@@ -26,36 +26,37 @@ def compare_nbrs(nbrs1, nbrs2):
2626 elif (nbrs1 .ndim == 1 ):
2727 return np .all (nbrs1 == nbrs2 )
2828
29- n_samples = 1000
30- leaf_size = 1 # leaf size
31- k = 20
32- BT_results = []
33- KDT_results = []
34-
35- for i in range (1 , 10 ):
36- print 'Iteration %s' % i
37- n_features = i * 100
38- X = np .random .random ([n_samples , n_features ])
39-
40- t0 = time ()
41- BT = BallTree (X , leaf_size )
42- d , nbrs1 = BT .query (X , k )
43- delta = time () - t0
44- BT_results .append (delta )
45-
46- t0 = time ()
47- KDT = cKDTree (X , leaf_size )
48- d , nbrs2 = KDT .query (X , k )
49- delta = time () - t0
50- KDT_results .append (delta )
51-
52- # this checks we get the correct result
53- assert compare_nbrs (nbrs1 , nbrs2 )
54-
55- xx = 100 * np .arange (1 , 10 )
56- pl .plot (xx , BT_results , label = 'scikits.learn (BallTree)' )
57- pl .plot (xx , KDT_results , label = 'scipy (cKDTree)' )
58- pl .xlabel ('number of dimensions' )
59- pl .ylabel ('time (seconds)' )
60- pl .legend ()
61- pl .show ()
29+ if __name__ == '__main__' :
30+ n_samples = 1000
31+ leaf_size = 1 # leaf size
32+ k = 20
33+ BT_results = []
34+ KDT_results = []
35+
36+ for i in range (1 , 10 ):
37+ print 'Iteration %s' % i
38+ n_features = i * 100
39+ X = np .random .random ([n_samples , n_features ])
40+
41+ t0 = time ()
42+ BT = BallTree (X , leaf_size )
43+ d , nbrs1 = BT .query (X , k )
44+ delta = time () - t0
45+ BT_results .append (delta )
46+
47+ t0 = time ()
48+ KDT = cKDTree (X , leaf_size )
49+ d , nbrs2 = KDT .query (X , k )
50+ delta = time () - t0
51+ KDT_results .append (delta )
52+
53+ # this checks we get the correct result
54+ assert compare_nbrs (nbrs1 , nbrs2 )
55+
56+ xx = 100 * np .arange (1 , 10 )
57+ pl .plot (xx , BT_results , label = 'scikits.learn (BallTree)' )
58+ pl .plot (xx , KDT_results , label = 'scipy (cKDTree)' )
59+ pl .xlabel ('number of dimensions' )
60+ pl .ylabel ('time (seconds)' )
61+ pl .legend ()
62+ pl .show ()
0 commit comments