@@ -102,7 +102,7 @@ def sample_gaussian(mean, covar, cvtype='diag', n_samples=1):
102102
103103 Returns
104104 -------
105- obs : array, shape (n_features, n )
105+ obs : array, shape (n_features, n_samples )
106106 Randomly generated sample
107107 """
108108 n_dim = len (mean )
@@ -304,15 +304,15 @@ def eval(self, obs):
304304
305305 Parameters
306306 ----------
307- obs : array_like, shape (n , n_features)
307+ obs : array_like, shape (n_samples , n_features)
308308 List of n_features-dimensional data points. Each row
309309 corresponds to a single data point.
310310
311311 Returns
312312 -------
313- logprob : array_like, shape (n ,)
313
10BC0
code>+ logprob : array_like, shape (n_samples ,)
314314 Log probabilities of each data point in `obs`
315- posteriors: array_like, shape (n , n_states)
315+ posteriors: array_like, shape (n_samples , n_states)
316316 Posterior probabilities of each mixture component for each
317317 observation
318318 """
@@ -328,13 +328,13 @@ def score(self, obs):
328328
329329 Parameters
330330 ----------
331- obs : array_like, shape (n , n_features)
331+ obs : array_like, shape (n_samples , n_features)
332332 List of n_features-dimensional data points. Each row
333333 corresponds to a single data point.
334334
335335 Returns
336336 -------
337- logprob : array_like, shape (n ,)
337+ logprob : array_like, shape (n_samples ,)
338338 Log probabilities of each data point in `obs`
339339 """
340340 logprob , posteriors = self .eval (obs )
@@ -351,9 +351,9 @@ def decode(self, obs):
351351
352352 Returns
353353 -------
354- logprobs : array_like, shape (n ,)
354+ logprobs : array_like, shape (n_samples ,)
355355 Log probability of each point in `obs` under the model.
356- components : array_like, shape (n ,)
356+ components : array_like, shape (n_samples ,)
357357 Index of the most likelihod mixture components for each observation
358358 """
359359 logprob , posteriors = self .eval (obs )
@@ -368,7 +368,7 @@ def predict(self, X):
368368
369369 Returns
370370 -------
371- C : array, shape = [ n_samples]
371+ C : array, shape = ( n_samples,)
372372 """
373373 logprob , components = self .decode (X )
374374 return components
@@ -383,7 +383,7 @@ def predict_proba(self, X):
383383
384384 Returns
385385 -------
386- T : array-like, shape = [ n_samples, n_states]
386+ T : array-like, shape = ( n_samples, n_states)
387387 Returns the probability of the sample for each Gaussian
388388 (state) in the model.
389389 """
0 commit comments