_DECREF(res); +} + +inline void close() +{ + detail::_interpreter::get(); + + PyObject* res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_close, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) throw std::runtime_error("Call to close() failed."); + + Py_DECREF(res); +} + +inline void xkcd() { + detail::_interpreter::get(); + + PyObject* res; + PyObject *kwargs = PyDict_New(); + + res = PyObject_Call(detail::_interpreter::get().s_python_function_xkcd, + detail::_interpreter::get().s_python_empty_tuple, kwargs); + + Py_DECREF(kwargs); + + if (!res) + throw std::runtime_error("Call to show() failed."); + + Py_DECREF(res); +} + +inline void draw() +{ + detail::_interpreter::get(); + + PyObject* res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_draw, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) throw std::runtime_error("Call to draw() failed."); + + Py_DECREF(res); +} + +template +inline void pause(Numeric interval) +{ + detail::_interpreter::get(); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(interval)); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_pause, args); + if(!res) throw std::runtime_error("Call to pause() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +inline void save(const std::string& filename, const int dpi=0) +{ + detail::_interpreter::get(); + + PyObject* pyfilename = PyString_FromString(filename.c_str()); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pyfilename); + + PyObject* kwargs = PyDict_New(); + + if(dpi > 0) + { + PyDict_SetItemString(kwargs, "dpi", PyLong_FromLong(dpi)); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_save, args, kwargs); + if (!res) throw std::runtime_error("Call to save() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + +inline void rcparams(const std::map& keywords = {}) { + detail::_interpreter::get(); + PyObject* args = PyTuple_New(0); + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + if ("text.usetex" == it->first) + PyDict_SetItemString(kwargs, it->first.c_str(), PyLong_FromLong(std::stoi(it->second.c_str()))); + else PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject * update = PyObject_GetAttrString(detail::_interpreter::get().s_python_function_rcparams, "update"); + PyObject * res = PyObject_Call(update, args, kwargs); + if(!res) throw std::runtime_error("Call to rcParams.update() failed."); + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(update); + Py_DECREF(res); +} + +inline void clf() { + detail::_interpreter::get(); + + PyObject *res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_clf, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) throw std::runtime_error("Call to clf() failed."); + + Py_DECREF(res); +} + +inline void cla() { + detail::_interpreter::get(); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_cla, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) + throw std::runtime_error("Call to cla() failed."); + + Py_DECREF(res); +} + +inline void ion() { + detail::_interpreter::get(); + + PyObject *res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_ion, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) throw std::runtime_error("Call to ion() failed."); + + Py_DECREF(res); +} + +inline std::vector> ginput(const int numClicks = 1, const std::map& keywords = {}) +{ + detail::_interpreter::get(); + + PyObject *args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyLong_FromLong(numClicks)); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call( + detail::_interpreter::get().s_python_function_ginput, args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(args); + if (!res) throw std::runtime_error("Call to ginput() failed."); + + const size_t len = PyList_Size(res); + std::vector> out; + out.reserve(len); + for (size_t i = 0; i < len; i++) { + PyObject *current = PyList_GetItem(res, i); + std::array position; + position[0] = PyFloat_AsDouble(PyTuple_GetItem(current, 0)); + position[1] = PyFloat_AsDouble(PyTuple_GetItem(current, 1)); + out.push_back(position); + } + Py_DECREF(res); + + return out; +} + +// Actually, is there any reason not to call this automatically for every plot? +inline void tight_layout() { + detail::_interpreter::get(); + + PyObject *res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_tight_layout, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) throw std::runtime_error("Call to tight_layout() failed."); + + Py_DECREF(res); +} + +// Support for variadic plot() and initializer lists: + +namespace detail { + +template +using is_function = typename std::is_function>>::type; + +template +struct is_callable_impl; + +template +struct is_callable_impl +{ + typedef is_function type; +}; // a non-object is callable iff it is a function + +template +struct is_callable_impl +{ + struct Fallback { void