8000 COSMIT pep8 · seckcoder/scikit-learn@4bc8822 · GitHub
[go: up one dir, main page]

Skip to content

Commit 4bc8822

Browse files
committed
COSMIT pep8
1 parent e686e38 commit 4bc8822

File tree

1 file changed

+5
-6
lines changed

1 file changed

+5
-6
lines changed

examples/svm/plot_svm_scale_c.py

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -101,13 +101,13 @@
101101
n_features = 300
102102

103103
# L1 data (only 5 informative features)
104-
X_1, y_1 = datasets.make_classification(n_samples=n_samples, n_features=n_features,
105-
n_informative=5, random_state=1)
104+
X_1, y_1 = datasets.make_classification(n_samples=n_samples,
105+
n_features=n_features, n_informative=5, random_state=1)
106106

107107
# L2 data: non sparse, but less features
108108
y_2 = np.sign(.5 - rnd.rand(n_samples))
109-
X_2 = rnd.randn(n_samples, n_features/5) + y_2[:, np.newaxis]
110-
X_2 += 5 * rnd.randn(n_samples, n_features/5)
109+
X_2 = rnd.randn(n_samples, n_features / 5) + y_2[:, np.newaxis]
110+
X_2 += 5 * rnd.randn(n_samples, n_features / 5)
111111

112112
clf_sets = [(LinearSVC(penalty='L1', loss='L2', dual=False,
113113
tol=1e-3),
@@ -140,12 +140,11 @@
140140
pl.subplot(2, 1, subplotnum + 1)
141141
pl.xlabel('C')
142142
pl.ylabel('CV Score')
143-
grid_cs = cs * float(scaler) # scale the C's
143+
grid_cs = cs * float(scaler) # scale the C's
144144
pl.semilogx(grid_cs, scores, label="fraction %.2f" %
145145
train_size)
146146
pl.title('scaling=%s, penalty=%s, loss=%s' %
147147
(name, clf.penalty, clf.loss))
148148

149149
pl.legend(loc="best")
150150
pl.show()
151-

0 commit comments

Comments
 (0)
0