diff --git a/examples/model_selection/plot_roc_crossval.py b/examples/model_selection/plot_roc_crossval.py index 6678dcb1af8b3..366aa0acbee06 100644 --- a/examples/model_selection/plot_roc_crossval.py +++ b/examples/model_selection/plot_roc_crossval.py @@ -62,32 +62,39 @@ classifier = svm.SVC(kernel='linear', probability=True, random_state=random_state) -mean_tpr = 0.0 +tprs = [] +aucs = [] mean_fpr = np.linspace(0, 1, 100) -colors = cycle(['cyan', 'indigo', 'seagreen', 'yellow', 'blue', 'darkorange']) -lw = 2 - i = 0 -for (train, test), color in zip(cv.split(X, y), colors): +for train, test in cv.split(X, y): probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test]) # Compute ROC curve and area the curve fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1]) - mean_tpr += interp(mean_fpr, fpr, tpr) - mean_tpr[0] = 0.0 + tprs.append(interp(mean_fpr, fpr, tpr)) + tprs[-1][0] = 0.0 roc_auc = auc(fpr, tpr) - plt.plot(fpr, tpr, lw=lw, color=color, - label='ROC fold %d (area = %0.2f)' % (i, roc_auc)) + aucs.append(roc_auc) + plt.plot(fpr, tpr, lw=1, alpha=0.3, + label='ROC fold %d (AUC = %0.2f)' % (i, roc_auc)) i += 1 -plt.plot([0, 1], [0, 1], linestyle='--', lw=lw, color='k', - label='Luck') +plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', + label='Luck', alpha=.8) -mean_tpr /= cv.get_n_splits(X, y) +mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) -plt.plot(mean_fpr, mean_tpr, color='g', linestyle='--', - label='Mean ROC (area = %0.2f)' % mean_auc, lw=lw) +std_auc = np.std(aucs) +plt.plot(mean_fpr, mean_tpr, color='b', + label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc), + lw=2, alpha=.8) + +std_tpr = np.std(tprs, axis=0) +tprs_upper = np.minimum(mean_tpr + std_tpr, 1) +tprs_lower = np.maximum(mean_tpr - std_tpr, 0) +plt.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2, + label=r'$\pm$ 1 std. dev.') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05])