operator()(); }; + struct Derived : T, Fallback { }; + + template struct Check; + + template + static std::true_type test( ... ); // use a variadic function to make sure (1) it accepts everything and (2) its always the worst match + + template + static std::false_type test( Check* ); + +public: + typedef decltype(test(nullptr)) type; + typedef decltype(&Fallback::operator()) dtype; + static constexpr bool value = type::value; +}; // an object is callable iff it defines operator() + +template +struct is_callable +{ + // dispatch to is_callable_impl or is_callable_impl depending on whether T is of class type or not + typedef typename is_callable_impl::value, T>::type type; +}; + +template +struct plot_impl { }; + +template<> +struct plot_impl +{ + template + bool operator()(const IterableX& x, const IterableY& y, const std::string& format) + { + detail::_interpreter::get(); + + // 2-phase lookup for distance, begin, end + using std::distance; + using std::begin; + using std::end; + + auto xs = distance(begin(x), end(x)); + auto ys = distance(begin(y), end(y)); + assert(xs == ys && "x and y data must have the same number of elements!"); + + PyObject* xlist = PyList_New(xs); + PyObject* ylist = PyList_New(ys); + PyObject* pystring = PyString_FromString(format.c_str()); + + auto itx = begin(x), ity = begin(y); + for(size_t i = 0; i < xs; ++i) { + PyList_SetItem(xlist, i, PyFloat_FromDouble(*itx++)); + PyList_SetItem(ylist, i, PyFloat_FromDouble(*ity++)); + } + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xlist); + PyTuple_SetItem(plot_args, 1, ylist); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args); + + Py_DECREF(plot_args); + if(res) Py_DECREF(res); + + return res; + } +}; + +template<> +struct plot_impl +{ + template + bool operator()(const Iterable& ticks, const Callable& f, const std::string& format) + { + if(begin(ticks) == end(ticks)) return true; + + // We could use additional meta-programming to deduce the correct element type of y, + // but all values have to be convertible to double anyways + std::vector y; + for(auto x : ticks) y.push_back(f(x)); + return plot_impl()(ticks,y,format); + } +}; + +} // end namespace detail + +// recursion stop for the above +template +bool plot() { return true; } + +template +bool plot(const A& a, const B& b, const std::string& format, Args... args) +{ + return detail::plot_impl::type>()(a,b,format) && plot(args...); } + +/* + * This group of plot() functions is needed to support initializer lists, i.e. calling + * plot( {1,2,3,4} ) + */ +inline bool plot(const std::vector& x, const std::vector& y, const std::string& format = "") { + return plot(x,y,format); +} + +inline bool plot(const std::vector& y, const std::string& format = "") { + return plot(y,format); +} + +inline bool plot(const std::vector& x, const std::vector& y, const std::map& keywords) { + return plot(x,y,keywords); +} + +/* + * This class allows dynamic plots, ie changing the plotted data without clearing and re-plotting + */ +class Plot +{ +public: + // default initialization with plot label, some data and format + template + Plot(const std::string& name, const std::vector& x, const std::vector& y, const std::string& format = "") { + detail::_interpreter::get(); + + assert(x.size() == y.size()); + + PyObject* kwargs = PyDict_New(); + if(name != "") + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + + if(res) + { + line= PyList_GetItem(res, 0); + + if(line) + set_data_fct = PyObject_GetAttrString(line,"set_data"); + else + Py_DECREF(line); + Py_DECREF(res); + } + } + + // shorter initialization with name or format only + // basically calls line, = plot([], []) + Plot(const std::string& name = "", const std::string& format = "") + : Plot(name, std::vector(), std::vector(), format) {} + + template + bool update(const std::vector& x, const std::vector& y) { + assert(x.size() == y.size()); + if(set_data_fct) + { + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* plot_args = PyTuple_New(2); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + + PyObject* res = PyObject_CallObject(set_data_fct, plot_args); + if (res) Py_DECREF(res); + return res; + } + return false; + } + + // clears the plot but keep it available + bool clear() { + return update(std::vector(), std::vector()); + } + + // definitely remove this line + void remove() { + if(line) + { + auto remove_fct = PyObject_GetAttrString(line,"remove"); + PyObject* args = PyTuple_New(0); + PyObject* res = PyObject_CallObject(remove_fct, args); + if (res) Py_DECREF(res); + } + decref(); + } + + ~Plot() { + decref(); + } +private: + + void decref() { + if(line) + Py_DECREF(line); + if(set_data_fct) + Py_DECREF(set_data_fct); + } + + + PyObject* line = nullptr; + PyObject* set_data_fct = nullptr; +}; + +} // end namespace matplotlibcpp