8000 MNT remove pre-dispatch and verbose from CalibratedClassifierCV (#18030) · simonamaggio/scikit-learn@5e010c4 · GitHub
[go: up one dir, main page]

Skip to content

Commit 5e010c4

Browse files
authored
MNT remove pre-dispatch and verbose from CalibratedClassifierCV (scikit-learn#18030)
1 parent b2a7d36 commit 5e010c4

File tree

1 file changed

+2
-30
lines changed

1 file changed

+2
-30
lines changed

sklearn/calibration.py

Lines changed: 2 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -127,30 +127,6 @@ class CalibratedClassifierCV(ClassifierMixin,
127127
128128
.. versionadded:: 0.24
129129
130-
pre_dispatch : int or str, default='2*n_jobs'
131-
Controls the number of jobs that get dispatched during parallel
132-
execution. Reducing this number can be useful to avoid an
133-
explosion of memory consumption when more jobs get dispatched
134-
than CPUs can process. This parameter can be:
135-
136-
- None, in which case all the jobs are immediately
137-
created and spawned. Use this for lightweight and
138-
fast-running jobs, to avoid delays due to on-demand
139-
spawning of the jobs
140-
141-
- An int, giving the exact number of total jobs that are
142-
spawned
143-
144-
- A str, giving an expression as a function of n_jobs,
145-
as in '2*n_jobs'
146-
147-
.. versionadded:: 0.24
148-
149-
verbose : int, default=0
150-
Controls the verbosity: the higher, the more messages.
151-
152-
.. versionadded:: 0.24
153-
154130
Attributes
155131
----------
156132
classes_ : ndarray of shape (n_classes,)
@@ -217,14 +193,11 @@ class CalibratedClassifierCV(ClassifierMixin,
217193
"""
218194
@_deprecate_positional_args
219195
def __init__(self, base_estimator=None, *, method='sigmoid',
220-
cv=None, n_jobs=None, pre_dispatch='2*n_jobs',
221-
verbose=0):
196+
cv=None, n_jobs=None):
222197
self.base_estimator = base_estimator
223198
self.method = method
224199
self.cv = cv
225200
self.n_jobs = n_jobs
226-
self.verbose = verbose
227-
self.pre_dispatch = pre_dispatch
228201

229202
def fit(self, X, y, sample_weight=None):
230203
"""Fit the calibrated model
@@ -304,8 +277,7 @@ def fit(self, X, y, sample_weight=None):
304277
"sample weights will only be used for the "
305278
"calibration itself." % estimator_name)
306279

307-
parallel = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
308-
pre_dispatch=self.pre_dispatch)
280+
parallel = Parallel(n_jobs=self.n_jobs)
309281

310282
self.calibrated_classifiers_ = parallel(delayed(
311283
_fit_calibrated_classifer)(clone(base_estimator),

0 commit comments

Comments
 (0)
0