8000 Rename ndim --> n_dim · seckcoder/scikit-learn@5ea578a · GitHub
[go: up one dir, main page]

Skip to content

Commit 5ea578a

Browse files
author
Fabian Pedregosa
committed
Rename ndim --> n_dim
1 parent 1f9f965 commit 5ea578a

File tree

1 file changed

+16
-16
lines changed

1 file changed

+16
-16
lines changed

scikits/learn/mixture.py

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -105,10 +105,10 @@ def sample_gaussian(mean, covar, cvtype='diag', n_samples=1):
105105
obs : array, shape (n_features, n)
106106
Randomly generated sample
107107
"""
108-
ndim = len(mean)
109-
rand = np.random.randn(ndim, n_samples)
108+
n_dim = len(mean)
109+
rand = np.random.randn(n_dim, n_samples)
110110
if n_samples == 1:
111-
rand.shape = (ndim,)
111+
rand.shape = (n_dim,)
112112

113113
if cvtype == 'spherical':
114114
rand *= np.sqrt(covar)
@@ -526,11 +526,11 @@ def _do_mstep(self, X, posteriors, params, min_covar=0):
526526

527527

528528
def _lmvnpdfdiag(obs, means=0.0, covars=1.0):
529-
nobs, ndim = obs.shape
529+
nobs, n_dim = obs.shape
530530
# (x-y).T A (x-y) = x.T A x - 2x.T A y + y.T A y
531531
#lpr = -0.5 * (np.tile((np.sum((means**2) / covars, 1)
532532
# + np.sum(np.log(covars), 1))[np.newaxis,:], (nobs,1))
533-
lpr = -0.5 * (ndim * np.log(2 * np.pi) + np.sum(np.log(covars), 1)
533+
lpr = -0.5 * (n_dim * np.log(2 * np.pi) + np.sum(np.log(covars), 1)
534534
+ np.sum((means ** 2) / covars, 1)
535535
- 2 * np.dot(obs, (means / covars).T)
536536
+ np.dot(obs ** 2, (1.0 / covars).T))
@@ -546,10 +546,10 @@ def _lmvnpdfspherical(obs, means=0.0, covars=1.0):
546546

547547
def _lmvnpdftied(obs, means, covars):
548548
from scipy import linalg
549-
nobs, ndim = obs.shape
549+
nobs, n_dim = obs.shape
550550
# (x-y).T A (x-y) = x.T A x - 2x.T A y + y.T A y
551551
icv = linalg.pinv(covars)
552-
lpr = -0.5 * (ndim * np.log(2 * np.pi) + np.log(linalg.det(covars))
552+
lpr = -0.5 * (n_dim * np.log(2 * np.pi) + np.log(linalg.det(covars))
553553
+ np.sum(obs * np.dot(obs, icv), 1)[:,np.newaxis]
554554
- 2 * np.dot(np.dot(obs, icv), means.T)
555555
+ np.sum(means * np.dot(means, icv), 1))
@@ -568,42 +568,42 @@ def _lmvnpdffull(obs, means, covars):
568568
else:
569569
# slower, but works
570570
solve_triangular = linalg.solve
571-
nobs, ndim = obs.shape
571+
nobs, n_dim = obs.shape
572572
nmix = len(means)
573573
log_prob = np.empty((nobs,nmix))
574574
for c, (mu, cv) in enumerate(itertools.izip(means, covars)):
575575
cv_chol = linalg.cholesky(cv, lower=True)
576576
cv_log_det = 2*np.sum(np.log(np.diagonal(cv_chol)))
577577
cv_sol = solve_triangular(cv_chol, (obs - mu).T, lower=True).T
578578
log_prob[:, c] = -.5 * (np.sum(cv_sol**2, axis=1) + \
579-
ndim * np.log(2 * np.pi) + cv_log_det)
579+
n_dim * np.log(2 * np.pi) + cv_log_det)
580580

581581
return log_prob
582582

583583

584-
def _validate_covars(covars, cvtype, nmix, ndim):
584+
def _validate_covars(covars, cvtype, nmix, n_dim):
585585
from scipy import linalg
586586
if cvtype == 'spherical':
587587
if len(covars) != nmix:
588588
raise ValueError("'spherical' covars must have length nmix")
589589
elif np.any(covars <= 0):
590590
raise ValueError("'spherical' covars must be non-negative")
591591
elif cvtype == 'tied':
592-
if covars.shape != (ndim, ndim):
593-
raise ValueError("'tied' covars must have shape (ndim, ndim)")
592+
if covars.shape != (n_dim, n_dim):
593+
raise ValueError("'tied' covars must have shape (n_dim, n_dim)")
594594
elif (not np.allclose(covars, covars.T)
595595
or np.any(linalg.eigvalsh(covars) <= 0)):
596596
raise ValueError("'tied' covars must be symmetric, "
597597
"positive-definite")
598598
elif cvtype == 'diag':
599-
if covars.shape != (nmix, ndim):
600-
raise ValueError("'diag' covars must have shape (nmix, ndim)")
599+
if covars.shape != (nmix, n_dim):
600+
raise ValueError("'diag' covars must have shape (nmix, n_dim)")
601601
elif np.any(covars <= 0):
602602
raise ValueError("'diag' covars must be non-negative")
603603
elif cvtype == 'full':
604-
if covars.shape != (nmix, ndim, ndim):
604+
if covars.shape != (nmix, n_dim, n_dim):
605605
raise ValueError("'full' covars must have shape "
606-
"(nmix, ndim, ndim)")
606+
"(nmix, n_dim, n_dim)")
607607
for n,cv in enumerate(covars):
608608
if (not np.allclose(cv, cv.T)
609609
or np.any(linalg.eigvalsh(cv) <= 0)):

0 commit comments

Comments
 (0)
0