diff --git a/examples/applications/plot_prediction_latency.py b/examples/applications/plot_prediction_latency.py index b9780e7974776..9b99bcbfdfaf1 100644 --- a/examples/applications/plot_prediction_latency.py +++ b/examples/applications/plot_prediction_latency.py @@ -38,6 +38,11 @@ def _not_in_sphinx(): return "__file__" in globals() +# %% +# Benchmark and plot helper functions +# ----------------------------------- + + def atomic_benchmark_estimator(estimator, X_test, verbose=False): """Measure runtime prediction of each instance.""" n_instances = X_test.shape[0] @@ -289,13 +294,10 @@ def plot_benchmark_throughput(throughputs, configuration): plt.show() -# ############################################################################# -# Main code - -start_time = time.time() - -# ############################################################################# +# %% # Benchmark bulk/atomic prediction speed for various regressors +# ------------------------------------------------------------- + configuration = { "n_train": int(1e3), "n_test": int(1e2), @@ -325,7 +327,10 @@ def plot_benchmark_throughput(throughputs, configuration): } benchmark(configuration) -# benchmark n_features influence on prediction speed +# %% +# Benchmark n_features influence on prediction speed +# -------------------------------------------------- + percentile = 90 percentiles = n_feature_influence( {"ridge": Ridge()}, @@ -336,9 +341,9 @@ def plot_benchmark_throughput(throughputs, configuration): ) plot_n_features_influence(percentiles, percentile) -# benchmark throughput +# %% +# Benchmark throughput +# -------------------- + throughputs = benchmark_throughputs(configuration) plot_benchmark_throughput(throughputs, configuration) - -stop_time = time.time() -print("example run in %.2fs" % (stop_time - start_time))