diff --git a/sklearn/linear_model/_least_angle.py b/sklearn/linear_model/_least_angle.py index 7ed7b27811ec6..35af5dab30267 100644 --- a/sklearn/linear_model/_least_angle.py +++ b/sklearn/linear_model/_least_angle.py @@ -69,7 +69,7 @@ def lars_path( y : None or array-like of shape (n_samples,) Input targets. - Xy : array-like of shape (n_samples,) or (n_samples, n_targets), \ + Xy : array-like of shape (n_features,) or (n_features, n_targets), \ default=None `Xy = np.dot(X.T, y)` that can be precomputed. It is useful only when the Gram matrix is precomputed. @@ -215,7 +215,7 @@ def lars_path_gram( Parameters ---------- - Xy : array-like of shape (n_samples,) or (n_samples, n_targets) + Xy : array-like of shape (n_features,) or (n_features, n_targets) Xy = np.dot(X.T, y). Gram : array-like of shape (n_features, n_features) @@ -362,7 +362,7 @@ def _lars_path_solver( y : None or ndarray of shape (n_samples,) Input targets. - Xy : array-like of shape (n_samples,) or (n_samples, n_targets), \ + Xy : array-like of shape (n_features,) or (n_features, n_targets), \ default=None `Xy = np.dot(X.T, y)` that can be precomputed. It is useful only when the Gram matrix is precomputed. @@ -1110,7 +1110,7 @@ def fit(self, X, y, Xy=None): y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. - Xy : array-like of shape (n_samples,) or (n_samples, n_targets), \ + Xy : array-like of shape (n_features,) or (n_features, n_targets), \ default=None Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed.