@@ -58,7 +58,7 @@ def test_toy_ard_object():
58
58
assert_array_almost_equal (clf .predict (test ), [1 , 3 , 4 ], 2 )
59
59
60
60
61
- def test_predict_std_bayesian ():
61
+ def test_return_std_bayesian ():
62
62
# generate some 1-d data with noise
63
63
d = 5
64
64
n_train = 50
@@ -68,6 +68,7 @@ def test_predict_std_bayesian():
68
68
w = np .array ([1.0 , 0.0 , 1.0 , - 1.0 , 0.0 ])
69
69
b = 1.0
70
70
def f (X ): return np .dot (X , w ) + b
71
+
71
72
def f_noise (X ): return f (X ) + np .random .randn (X .shape [0 ])* noise_mult
72
73
73
74
X = np .random .random ((n_train , d ))
@@ -77,11 +78,11 @@ def f_noise(X): return f(X) + np.random.randn(X.shape[0])*noise_mult
77
78
m1 = BayesianRidge ()
78
79
m1 .fit (X , y )
79
80
X_test = np .random .random ((n_test , d ))
80
- y_mean , y_std = m1 .predict (X_test , predict_std = True )
81
+ y_mean , y_std = m1 .predict (X_test , return_std = True )
81
82
assert_array_almost_equal (y_std , 0.1 , decimal = 1 )
82
83
83
84
84
- def test_predict_std_ard ():
85
+ def test_return_std_ard ():
85
86
# generate some 1-d data with noise
86
87
d = 5
87
88
n_train = 50
@@ -91,6 +92,7 @@ def test_predict_std_ard():
91
92
w = np .array ([1.0 , 0.0 , 1.0 , - 1.0 , 0.0 ])
92
93
b = 1.0
93
94
def f (X ): return np .dot (X , w ) + b
95
+
94
96
def f_noise (X ): return f (X ) + np .random .randn (X .shape [0 ])* noise_mult
95
97
96
98
X = np .random .random ((n_train , d ))
@@ -100,5 +102,5 @@ def f_noise(X): return f(X) + np.random.randn(X.shape[0])*noise_mult
100
102
m1 = ARDRegression ()
101
103
m1 .fit (X , y )
102
104
X_test = np .random .random ((n_test , d ))
103
- y_mean , y_std = m1 .predict (X_test , predict_std = True )
105
+ y_mean , y_std = m1 .predict (X_test , return_std = True )
104
106
assert_array_almost_equal (y_std , 0.1 , decimal = 1 )
0 commit comments