diff --git a/maint_tools/test_docstrings.py b/maint_tools/test_docstrings.py index 9d60bc1900f5a..60ed100e53184 100644 --- a/maint_tools/test_docstrings.py +++ b/maint_tools/test_docstrings.py @@ -20,7 +20,6 @@ "MultiLabelBinarizer", "MultiTaskElasticNet", "MultiTaskElasticNetCV", - "MultiTaskLasso", "MultiTaskLassoCV", "OrthogonalMatchingPursuit", "OrthogonalMatchingPursuitCV", diff --git a/sklearn/linear_model/_coordinate_descent.py b/sklearn/linear_model/_coordinate_descent.py index 91b6b1e584469..6049c6458221b 100644 --- a/sklearn/linear_model/_coordinate_descent.py +++ b/sklearn/linear_model/_coordinate_descent.py @@ -2378,6 +2378,7 @@ def fit(self, X, y): Returns ------- self : object + Fitted estimator. Notes ----- @@ -2527,7 +2528,7 @@ class MultiTaskLasso(MultiTaskElasticNet): If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence - especially when tol is higher than 1e-4 + especially when tol is higher than 1e-4. Attributes ---------- @@ -2563,6 +2564,19 @@ class MultiTaskLasso(MultiTaskElasticNet): .. versionadded:: 1.0 + See Also + -------- + Lasso: Linear Model trained with L1 prior as regularizer (aka the Lasso). + MultiTaskLasso: Multi-task L1/L2 Lasso with built-in cross-validation. + MultiTaskElasticNet: Multi-task L1/L2 ElasticNet with built-in cross-validation. + + Notes + ----- + The algorithm used to fit the model is coordinate descent. + + To avoid unnecessary memory duplication the X and y arguments of the fit + method should be directly passed as Fortran-contiguous numpy arrays. + Examples -------- >>> from sklearn import linear_model @@ -2574,19 +2588,6 @@ class MultiTaskLasso(MultiTaskElasticNet): [0. 0.94592424]] >>> print(clf.intercept_) [-0.41888636 -0.87382323] - - See Also - -------- - MultiTaskLasso : Multi-task L1/L2 Lasso with built-in cross-validation - Lasso - MultiTaskElasticNet - - Notes - ----- - The algorithm used to fit the model is coordinate descent. - - To avoid unnecessary memory duplication the X and y arguments of the fit - method should be directly passed as Fortran-contiguous numpy arrays. """ def __init__(