diff --git a/examples/tree/plot_iris.py b/examples/tree/plot_iris.py index d1b6e25b59a1c..f299aab18d7d1 100644 --- a/examples/tree/plot_iris.py +++ b/examples/tree/plot_iris.py @@ -22,7 +22,7 @@ # Parameters n_classes = 3 -plot_colors = "bry" +plot_colors = "ryb" plot_step = 0.02 # Load data @@ -44,23 +44,22 @@ y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) + plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) - cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) + cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu) plt.xlabel(iris.feature_names[pair[0]]) plt.ylabel(iris.feature_names[pair[1]]) - plt.axis("tight") # Plot the training points for i, color in zip(range(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], - cmap=plt.cm.Paired) - - plt.axis("tight") + cmap=plt.cm.RdYlBu, edgecolor='black', s=15) plt.suptitle("Decision surface of a decision tree using paired features") -plt.legend() +plt.legend(loc='lower right', borderpad=0, handletextpad=0) +plt.axis("tight") plt.show()