diff --git a/maint_tools/test_docstrings.py b/maint_tools/test_docstrings.py index e621ba12dcb11..d7d5317d14106 100644 --- a/maint_tools/test_docstrings.py +++ b/maint_tools/test_docstrings.py @@ -150,7 +150,6 @@ "RadiusNeighborsRegressor", "RadiusNeighborsTransformer", "RandomForestClassifier", - "RandomForestRegressor", "RandomTreesEmbedding", "RandomizedSearchCV", "RegressorChain", diff --git a/sklearn/ensemble/_forest.py b/sklearn/ensemble/_forest.py index 2517589ef5440..fa3567370cd18 100644 --- a/sklearn/ensemble/_forest.py +++ b/sklearn/ensemble/_forest.py @@ -276,7 +276,6 @@ def decision_path(self, X): n_nodes_ptr : ndarray of shape (n_estimators + 1,) The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator. - """ X = self._validate_X_predict(X) indicators = Parallel( @@ -319,6 +318,7 @@ def fit(self, X, y, sample_weight=None): Returns ------- self : object + Fitted estimator. """ # Validate or convert input data if issparse(y): @@ -613,6 +613,13 @@ def feature_importances_(self): ) @property def n_features_(self): + """Number of features when fitting the estimator. + + Returns + ------- + n_features_in_ : int + The number of features when fitting the estimator. + """ return self.n_features_in_ @@ -1594,7 +1601,9 @@ class RandomForestRegressor(ForestRegressor): See Also -------- - DecisionTreeRegressor, ExtraTreesRegressor + sklearn.tree.DecisionTreeRegressor : A decision tree regressor. + sklearn.ensemble.ExtraTreesRegressor : Ensemble of extremely randomized + tree regressors. Notes -----