8000 Some more docstring fixes for mixture. · seckcoder/scikit-learn@c07f957 · GitHub
[go: up one dir, main page]

Skip to content

Commit c07f957

Browse files
author
Fabian Pedregosa
committed
Some more docstring fixes for mixture.
1 parent 898ab69 commit c07f957

File tree

1 file changed

+10
-10
lines changed

1 file changed

+10
-10
lines changed

scikits/learn/mixture.py

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -102,7 +102,7 @@ def sample_gaussian(mean, covar, cvtype='diag', n_samples=1):
102102
103103
Returns
104104
-------
105-
obs : array, shape (n_features, n)
105+
obs : array, shape (n_features, n_samples)
106106
Randomly generated sample
107107
"""
108108
n_dim = len(mean)
@@ -304,15 +304,15 @@ def eval(self, obs):
304304
305305
Parameters
306306
----------
307-
obs : array_l 10000 ike, shape (n, n_features)
307+
obs : array_like, shape (n_samples, n_features)
308308
List of n_features-dimensional data points. Each row
309309
corresponds to a single data point.
310310
311311
Returns
312312
-------
313-
logprob : array_like, shape (n,)
313+
logprob : array_like, shape (n_samples,)
314314
Log probabilities of each data point in `obs`
315-
posteriors: array_like, shape (n, n_states)
315+
posteriors: array_like, shape (n_samples, n_states)
316316
Posterior probabilities of each mixture component for each
317317
observation
318318
"""
@@ -328,13 +328,13 @@ def score(self, obs):
328328
329329
Parameters
330330
----------
331-
obs : array_like, shape (n, n_features)
331+
obs : array_like, shape (n_samples, n_features)
332332
List of n_features-dimensional data points. Each row
333333
corresponds to a single data point.
334334
335335
Returns
336336
-------
337-
logprob : array_like, shape (n,)
337+
logprob : array_like, shape (n_samples,)
338338
Log probabilities of each data point in `obs`
339339
"""
340340
logprob, posteriors = self.eval(obs)
@@ -351,9 +351,9 @@ def decode(self, obs):
351351
352352
Returns
353353
-------
354-
logprobs : array_like, shape (n,)
354+
logprobs : array_like, shape (n_samples,)
355355
Log probability of each point in `obs` under the model.
356-
components : array_like, shape (n,)
356+
components : array_like, shape (n_samples,)
357357
Index of the most likelihod mixture components for each observation
358358
"""
359359
logprob, posteriors = self.eval(obs)
@@ -368,7 +368,7 @@ def predict(self, X):
368368
369369
Returns
370370
-------
371-
C : array, shape = [n_samples]
371+
C : array, shape = (n_samples,)
372372
"""
373373
logprob, components = self.decode(X)
374374
return components
@@ -383,7 +383,7 @@ def predict_proba(self, X):
383383
384384
Returns
385385
-------
386-
T : array-like, shape = [n_samples, n_states]
386+
T : array-like, shape = (n_samples, n_states)
387387
Returns the probability of the sample for each Gaussian
388388
(state) in the model.
389389
"""

0 commit comments

Comments
 (0)
0