@@ -127,30 +127,6 @@ class CalibratedClassifierCV(ClassifierMixin,
127
127
128
128
.. versionadded:: 0.24
129
129
130
- pre_dispatch : int or str, default='2*n_jobs'
131
- Controls the number of jobs that get dispatched during parallel
132
- execution. Reducing this number can be useful to avoid an
133
- explosion of memory consumption when more jobs get dispatched
134
- than CPUs can process. This parameter can be:
135
-
136
- - None, in which case all the jobs are immediately
137
- created and spawned. Use this for lightweight and
138
- fast-running jobs, to avoid delays due to on-demand
139
- spawning of the jobs
140
-
141
- - An int, giving the exact number of total jobs that are
142
- spawned
143
-
144
- - A str, giving an expression as a function of n_jobs,
145
- as in '2*n_jobs'
146
-
147
- .. versionadded:: 0.24
148
-
149
- verbose : int, default=0
150
- Controls the verbosity: the higher, the more messages.
151
-
152
- .. versionadded:: 0.24
153
-
154
130
Attributes
155
131
----------
156
132
classes_ : ndarray of shape (n_classes,)
@@ -217,14 +193,11 @@ class CalibratedClassifierCV(ClassifierMixin,
217
193
"""
218
194
@_deprecate_positional_args
219
195
def __init__ (self , base_estimator = None , * , method = 'sigmoid' ,
220
- cv = None , n_jobs = None , pre_dispatch = '2*n_jobs' ,
221
- verbose = 0 ):
196
+ cv = None , n_jobs = None ):
222
197
self .base_estimator = base_estimator
223
198
self .method = method
224
199
self .cv = cv
225
200
self .n_jobs = n_jobs
226
- self .verbose = verbose
227
- self .pre_dispatch = pre_dispatch
228
201
229
202
def fit (self , X , y , sample_weight = None ):
230
203
"""Fit the calibrated model
@@ -304,8 +277,7 @@ def fit(self, X, y, sample_weight=None):
304
277
"sample weights will only be used for the "
305
278
"calibration itself." % estimator_name )
306
279
307
- parallel = Parallel (n_jobs = self .n_jobs , verbose = self .verbose ,
308
- pre_dispatch = self .pre_dispatch )
280
+ parallel = Parallel (n_jobs = self .n_jobs )
309
281
310
282
self .calibrated_classifiers_ = parallel (delayed (
311
283
_fit_calibrated_classifer )(clone (base_estimator ),
0 commit comments