8000 [MRG+1] ENH exposing extra parameters in t-sne by sdvillal · Pull Request #5186 · scikit-learn/scikit-learn · GitHub
[go: up one dir, main page]

Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions sklearn/manifold/t_sne.py
Original file line number Diff line number Diff line change
Expand Up @@ -338,6 +338,14 @@ class TSNE(BaseEstimator):
Maximum number of iterations for the optimization. Should be at
least 200.

n_iter_without_progress : int, optional (default: 30)
Maximum number of iterations without progress before we abort the
optimization.

min_grad_norm : float, optional (default: 1E-7)
If the gradient norm is below this threshold, the optimization will
be aborted.

metric : string or callable, optional
The metric to use when calculating distance between instances in a
feature array. If metric is a string, it must be one of the options
Expand Down Expand Up @@ -395,6 +403,7 @@ class TSNE(BaseEstimator):
"""
def __init__(self, n_components=2, perplexity=30.0,
early_exaggeration=4.0, learning_rate=1000.0, n_iter=1000,
n_iter_without_progress=30, min_grad_norm=1e-7,
metric="euclidean", init="random", verbose=0,
random_state=None):
if init not in ["pca", "random"]:
Expand All @@ -404,6 +413,8 @@ def __init__(self, n_components=2, perplexity=30.0,
self.early_exaggeration = early_exaggeration
self.learning_rate = learning_rate
self.n_iter = n_iter
self.n_iter_without_progress = n_iter_without_progress
self.min_grad_norm = min_grad_norm
self.metric = metric
self.init = init
self.verbose = verbose
Expand Down Expand Up @@ -504,6 +515,8 @@ def _tsne(self, P, alpha, n_samples, random_state, X_embedded=None):
P /= self.early_exaggeration
params, error, it = _gradient_descent(
_kl_divergence, params, it=it + 1, n_iter=self.n_iter,
min_grad_norm=self.min_grad_norm,
n_iter_without_progress=self.n_iter_without_progress,
momentum=0.8, learning_rate=self.learning_rate,
verbose=self.verbose, args=[P, alpha, n_samples,
self.n_components])
Expand Down
0