From c646f95fef7dd6e18238a3c4a2ba5ac70f70dc37 Mon Sep 17 00:00:00 2001 From: Dimitri Papadopoulos <3234522+DimitriPapadopoulos@users.noreply.github.com> Date: Tue, 18 Jul 2023 09:24:08 +0200 Subject: [PATCH 1/4] DOC fix broken links --- doc/modules/ensemble.rst | 7 ++++--- doc/whats_new/v0.22.rst | 2 +- 2 files changed, 5 insertions(+), 4 deletions(-) diff --git a/doc/modules/ensemble.rst b/doc/modules/ensemble.rst index c3ea63bc6e944..94054c1b520c5 100644 --- a/doc/modules/ensemble.rst +++ b/doc/modules/ensemble.rst @@ -11,12 +11,13 @@ base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator. Two very famous examples of ensemble methods are `gradient-boosted trees -`_ and `random forests `_. +`_ and +`random forests `_. More generally, ensemble models can be applied to any base learner beyond trees, in averaging methods such as :ref:`Bagging methods `, -`model stacking `_, or `Voting `_, or in -boosting, as :ref:`AdaBoost `. +`model stacking `_, or `Voting `_, +or in boosting, as :ref:`AdaBoost `. .. contents:: :local: diff --git a/doc/whats_new/v0.22.rst b/doc/whats_new/v0.22.rst index fea27b0c1c1a4..da2f5e8796db8 100644 --- a/doc/whats_new/v0.22.rst +++ b/doc/whats_new/v0.22.rst @@ -392,7 +392,7 @@ Changelog - |Efficiency| :class:`decomposition.NMF` with `solver="mu"` fitted on sparse input matrices now uses batching to avoid briefly allocating an array with size - (#non-zero elements, n_components). :pr:`15257` by `Mart Willocx `_. + (#non-zero elements, n_components). :pr:`15257` by :user:`Mart Willocx `. - |Enhancement| :func:`decomposition.dict_learning` and :func:`decomposition.dict_learning_online` now accept `method_max_iter` and From f459144b3593bfb80a67ea1ddaf180468a5e82b4 Mon Sep 17 00:00:00 2001 From: Dimitri Papadopoulos Orfanos <3234522+DimitriPapadopoulos@users.noreply.github.com> Date: Tue, 18 Jul 2023 17:15:42 +0200 Subject: [PATCH 2/4] Update doc/modules/ensemble.rst Co-authored-by: Arturo Amor <86408019+ArturoAmorQ@users.noreply.github.com> --- doc/modules/ensemble.rst | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/doc/modules/ensemble.rst b/doc/modules/ensemble.rst index 94054c1b520c5..917bd37c0bf7f 100644 --- a/doc/modules/ensemble.rst +++ b/doc/modules/ensemble.rst @@ -16,8 +16,8 @@ Two very famous examples of ensemble methods are `gradient-boosted trees More generally, ensemble models can be applied to any base learner beyond trees, in averaging methods such as :ref:`Bagging methods `, -`model stacking `_, or `Voting `_, -or in boosting, as :ref:`AdaBoost `. +:ref:`model stacking `, or :ref:`Voting `, or in +boosting, as :ref:`AdaBoost `. .. contents:: :local: From 1811f4417c562c415b0a86c7122d1b420b8685b3 Mon Sep 17 00:00:00 2001 From: Dimitri Papadopoulos Orfanos <3234522+DimitriPapadopoulos@users.noreply.github.com> Date: Wed, 19 Jul 2023 20:54:46 +0200 Subject: [PATCH 3/4] Update doc/modules/ensemble.rst Co-authored-by: Arturo Amor <86408019+ArturoAmorQ@users.noreply.github.com> --- doc/modules/ensemble.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/modules/ensemble.rst b/doc/modules/ensemble.rst index 917bd37c0bf7f..7e1d30e5bb67a 100644 --- a/doc/modules/ensemble.rst +++ b/doc/modules/ensemble.rst @@ -10,7 +10,7 @@ Ensembles: Gradient boosting, random forests, bagging, voting, stacking base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator. -Two very famous examples of ensemble methods are `gradient-boosted trees +Two very famous examples of ensemble methods are :ref:`gradient-boosted trees `_ and `random forests `_. From bcae063b9ff15a4999f2b3c36768eea57f430c50 Mon Sep 17 00:00:00 2001 From: Dimitri Papadopoulos Orfanos <3234522+DimitriPapadopoulos@users.noreply.github.com> Date: Wed, 19 Jul 2023 20:54:58 +0200 Subject: [PATCH 4/4] Update doc/modules/ensemble.rst Co-authored-by: Arturo Amor <86408019+ArturoAmorQ@users.noreply.github.com> --- doc/modules/ensemble.rst | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/doc/modules/ensemble.rst b/doc/modules/ensemble.rst index 7e1d30e5bb67a..36eed98da0f6b 100644 --- a/doc/modules/ensemble.rst +++ b/doc/modules/ensemble.rst @@ -11,8 +11,7 @@ base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator. Two very famous examples of ensemble methods are :ref:`gradient-boosted trees -`_ and -`random forests `_. +` and :ref:`random forests `. More generally, ensemble models can be applied to any base learner beyond trees, in averaging methods such as :ref:`Bagging methods `,