diff --git a/sklearn/cluster/_affinity_propagation.py b/sklearn/cluster/_affinity_propagation.py index 3393e0686bd02..eaba9ccf1ec20 100644 --- a/sklearn/cluster/_affinity_propagation.py +++ b/sklearn/cluster/_affinity_propagation.py @@ -242,51 +242,51 @@ class AffinityPropagation(ClusterMixin, BaseEstimator): Parameters ---------- - damping : float, optional, default: 0.5 + damping : float, default=0.5 Damping factor (between 0.5 and 1) is the extent to which the current value is maintained relative to incoming values (weighted 1 - damping). This in order to avoid numerical oscillations when updating these values (messages). - max_iter : int, optional, default: 200 + max_iter : int, default=200 Maximum number of iterations. - convergence_iter : int, optional, default: 15 + convergence_iter : int, default=15 Number of iterations with no change in the number of estimated clusters that stops the convergence. - copy : boolean, optional, default: True + copy : bool, default=True Make a copy of input data. - preference : array-like, shape (n_samples,) or float, optional + preference : array-like of shape (n_samples,) or float, default=None Preferences for each point - points with larger values of preferences are more likely to be chosen as exemplars. The number of exemplars, ie of clusters, is influenced by the input preferences value. If the preferences are not passed as arguments, they will be set to the median of the input similarities. - affinity : string, optional, default=``euclidean`` - Which affinity to use. At the moment ``precomputed`` and - ``euclidean`` are supported. ``euclidean`` uses the + affinity : {'euclidean', 'precomputed'}, default='euclidean' + Which affinity to use. At the moment 'precomputed' and + ``euclidean`` are supported. 'euclidean' uses the negative squared euclidean distance between points. - verbose : boolean, optional, default: False + verbose : bool, default=False Whether to be verbose. Attributes ---------- - cluster_centers_indices_ : array, shape (n_clusters,) + cluster_centers_indices_ : ndarray of shape (n_clusters,) Indices of cluster centers - cluster_centers_ : array, shape (n_clusters, n_features) + cluster_centers_ : ndarray of shape (n_clusters, n_features) Cluster centers (if affinity != ``precomputed``). - labels_ : array, shape (n_samples,) + labels_ : ndarray of shape (n_samples,) Labels of each point - affinity_matrix_ : array, shape (n_samples, n_samples) + affinity_matrix_ : ndarray of shape (n_samples, n_samples) Stores the affinity matrix used in ``fit``. n_iter_ : int