From bfc68a9c6abd70945d7a3d37532acb3042d904b5 Mon Sep 17 00:00:00 2001 From: Gabriel Stefanini Vicente Date: Fri, 22 Oct 2021 15:45:23 -0400 Subject: [PATCH] DOC Ensures that PassiveAggressiveRegressor passes numpydoc validation --- maint_tools/test_docstrings.py | 1 - sklearn/linear_model/_passive_aggressive.py | 27 ++++++++++----------- 2 files changed, 13 insertions(+), 15 deletions(-) diff --git a/maint_tools/test_docstrings.py b/maint_tools/test_docstrings.py index 3afc2b9e5cc18..a404077988aac 100644 --- a/maint_tools/test_docstrings.py +++ b/maint_tools/test_docstrings.py @@ -16,7 +16,6 @@ "LabelSpreading", "MultiTaskElasticNetCV", "OrthogonalMatchingPursuitCV", - "PassiveAggressiveRegressor", "SpectralCoclustering", "SpectralEmbedding", "StackingRegressor", diff --git a/sklearn/linear_model/_passive_aggressive.py b/sklearn/linear_model/_passive_aggressive.py index fc5286c235a70..65f754ba35f55 100644 --- a/sklearn/linear_model/_passive_aggressive.py +++ b/sklearn/linear_model/_passive_aggressive.py @@ -301,7 +301,7 @@ def fit(self, X, y, coef_init=None, intercept_init=None): class PassiveAggressiveRegressor(BaseSGDRegressor): - """Passive Aggressive Regressor + """Passive Aggressive Regressor. Read more in the :ref:`User Guide `. @@ -352,7 +352,7 @@ class PassiveAggressiveRegressor(BaseSGDRegressor): shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. - verbose : integer, default=0 + verbose : int, default=0 The verbosity level. loss : str, default="epsilon_insensitive" @@ -416,6 +416,17 @@ class PassiveAggressiveRegressor(BaseSGDRegressor): Number of weight updates performed during training. Same as ``(n_iter_ * n_samples)``. + See Also + -------- + SGDRegressor : Linear model fitted by minimizing a regularized + empirical loss with SGD. + + References + ---------- + Online Passive-Aggressive Algorithms + + K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006). + Examples -------- >>> from sklearn.linear_model import PassiveAggressiveRegressor @@ -432,18 +443,6 @@ class PassiveAggressiveRegressor(BaseSGDRegressor): [-0.02306214] >>> print(regr.predict([[0, 0, 0, 0]])) [-0.02306214] - - See Also - -------- - SGDRegressor : Linear model fitted by minimizing a regularized - empirical loss with SGD. - - References - ---------- - Online Passive-Aggressive Algorithms - - K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006). - """ def __init__(