@@ -102,7 +102,7 @@ def sample_gaussian(mean, covar, cvtype='diag', n_samples=1):
102
102
103
103
Returns
104
104
-------
105
- obs : array, shape (n_features, n )
105
+ obs : array, shape (n_features, n_samples )
106
106
Randomly generated sample
107
107
"""
108
108
n_dim = len (mean )
@@ -304,15 +304,15 @@ def eval(self, obs):
304
304
305
305
Parameters
306
306
----------
307
- obs : array_l
10000
ike, shape (n , n_features)
307
+ obs : array_like, shape (n_samples , n_features)
308
308
List of n_features-dimensional data points. Each row
309
309
corresponds to a single data point.
310
310
311
311
Returns
312
312
-------
313
- logprob : array_like, shape (n ,)
313
+ logprob : array_like, shape (n_samples ,)
314
314
Log probabilities of each data point in `obs`
315
- posteriors: array_like, shape (n , n_states)
315
+ posteriors: array_like, shape (n_samples , n_states)
316
316
Posterior probabilities of each mixture component for each
317
317
observation
318
318
"""
@@ -328,13 +328,13 @@ def score(self, obs):
328
328
329
329
Parameters
330
330
----------
331
- obs : array_like, shape (n , n_features)
331
+ obs : array_like, shape (n_samples , n_features)
332
332
List of n_features-dimensional data points. Each row
333
333
corresponds to a single data point.
334
334
335
335
Returns
336
336
-------
337
- logprob : array_like, shape (n ,)
337
+ logprob : array_like, shape (n_samples ,)
338
338
Log probabilities of each data point in `obs`
339
339
"""
340
340
logprob , posteriors = self .eval (obs )
@@ -351,9 +351,9 @@ def decode(self, obs):
351
351
352
352
Returns
353
353
-------
354
- logprobs : array_like, shape (n ,)
354
+ logprobs : array_like, shape (n_samples ,)
355
355
Log probability of each point in `obs` under the model.
356
- components : array_like, shape (n ,)
356
+ components : array_like, shape (n_samples ,)
357
357
Index of the most likelihod mixture components for each observation
358
358
"""
359
359
logprob , posteriors = self .eval (obs )
@@ -368,7 +368,7 @@ def predict(self, X):
368
368
369
369
Returns
370
370
-------
371
- C : array, shape = [ n_samples]
371
+ C : array, shape = ( n_samples,)
372
372
"""
373
373
logprob , components = self .decode (X )
374
374
return components
@@ -383,7 +383,7 @@ def predict_proba(self, X):
383
383
384
384
Returns
385
385
-------
386
- T : array-like, shape = [ n_samples, n_states]
386
+ T : array-like, shape = ( n_samples, n_states)
387
387
Returns the probability of the sample for each Gaussian
388
388
(state) in the model.
389
389
"""
0 commit comments