10000 GitHub - scikit-optimize/scikit-optimize at d22c1d5e8e77ccd4bdfefb63d52e4f954b058702
[go: up one dir, main page]

Skip to content
This repository was archived by the owner on Feb 28, 2024. It is now read-only.

scikit-optimize/scikit-optimize

Repository files navigation

Logo

pypi conda CI Status binder gitter Zenodo DOI

Scikit-Optimize

Scikit-Optimize, or skopt, is a simple and efficient library for optimizing (very) expensive and noisy black-box functions. It implements several methods for sequential model-based optimization. skopt aims to be accessible and easy to use in many contexts.

The library is built on top of NumPy, SciPy, and Scikit-Learn.

We do not perform gradient-based optimization. For gradient-based optimization algorithms, look at scipy.optimize.

Approximated objective

Approximated objective function after 50 iterations of gp_minimize. Plot made using skopt.plots.plot_objective.

Important links

Install

scikit-optimize requires Python >= 3.6. You can install the latest release with:

pip install scikit-optimize

This installs the essentials. To install plotting functionality, you can instead do:

pip install 'scikit-optimize[plots]'

This will additionally install Matplotlib.

If you're using Anaconda platform, there is a conda-forge package of scikit-optimize:

conda install -c conda-forge scikit-optimize

Using conda-forge is probably the easiest way to install scikit-optimize on Windows.

Getting started

Find the minimum of the noisy function f(x) over the range -2 < x < 2 with skopt:

import numpy as np
from skopt import gp_minimize

def f(x):
    return (np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) +
            np.random.randn() * 0.1)

res = gp_minimize(f, [(-2.0, 2.0)])

For more control over the optimization loop you can use the skopt.Optimizer class:

from skopt import Optimizer

opt = Optimizer([(-2.0, 2.0)])

for i in range(20):
    suggested = opt.ask()
    y = f(suggested)
    opt.tell(suggested, y)
    print('iteration:', i, suggested, y)

Read our introduction to bayesian optimization and the other examples.

Development

See CONTRIBUTING.md.

Commercial support

Feel free to get in touch if you need commercial support or would like to sponsor development. Resources go towards paying for additional work by seasoned engineers and researchers.

Made possible by

The scikit-optimize project was made possible with the support of

Wild Tree Tech NYU Center for Data Science NSF Northrop Grumman

If your employer allows you to work on scikit-optimize during the day and would like recognition, feel free to add them to the "Made possible by" list.

0