@@ -324,7 +324,7 @@ def smacof(similarities, metric=True, n_components=2, init=None, n_init=8,
324
324
verbose = verbose , eps = eps ,
325
325
random_state = seed )
326
326
for seed in seeds )
327
- positions , stress = zip (results )
327
+ positions , stress = zip (* results )
328
328
best = np .argmin (stress )
329
329
best_stress = stress [best ]
330
330
best_pos = positions [best ]
@@ -422,14 +422,7 @@ def fit(self, X, init=None, y=None):
422
422
if None, randomly chooses the initial configuration
423
423
if ndarray, initialize the SMACOF algorithm with this array
424
424
"""
425
- self .embedding_ , self .stress_ = smacof (X , metric = self .metric ,
426
- n_components = self .n_components ,
427
- init = init ,
428
- n_init = self .n_init ,
429
- max_iter = self .max_iter ,
430
- verbose = self .verbose ,
431
- eps = self .eps ,
432
- random_state = self .random_state )
425
+ self .fit_transform (X , init = init )
433
426
return self
434
427
435
428
def fit_transform (self , X , init = None , y = None ):
@@ -450,8 +443,10 @@ def fit_transform(self, X, init=None, y=None):
450
443
n_components = self .n_components ,
451
444
init = init ,
452
445
n_init = self .n_init ,
446
+ n_jobs = self .n_jobs ,
453
447
max_iter = self .max_iter ,
454
448
verbose = self .verbose ,
455
- eps = self .eps )
449
+ eps = self .eps ,
450
+ random_state = self .random_state )
456
451
457
452
return self .embedding_
0 commit comments