diff --git a/sklearn/metrics/pairwise.py b/sklearn/metrics/pairwise.py index 0b304d28506a3..af69da7dce295 100644 --- a/sklearn/metrics/pairwise.py +++ b/sklearn/metrics/pairwise.py @@ -1185,6 +1185,13 @@ def paired_distances(X, Y, *, metric="euclidean", **kwds): # Kernels +@validate_params( + { + "X": ["array-like", "sparse matrix"], + "Y": ["array-like", "sparse matrix", None], + "dense_output": ["boolean"], + } +) def linear_kernel(X, Y=None, dense_output=True): """ Compute the linear kernel between X and Y. @@ -1193,10 +1200,10 @@ def linear_kernel(X, Y=None, dense_output=True): Parameters ---------- - X : ndarray of shape (n_samples_X, n_features) + X : {array-like, sparse matrix} of shape (n_samples_X, n_features) A feature array. - Y : ndarray of shape (n_samples_Y, n_features), default=None + Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None An optional second feature array. If `None`, uses `Y=X`. dense_output : bool, default=True diff --git a/sklearn/tests/test_public_functions.py b/sklearn/tests/test_public_functions.py index 148588f86eb5b..134282704a12f 100644 --- a/sklearn/tests/test_public_functions.py +++ b/sklearn/tests/test_public_functions.py @@ -203,6 +203,7 @@ def _check_function_param_validation( "sklearn.metrics.pairwise.additive_chi2_kernel", "sklearn.metrics.pairwise.haversine_distances", "sklearn.metrics.pairwise.laplacian_kernel", + "sklearn.metrics.pairwise.linear_kernel", "sklearn.metrics.precision_recall_curve", "sklearn.metrics.precision_recall_fscore_support", "sklearn.metrics.precision_score",