diff --git a/sklearn/tests/test_kernel_ridge.py b/sklearn/tests/test_kernel_ridge.py index e0d2d2cf39574..431d326a82269 100644 --- a/sklearn/tests/test_kernel_ridge.py +++ b/sklearn/tests/test_kernel_ridge.py @@ -1,15 +1,14 @@ import numpy as np -import scipy.sparse as sp +import pytest from sklearn.datasets import make_regression from sklearn.kernel_ridge import KernelRidge from sklearn.linear_model import Ridge from sklearn.metrics.pairwise import pairwise_kernels from sklearn.utils._testing import assert_array_almost_equal, ignore_warnings +from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS X, y = make_regression(n_features=10, random_state=0) -Xcsr = sp.csr_matrix(X) -Xcsc = sp.csc_matrix(X) Y = np.array([y, y]).T @@ -19,23 +18,15 @@ def test_kernel_ridge(): assert_array_almost_equal(pred, pred2) -def test_kernel_ridge_csr(): +@pytest.mark.parametrize("sparse_container", [*CSR_CONTAINERS, *CSC_CONTAINERS]) +def test_kernel_ridge_sparse(sparse_container): + X_sparse = sparse_container(X) pred = ( Ridge(alpha=1, fit_intercept=False, solver="cholesky") - .fit(Xcsr, y) - .predict(Xcsr) + .fit(X_sparse, y) + .predict(X_sparse) ) - pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsr, y).predict(Xcsr) - assert_array_almost_equal(pred, pred2) - - -def test_kernel_ridge_csc(): - pred = ( - Ridge(alpha=1, fit_intercept=False, solver="cholesky") - .fit(Xcsc, y) - .predict(Xcsc) - ) - pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsc, y).predict(Xcsc) + pred2 = KernelRidge(kernel="linear", alpha=1).fit(X_sparse, y).predict(X_sparse) assert_array_almost_equal(pred, pred2)